Event-driven and Multi-threaded Programming in CS-1
using the ObjectDraw Package

Mark Fienup
Computer Science Department
University of Northern lowa
Cedar Falls, IA 50614-0507
fienup@cs.uni.edu

Abstract

Learning to program is a challenging and time-consuming task for most students. To
motivate CS-1 students through this difficult period and to ease the learning of
object-oriented programming in Java at the University of Northern lowa, we are
experimenting with the ObjectDraw package developed at Williams College [1, 2]. Labs
developed using the ObjectDraw package allow beginning programmers to use graphical
objects (ovals, rectangles, lines, text, etc.) in event-driven and multi-threaded programs
with relative easy. The use of the ObjectDraw package allows us to focus on the key
concepts of object-oriented programming without overwhelming students with the
complexity of "raw" Java. This paper will describe the ObjectDraw package in more
detail, and outline how we incorporate ObjectDraw into the lectures and labs of our CS-1
course. Additionally, we will report on the impact this approach has had on our attrition
in the CS-1 course.

Introduction

Learning to program has always been a challenging and time-consuming task for most
students with relatively high attrition rates typical in CS-1 courses. The paradigm switch
from procedural languages (Pascal and C) to object-oriented languages (Java and C++) in
CS-1 have not made learning to program any easier [3].

One way to motivate CS-1 students through this difficult period is to try to make learning
to program more interesting and realistic. To ease the learning of object-oriented
programming in Java at the University of Northern lowa, we are experimenting with the
ObjectDraw package developed at Williams College [1, 2]. Labs developed using the
ObjectDraw package allow beginning programmers to use graphical objects (ovals,
rectangles, lines, text, etc.) in event-driven and multi-threaded programs with relative
easy. The hope is that students find these labs highly motivational due to their graphical
nature and realness of being event-driven.

The use of the ObjectDraw package allows us to focus on the key concepts of

object-oriented programming without overwhelming students with the complexity of
"raw" Java in the first halve of the CS-1 course. In the second halve of the course,
students have little difficulty making the transition from the simplified ObjectDraw
event-driven model to the more complex GUI components and event-driven model of the
Java AWT.

This paper will describe the ObjectDraw package in more detail, and outline how we
incorporate ObjectDraw into the lectures and labs of our CS-1 course. Additionally, we
will report on the impact this approach has had on our attrition in the CS-1 course.

Graphical Objects of the ObjectDraw Package

The ObjectDraw package was developed at Williams College [1] by Kim Bruce, Andrea
Danyluk, and Thomas Murtagh for uses in their CS-1 course. ObjectDraw allows
beginning programmers to use graphical objects (ovals, rectangles, lines, text, etc.) in
event-driven programs without overwhelming students with the complexity of "raw"
Java.

Figure 1 is a sample ObjectDraw program that allows the user to drag a box around the
screen using the mouse. Classes using ObjectDraw extend "WindowController" which
itself extends the Java Applet class. The WindowController "begin" method is executed
once at the beginning of the program to perform the necessary initialization. Here it
creates a "box" which is an ObjectDraw FilledRect object of a specified size and location
on the "canvas." The "canvas" in ObjectDraw's WindowController is essentially the
applet window. See Appendix A for a complete summary of ObjectDraw graphical
objects and their methods.

The remaining methods in Figure 1: "onMousePress" and "onMouseDrag" are part of
ObjectDraw's simplified mouse-event handling methods. Other ObjectDraw mouse-event
handling methods are onMouseRelease, onMouseClick, onMouseMove, onMouseEnter,
and onMouseExit. These methods all return a Location object that encapsulates the X
and Y coordinate of where the mouse-event occurred on the canvas. Frequently, the
returned Location object is used to see if the mouse-event occurred within the area of
ObjectDraw graphical object. For example, the onMousePress method in Figure 1 returns
the Location-object "point" which is used to check if the FilledRect-object "box"
"contains" the point where the mouse button was pressed ("box.contains (point)").

ObjectDraw allows for a truly objects-first approach to teaching CS-1. The graphical
objects are used from the start. The event-driven nature of ObjectDraw allows for
interesting early programs with only the "if-statement" for a control structure. Students
can practice constructing new classes consisting of a collection of graphical objects (e.g.,
a t-shirt object consisting of rectangles for the body and arms with an oval for the neck)
with same methods (move, contains, etc.) of the primitive ObjectDraw graphical objects.

import objectdraw.*;
import java.awt.*;

public class DraggableBox extends WindowController({

// Starting position and size for box
private static final int START LEFT = 200, START TOP = 100,

BOX HEIGHT = 30, BOX WIDTH = 30;
private FilledRect box; // box to be dragged
private Location lastPoint; // point where mouse was last seen

// whether the box has been grabbed by the mouse
private boolean boxGrabbed = false;

// begin is for initialization. Here it makes the box
public void begin() {
box = new FilledRect (START LEFT, START TOP, BOX WIDTH,
BOX HEIGHT, canvas);
} // end begin

// Save starting point and whether point was in box
public void onMousePress (Location point) {
lastPoint = point;
boxGrabbed = box.contains (point);
} // end onMousePress

// 1if mouse is in box, then drag the box
public void onMouseDrag(Location point) {
if (boxGrabbed) {

box.move (point.getX() - lastPoint.getX(),
point.getY () - lastPoint.get¥Y ());
lastPoint = point;
} // end if

} // end onMouseDrag

} // end class DraggableBox

Figure 1: ObjectDraw program to drag a box around the screen with the mouse.

Multi-threading using ActiveObjects of ObjectDraw Package

For the first 5 weeks students use the graphical objects (FilledRect, FilledOval, Line,
Text, etc.) with the simplified mouse-events of the WindowController class. Shortly after
the introduction of the "while" loop, students are introduced to "active" objects that run
even when the user doesn't do anything with the mouse. The ActiveObject class in the
ObjectDraw library allows many of these active objects to execute in parallel with each
other within their own thread.

ActiveObject's includes a number of instance variables and methods that are used to keep
track of objects which can execute in parallel with each other. To create an ActiveObject
one must: (1) define a class that "extends ActiveObject," (2) define its constructor and say

"start()" at the end, (3) define a "public void run()" method. The constructor typically
places the active object on the canvas before calling the "start" method which does some
housekeeping resulting in the creation of a new Java thread. The last thing the "start"
method does is call the "run" method. The "run" method typically consists of a loop that
animates the ActiveObject by checking for collisions with other objects, moving a few
pixels on the screen, and then pausing before iterating the loop again. When the "run"
method terminates, the thread dies, and the object is no longer "active."

Figure 2 contains the code for the MovingBall ActiveObject class that is used in a one
player Pong-like game shown in Figure 3. The player clicks on the mouse to start a new
MovingBall falling. She then tries to keep the ball aloft by positioning the paddle under it
before it reaches the bottom. If the player misses the ball with the paddle, the ball falls
off the bottom of the screen. The ball will bounce off the sides and top of the playing
area as well as the paddle.

The MovingBall constructor in Figure 2 (a) is passed references to the paddle and game
boundary which is stores in instance variables. It constructs a FilledOval to represent
the falling ball, then it determines a random velocity for the ball in the X and Y
directions. Finally, it calls the "start" method which initialized the thread before calling
the "run" method.

The MovingBall "run" method in Figure 2 (b) consists of a while-loop that iterates while
the ball has not fallen off the bottom of the screen. On each iteration of the loop (1) the
time since the last ball movement is calculated, (2) the ball is moved based on this time
and the balls velocity in the X and Y directions, (3) the direction of the ball is reversed if
the ball is in contact with the paddle or the sides of the playing area, and (4) the ball is
paused momentarily.

Finally, the Pong class that uses the MovingBall ActiveObjects is given in Figure 4. It
extends WindowController and uses the a simplified mouse-events onMouseClick and
onMouseMove. The onMouseClick method just drops a new MovingBall object when
the mouse is clicked. The onMouseMove method moves the paddle corresponding to the
mouse's location within the confines of the playing area.

By combining the simplified mouse-events of ObjectDraw with the multi-threading of
ActiveObjects, CS-1 students are able to write some relatively sophisticated programs.
For example, the sixth programming assignment in the CS-1 class during the Fall 2002
was to implement a "Frogger" game with four lanes of traffic to cross. Each lane of
traffic was implemented by an ActiveObject whose job was to construct a stream
ActiveObject vehicles. Figure 5 shows a snapshot of the Frogger game.

The Frogger game also illustrates another nice feature of ObjectDraw. ObjectDraw
allows you to construct a VisibleImage object using an imported picture. VisibleImage
objects have all the methods (move, moveTo, contains, etc.) as the standard ObjectDraw
objects (FilledRect, FilledOval, etc.).

import objectdraw.*;
import java.awt.*;

public class MovingBall extends ActiveObject ({
private static final int BALLSIZE = 30;
private static final int SCREENGAP = 130;

// Constants to determine ball speeds
private static final int MINSPEED = 2;
private static final int SPEEDRANGE = 10;
private static final int PAUSETIME = 40;

private FilledOval ball;

// components of speed vector
private double xSpeed, ySpeed, initYspeed;

// boundaries of playing area
private double bLeft, bRight, bTop, offScreen;

// the paddle
private FilledRect paddle;

private RandomIntGenerator speedGen;
private DrawingCanvas canvas;

public MovingBall (DrawingCanvas canvas, FilledRect paddle,

FramedRect boundary) {
this.canvas = canvas;
this.paddle = paddle;

// give names to boundary values
bLeft = boundary.getX();
bTop = boundary.get¥Y();

bRight = bLeft + boundary.getWidth() - BALLSIZE;

offScreen = bTop + boundary.getHeight () + SCREENGAP;

ball = new FilledOval (boundary.getLocation ()

4

BALLSIZE, BALLSIZE, canvas);

// pick random pixel/pause speeds

speedGen = new RandomIntGenerator (l, SPEEDRANGE) ;

xSpeed = speedGen.nextValue () -SPEEDRANGE/2;
if (xSpeed > 0)

xSpeed = xSpeed + MINSPEED;
else

xSpeed = xSpeed - MINSPEED;

ySpeed = speedGen.nextValue () + MINSPEED;

// compute pixel/millisecond speeds
xSpeed = xSpeed / PAUSETIME;

ySpeed = ySpeed / PAUSETIME;
initYspeed = ySpeed;

start () ;
} // end MovingBall constructor

Figure 2 (a): MovingBall ActiveObject class

public void run() {
// used to record times and compute time between moves
double lastTime, elapsedTime;

lastTime = getTime () ;
while (ball.getY() < offScreen) {
elapsedTime = getTime() - lastTime;
ball.move (xSpeed*elapsedTime, ySpeed*elapsedTime) ;

if (ball.getX() < bLeft || ball.getX () > bRight
XSpeed = -xSpeed;

if (ball.get¥Y() < bTop)
ySpeed = -ySpeed;

else if (ball.overlaps(paddle))
ySpeed = -initYspeed;

lastTime = getTime();
pause (PAUSETIME) ;
} // end while
ball.hide () ;
} // end run

} // end MovingBall class

)

Figure 2 (b) Continuation of MovingBall ActiveObject

Figure 3. Pong-like game using a MovingBall ActiveObject

import objectdraw.*;
import java.awt.*;

public class Pong extends WindowController ({

// position and dimensions of the court
private static final int COURT LEFT = 50, COURT TOP = 50,
COURT HEIGHT = 300, COURT WIDTH = 250;
// dimensions of the paddle
private static final int PADDLE WIDTH = 50, PADDLE HEIGHT = 20,
PADDLE TOP =COURT TOP + COURT HEIGHT - PADDLE HEIGHT -1;

private FilledRect paddle;
private FramedRect boundary; // boundary of the playing area.

public void begin() {
// make the playing area
boundary = new FramedRect (COURT LEFT, COURT TOP,
COURT WIDTH, COURT HEIGHT, canvas);

// make the paddle

paddle = new FilledRect (COURT LEFT +
(COURT7WIDTH—PADDLE7WIDTH)/2,
PADDLE TOP,
PADDLE WIDTH, PADDLE HEIGHT, canvas) ;

} // end begin

// make a new ball when the player clicks
public void onMouseClick (Location point) {

new MovingBall (canvas, paddle, boundary);
} // end onMouseClick

// move paddle according to the position of the mouse
public void onMouseMove (Location point) {
if (point.getX() < COURT LEFT) {
// place paddle at left edge of the court
paddle.moveTo (COURT LEFT, PADDLE TOP);
} else if (point.getX() > COURT LEFT + COURT WIDTH -
PADDLE WIDTH) ({
// place paddle at right edge of the court
paddle.moveTo(COURT LEFT + COURT WIDTH - PADDLE WIDTH,
PADDLE TOP);
} else {
// keep the edge of the paddle lined up with the mouse
paddle.moveTo(point.getX(), PADDLE TOP);
} // end if
} // end onMouseMove

} // end Pong class

Figure 4. Pong class that uses the MovingBall ActiveObject

E‘%Applel Yiewer: Frogger.class

Applet

Figure 5. Snapshot of the Frogger lab

Usage of ObjectDraw in CS-1 at UNI

During the Fall of 2002, three sections of Computer Science I (810:061) at the University
of Northern lowa used the ObjectDraw package. The course required no previous
programming experience by the students. Table 1 summarizes how ObjectDraw was used
in the nine open-laboratory programming assignments to aid the students in learning to
program.

During the first 4 weeks (and 3 programming assignments) of the course, instruction
focused on using the graphical objects (FilledRect, FilledOval, Line, Text, etc.) with the
simplified mouse-events of ObjectDraw's WindowController class. ObjectDraw allows
for a truly objects-first approach to teaching CS-1 with graphical objects being used from
the start. Early topics include creating objects, naming objects, and calling mutator
methods on objects. More "traditional" topics of instance variables vs. local variables,
formal parameters, numeric types, "if"" statements, and usage of random number
generators were discussed and used during this period.

After students were familar with using objects and their corresponding methods, they
were shown how to implement user-defined classes during weeks 5 and 6 of the course.

Table 1: Programming Assignments

Description

Educational Objectives

Use the ObjectDraw graphical objects to construct
a sign containing the text "Clicking". Only the
"start" method of the WindowController class was
used.

Familiarization with the
lab, edit-compile-run in
IDE, creation of
ObjectDraw objects.

Modified the sign from assignment 1 to make it
responsive to mouse-events.

Usage of ObjectDraw
mouse events.

Implemented a laundry trainer to teach someone
how to sort laundry items into whites, colors, and
darks. Colored rectangles needed to be dragged to
the correct laundry basket.

Experience with "if"
statements, boolean
variables, and using
random number
generators

Implement a Die class to be used with a simplified
Yahtzee game. The Die class has methods similiar
to the ObjectDraw graphical primitive (move,
moveTo, contains, etc.)

Experience in
implementing a
user-defined class.

Implement a simple game called Boxball to train
someone how to use the mouse. The object of the
game is to try to click immediately above a box
which drops a ball into the box. The ball was
implemented as an ActiveObject.

Practice designing
multiple classes, "if"" and
"while" statements in an
ActiveObject

Implement a "Frogger" game with four lanes of
traffic to cross (see Figure 5). Each lane of traffic
was implemented by an ActiveObject whose job
was to construct a stream ActiveObject vehicles.
VisibleImage objects are used for the vehicles and
frog. VisibleImage objects are constructed from
imported images and have all the methods (move,
moveTo, contains, etc.) as the standard
ObjectDraw objects (FilledRect, FilledOval, etc.).

More practice designing
with multiple classes.
Usage of VisibleImage
objects and importing
images.

Standard AWT components (Scrollbar, Label,
Choice, and Button) are used to adjust the speed,

color, and visiblity of an ActiveObject bouncing
ball.

Practice with Java AWT
GUI components, layout
managers, and Java
interfaces

Use recursion and ObjectDraw graphics to draw
Sierpinski's Gasket and other recursive diagrams.

Practice using recursion.

Draw a histogram of a Java Strings.

Practice using Java
Strings, arrays, and
characters

The fourth programming assignment required students to implement a "die" class which
was used in a simple Yahtzee game. The concepts of class-definition syntax, parameter
passing, and the difference between instance variable vs. local variables was stressed in
lecture.

The syntax and usage of "while" loops was the next topic. ObjectDraw was useful in
graphically demonstrating the power and necessity of looping by using examples to
drawing 1,000 blades of grass on a picture, etc. Once students were comfortable with the
syntax and semantics of iteration, "while" loops were used in ObjectDraw's ActiveObjects
"run" method (see Figure 2(a) for an example). In-class coverage of iteration and
ActiveObjects required weeks 7 and 8, but due dates of programming assignments 4 and

5 extended through week 9. Assignments 4 and 5 were challenging for the students. Two
weeks for each assignment would have been better. Several students dropped about this
time probably due to the difficulty of these assignments.

The traditional topics of Java interfaces, AWT-layout managers, AWT-GUI components
were covered during weeks 9 and 10. Programming assignment 7 and many of the
in-class examples used AWT components to modify characteristics (e.g., Choice for
color, Scrollbars for ball-speed in the X and Y direction) of ObjectDraw objects. The
The ObjectDraw WindowController uses the BorderLayout manager with the "canvas"
being in position BorderLayout. CENTER.

The introduction to recursion during week 11 utilized ObjectDraw graphics to help
students learn this confusing topic. Recursive graphics examples including a Broccil
plant and NestedSquares (recursively draw a series of smaller squares within a larger
one). The NestedSquares example was a good introduction to recursive data structures
since its instance variables included a FramedRect square and a reference to the
NestedSqure nested inside of it.

During the remaining weeks of the course, traditional topics of Java Strings, Arrays,
searching, and sorting were covered. Little ObjectDraw usage was done during this
period of the course.

Conclusions

The ObjectDraw package is a viable option for teaching Java using an "objects-first"
approach in CS-1. Not surprisingly, students completing the course seemed to have a
slightly better handle on using and creating classes of objects. This is probably due the
longer expossure at using them. The tradeoff is the delayed coverage of traditional topics
of strings and arrays.

ObjectDraw did not prove to be the silver bullet for improving the attrition rate in the
CS-1 course. We had hoped that the graphical and event-driven nature of ObjectDraw
would encourage a higher percentage of CS-1 students to continue on to CS-2. However,

we did not see any improvement for this semester. Further tracking of attrition rates is
needed for later semesters.

References

1. Bruce K., Danyluk A., and Murtagh, T. (2001). "A library to support a graphics based
object-first approach to CS 1." Proceedings of the 32nd SIGCSE Technical Symposium
on Computer Science Education. pp. 6-10.

2. Bruce K., Danyluk A., and Murtagh, T. (2001). "Event-driven programming can be
simple enough for CS 1." [TiCSE 2001 Proceedings. pp. 6-10.

3. Fienup, M. (Sept. 1996) "Rethinking the CS-2 Course with an Object-Oriented
Focus." SIGCSE Bulletin. pp. 23-25.

Appendix A. Summary of Graphic Objects and Methods

Constructors for Auxilliary Classes

Mix a new color. Parameter
values are numbers between 0
and 255.

Build a coordinate pair object for
the point (x,y).

new Color (redness, greenness, blueness);

new Location (x,V);

Accessor Methods for Auxilliary Classes

someColor.getRed ()
someColor.getGreen ()
someColor.getBlue ()

Access any of the color
values associated with a

Color.
somelocation.getX () Access either of the
someLocation.getY () elements of a coordinate

pair.

somelLocation.distanceTo (anotherLocation) . .
Determine the distance

between two points.

Constructors for Graphic Objects

The parameters to a rectangle or oval constructor describe the rectangle bounding the
object to be drawn. You can either:
® Specify the coordinates of the rectangle's upper left corner together with the width
and height, or

¢ Specify the coordinates of two opposite corners.
You can fill these shapes or just frame their perimeters.

new FramedRect
new FilledRect
new FramedOval
new FilledOval

X, y, width, height, canvas
X, y, width, height, canvas
X, y, width, height, canvas
X, y, width, height, canvas

()
()
()
()

new FramedRect
new FilledRect
new FramedOval
new FilledOval

cornerllocation, corner2Location, canvas
cornerllocation, corner2Location, canvas
cornerllocation, corner2Location, canvas
cornerllocation, corner2Location, canvas

()
()
()
()

new FramedRect
new FilledRect
new FramedOval
new FilledOval

cornerlLocation, width, height, canvas
cornerLocation, width, height, canvas
cornerlLocation, width, height, canvas
cornerLocation, width, height, canvas

()
()
()
()

A line is described by giving its end points.

new Line(
new Line(

startX,
startLocation,

startyY, endX,

endyY,
endLocation,

canvas) ;
canvas) ;

A text object is specified by the coordinates of its upper, leftmost point.

new Text (
new Text (

"some message", x, Vv,
'some message",

Methods Available for All Graphic Objects

someObject

someObject
someObject

someObject.

someObject

someObject.
someObject.
someObject.

someObject.

someObject.
someObject.

someObject.
someObject.

.move (

.moveTo (x,

xOffset,

V)i

.moveTo (somelLocation);
contains (somelLocation);
.hide () ;

show () ;

removeFromCanvas () ;

sendForward () ;
sendToFront ()

sendBackward () ;
sendToBack () ;

getColor () ;
setColor (someColor);

yOffset);

canvas) ;
baselocation,

canvas) ;

Move an object relative to its
current position.

Move an object to point specified
by coordinates.

Determine if an object's
bounding box contains a point.
Make an object invisible or
visible on the display.

Delete object from its canvas.

Alter the stacking order that
controls how overlapping objects
appear.

Access or change an object's
color.

Methods Available for All 2-D Graphic Objects (including Text, but not Line)

someObject.

someObject.
someObject.

someObject

getX();

gety();
getLocation () ;

.getWidth ()
someObject.

getHeight () ;

Access coordinates of the upper
left corner of an object's bounding
rectangle.

Access the dimensions of an
object's bounding rectangle.

Methods Available for Resizable 2-D Graphic Objects (not Text)

someObject.
someObject.

setWidth (newWidth) ;
setheight (newHt);

Change the dimensions of an
object's bounding rectangle.

Mutator Methods for Lines

someline.setStart (somelocation);

someLine.setEnd(somelLocation); Qhange eithe?r or both of a
someline.setEndPoints(startLocation, line's end points.
endLocation) ;

Mutator Methods for Text Objects

Change the characters
displayed.
someText.setFontSize (pointSize); Change the font size used.

someText.setText ("new message");

someText.setBold () ;

someText.setItalic();
someText.setPlain () ;

someText.setFont (someFont) Change the font used.

Change the style in which text
is displayed.

