
Computer Solution Of Simultaneous Equations:
A Byproduct Of The First Programming Course

Prof. W. D. Maurer
Department of Computer Science

The George Washington University
Washington, DC 20052
Phone: (202)994-5921

Email: maurer@seas.gwu.edu

ABSTRACT

In our first programming course, which teaches C with a small amount of C++, we have a
semester-long case study on the computer solution of simultaneous equations, which it is our
purpose here to describe. Real and integer-fractional coefficients, error cases, status codes, and
the contrast between the determinant approach (using recursion) and the elimination approach
(using pivoting when the coefficients are real numbers) are considered in detail. This case study
is being made at the request of our curriculum committee, which has observed that computer
solution of simultaneous equations should be required for all engineering students, but is not
taught anywhere else in a course that would be required for them.

1. INTRODUCTION

At our university, the Computer Science Department is in the engineering school. Our numerical
methods course is not required for all engineers; yet all engineers deal with matrices and need to
know the special requirements of computer solution of simultaneous equations. A programming
exercise on this topic has, therefore, become mandatory in our first programming course in C,
as we found out upon assuming faculty oversight responsibility for that course.

What started as a routine effort in support of a necessary requirement at our university has
become much more than that. Essentially, we are now advocating such a requirement in any
presentation of C, with some C++, as the first programming language. This is partly because all
scientists and engineers learn how to solve simultaneous equations by hand, but solving them by
computer is very easy to get wrong, and indeed was gotten wrong, often and publicly, in the
early days of computing.

Also, solving simultaneous equations by computer involves many features of C and elementary
C++: two-dimensional arrays (for coefficients); enumerated types (for reporting the number of

solutions); a fraction class (for exact solution of equations with integer coefficients); and even, as
we shall show, a challenge to conventional wisdom regarding the go-to statement.

2. STATUS CODES

Any simultaneous equation solver must be concerned with the error case in which the matrix is
singular. A thorough approach to the subject will distinguish two situations with singular
matrices. As an example, the equations

2x+3y = 18
2x+3y = 19

have no solutions, because 2x+3y cannot be equal to both 18 and 19 at the same time; while
the equations

2x+3y = 11
6x+9y = 33

have more than one solution. These look like two different equations, but they are really not,
because the second equation is the first one multiplied through by 3. Any values for x and y
which satisfy the first equation will automatically satisfy the second one — such as x = 4 and y =
1, or x = 1 and y = 3, or, more generally, y = (11–2x)/3 for any value of x.

This is a simple example of a situation which arises very often in programming, namely a single
normal case and more than one error case. Conventionally, this is handled by means of a status
code, which is zero in the normal case and has other values, starting from 1, in the various error
cases. In C and C++, the usual way to declare status codes involves an enumeration, using the
keyword enum. This then becomes our way, in the first course, of teaching enum and the issues
which arise from it.

3. ONE EQUATION IN ONE UNKNOWN

Perhaps surprisingly, we start with one equation in one unknown, ax = b. Even in this case,
there are three possible outcomes: one solution (a � 0); no solutions (a = 0 and b � 0); or
many solutions (a = b = 0). We can therefore use this case as a way of introducing enumeration
issues in a simple context.

Enumerations have to be motivated. Why not just use the codes 0, 1, and 2 directly for one
solution, no solutions, and many solutions? In order to see why not, we start our presentation by

doing just that; setting a status variable equal to 0, 1, or 2, and then using that status variable
later.

3.1 Global Status Variables

There are three possible approaches to status variables. One is to make them global, which is
clearly unadvisable because of name conflicts. We do not even bring up this possibility until
much later, when we are looking at separate compilation issues.

3.2 Status Variables As Parameters

The second approach to a status variable is to make it into a parameter of the simultaneous
equation solver. However, this requires a parameter which can be changed, and this cannot be
done in straightforward C.

Our approach to this was set forth in an earlier paper (Maurer, 2000). In the first course, we
are concerned, first of all, with teaching all of elementary C. Too many introductory C++
courses, in our opinion, spend so much time teaching classes and object-oriented concepts that
large parts of elementary C are never learned at all. Nevertheless, there are a few C++
concepts which ought to be taught from the beginning, because they make life easier for the
programmer. One of these is reference parameters. You can fake up a reference parameter in
straight C, using the unary & and * operators, but this is awkward; it is not necessary in any
other language; and, most important to us in an engineering school, it requires knowledge of
pointers, which is inappropriate for those who are concerned merely with scientific and
engineering formulas and not with the internals of a computer.

In fact, we use the status variable situation as our way of teaching reference parameters. At this
point, our status variable still has values 0, 1, and 2, and it therefore becomes a parameter that
is declared by int& status; instead of simply by int status; .

3.3 Returning A Status Variable

The third approach to a status variable, which is the one most commonly found in practice, is to
return it as the value of the simultaneous equation solver. If this is done, then there is still a
reference parameter when we are solving ax = b, because now a, x, and b are all parameters,
and x is changed by the function. Therefore x becomes a parameter that is declared by double&
x; instead of simply by double x; .

Returning a status variable causes a subtle problem in understandability. The usual status
variable convention (0 = no error; nonzero = error) allows us to write code like

if (solve1(i,j,n) != 0) { perform some error action }

where solve1 is the simultaneous equation solver. Students have to be taught that such an
expression always actually calls solve1(i,j,n); in other words, that when a function is part of
an condition, that function is always actually called. This might seem strange to a beginner;
for example, consider f(k), defined as

int f(int k)
 {cout << "f(" << k << ")" << endl; return k; }

The value of f(k) is always the same as the value of k. However, this does not mean that if
(f(k) != 0) means the same as if (k != 0) . If it were, then f(k) would not have to be
called, when if (f(k) != 0) is done. Students have to know, explicitly, that here f(k) is
always called, and the output is always produced.

3.4 Enumerations

We take up enumerations only now, after introducing all the above issues, which are easier to
understand if we use codes for status variables (0, 1, 2, and so on). In a practical situation, we
don’t use codes because they are easy to get wrong, and because, if we get them wrong, we
have a bug which it is unusually difficult to find. In setting up an enumeration for simultaneous
equations, we might define

enum sim_eqn_stat {one_sol, no_sol, many_sol} status;

The basic concepts to be introduced here are the enumeration (in this case, sim_eqn_stat) and
the enumerators, or enumeration constants (in this case, one_sol, no_sol, and many_sol). The
strong similarity between enuumeration declarations and enumeration definitions must be
emphasized here; thus, in addition to enum name {defn} vars; we also have the declaration
form enum name {defn}; and the definition form enum name vars; . It must also be emphasized
that C and C++ give no protection (as Pascal and Ada do) against misuse of enumerations. In
C and C++, it is merely custom, and not the enforced rules of the language, which dictates that,
once enumeration constants have been defined, you always, in writing your programs, use these
constants rather than their associated integer codes.

3.5 Using A Status Code

In our course, we introduce the switch statement in C and C++ by using a character variable as
the switch expression; but we immediately go on to a treatment of the very common use of

enumerations as switch expressions. Thus our sim_eqn_stat variable above, called status,
could be used as follows (and we use this example):

switch (solve1(a1, b1, x1)) {
 case one_sol:
 cout << "One solution: " << x1 << endl; break;
 case no_sol: cout << "No solutions" << endl; break;
 case many_sol:
 cout << "Many solutions" << endl; break;
 default: error("Error in sim_eqn_stat");
}

4. FRACTION CLASSES

The main difficulty in working with simultaneous equations has to do with control of floating
point error. This, however, is unnecessarily hard to understand for those who do not yet
sufficiently understand the basic algorithm. It is easier to do this if we start with integer
coefficients, because here all calculations are exact. However, simultaneous equations with
integer coefficients can easily have solutions which are fractional. How do we deal with these?

In straight C, this would be difficult, much more so than working with real numbers. In C++, it is
easy, if we use a fraction class. However, how do we justify introducing this C++ concept in a
course which is basically on C? We do it by noting that, even in a course on C, we have to
introduce a few class concepts, because the alternative would be to teach struct, which is very
seldom used any more except for bit fields.

Our choice has been to set aside one week for an introduction to classes, using a fraction class
as an example. Note that, with a fraction class, we can now treat simultaneous equations with
fractional, as well as integer, coefficients. All this material, of course, will be covered in much
greater detail in the second course (on C++ and data structures). In that one week, we cover:
class and object declarations; design of a fraction class; constructors; lowest terms; overloaded
operators; and safe constructors.

5. MEMBER FUNCTIONS

Member functions are mentioned only in passing, in this elementary course, and then only where
they illustrate points that are necessary for our treatment of simultaneous equations or for input,
such as cin.get and cin.getline. Briefly stated are:
• The two ways of defining a member function (inside and outside its class);
• The rules for overloaded operators as member functions;
• Declaration of private data;
• Friend declarations;

• The rule that private data may be accessed only by members and friends.

The lowest_terms function, introduced before, is now reintroduced as a member function,
which is private because it is intended for use only by constructors, which are member functions,
and by overloaded operators expressed as member functions.

6. MIXING FRACTIONS WITH INTEGERS

In working with simultaneous equations, we will need to be able to combine fractions and
integers. This is analogous to the usual ways in which we combine integers and real numbers in
C. Given an integer and a real number, we can add them; the integer is converted to real and the
two real numbers are added. In the same way, we can have an int argument k to a function in
which the corresponding formal parameter is of type double, which is then set to k as converted
from an int to a double.

In the same way, given an int and a fraction, we can add them; the int is converted to a
fraction and the two fractions are added. Similarly, in a function, we can have a formal fraction
parameter and a corresponding int argument, which is then converted to a fraction. Neither
of these conversions, however, are automatic; they depend on a special property of one of our
constructors. The rule here is that when a constructor has exactly one argument, it also serves as
a coercion. We have a constructor with one argument for fractions, which produces a fraction
equal to its argument. This is then used in converting int to fraction in both of the above cases.

A fraction plus an int could also be calculated by an overloaded operator having fraction
and int as parameters. This would be more efficient, because the calculation formulas are
simpler, and also because we do not have to call lowest_terms (it can be shown that the result
is already in lowest terms, in this case).

7. TWO-DIMENSIONAL ARRAYS

Many treatments of elementary C (or Pascal or Fortran, for that matter) bring up arrays only
near the end of the course. We have never done that, because arrays, to us, are of fundamental
importance and come up in a wide variety of programming situations. Two-dimensional arrays,
however, are another matter. They are subject to a number of errors (as when their indices start
from 1, or when their names are used as parameters), and a good understanding of pointers,
which comes earlier in the course, is necessary to see how to circumvent these errors. Of
course, two-dimensional arrays are necessary for simultaneous equations, and we now present
an entire week devoted to these two topics.

We motivate two-dimensional arrays by means of spreadsheets. The declaration of such an
array, and the use of its elements, are straightforward. Further issues introduced here include
searching a two-dimensional array; further examples of multidimensional arrays; array access
formulas; arrays of pointers to arrays; two-dimensional array names as parameters; general
lower bounds (other than 0); and initializing a two-dimensional array.

8. MATRICES AND SIMULTANEOUS EQUATIONS

Now, finally, the students have all the basic material they need in order to understand how to
solve simultaneous equations by computer.

8.1 Specifications Of A General Simultaneous Equation Solver

There are three parameters to a function which solves n simultaneous equations:
• an n-dimensional vector for the right sides of the equations;
• an n-dimensional vector for the variables being solved for; and
• an n-by-n matrix of the coefficients. By what we have just learned (see section 7 above), n
may not vary, from one call of the function to the next.

8.2 Two Equations In Two Unknowns

In order to have a better understanding of the n-dimensional case, we now take up the two-
dimensional case in more detail. In this case, we do not use a matrix, but instead we deal with
eight quantities separately; that is, a, b, c, d, e, f, x, and y in the equations

ax+by = c
dx+ey = f

Our function is declared as follows:

sim_eqn_stat solve2(double a, double b, double c,
 double d, double e, double f, double &x, double &y);

If there is one solution, it is easily obtained. We can multiply the first equation above through by
e, and the second one by b, then subtracting the second one from the first, obtaining an equation
for x which does not involve y. We can also multiply the first equation through by d, and the
second one by a; this time, when we subtract, we get an equation for y which does not involve
x. This is all done as follows:

aex+bey = ceadx+bdy = cd
bdx+bey = bfadx+aey = af
aex–bdx = ce–bfbdy–aey = cd–af

or(ae–bd)x = ce–bf(ae–bd)y = af–cd

where we have multiplied the last equation through by –1, so that the factor, ae–bd, comes out
the same in both equations. If this factor is not zero, our solutions are

x = (ce-bf)/(ae-bd)y = (af-cd)/(ae-bd)

If the factor is zero, we now ask whether ce-bf and af-cd are zero. If either of these is not zero,
then the equations have no solutions, because either x or y (or both) is expressed as a non-zero
quantity, divided by zero. If ce-bf and af-cd are both zero, however, the situation is not as
simple as in the case of one equation in one unknown. Our equations might have many solutions,
as was the case then; but they also might have no solution, as we will now see.

8.3 Dependent Equations

We first consider the case in which both ce-bf and af-cd (in addition to ae-bd) are zero. This
implies that ae = bd, ce = bf, and af = cd. Usually, in this case, we have dependent equations.
In general, one equation depends on another if the first equation is true only when the second
one is true. Our two equations here are ax+by = c and dx+ey = f, and the second of these is
dependent on the first only if it is of the form g(ax+by) = gc, or gax+gby = gc, for some g.
Note that in this case d = ga, e = gb, and f = gc, so that indeed ae = agb = bd; ce = cgb = bf;
and af = agc = cd.

Suppose first that a � 0. Then d/a is defined, and d = ga where g = d/a. Also, e = gb because
ae = bd, and dividing through by a (� 0) gives e = bd/a = (d/a)b = gb. Similarly, f = gc
because af = cd, and dividing through by a gives f = cd/a = (d/a)c = gc. Our second equation,
dx+ey = f, is now gax+gby = gc, as above, so the two equations are dependent.

If a = 0, and g, as above, exists at all, then d = ga = 0. However, in general, if d � 0, then a/d
is defined, and a = hd where h = a/d. In this case it is the first of our equations that is dependent
on the second, rather than the other way around. That is, we now have a = hd; b = he (because
bd = ae and thus b = ae/d = (a/d)e = he after dividing through by d � 0); and c = hf (because
cd = af and thus c = af/d = (a/d)f = hf).

There remains the case in which a = d = 0; and here the two equations can still be dependent.
Of course, in this case, d = ga and a = hd for any g and h whatsoever. Suppose first that b �
0. Then e/b is defined, and e = gb where g = e/b. Also, f = gc because ce = bf, and dividing
through by b (� 0) gives f = ce/b = (e/b)c = gc. On the other hand, if e � 0, then b/e is
defined, and b = he where h = b/e. In this case it is the first equation that is dependent on the
second, as before. Note that ce = bf, and dividing through by e (� 0) gives c = bf/e = (b/e)f =
hf.

The only case in which the equations are not dependent is that in which a = d = b = e = 0. In
this case there are no solutions unless c = f = 0, in which case every value of x and y is a
solution (and again the equations are dependent).

If one of our equations is dependent on the other, it can be removed from consideration, and we
can simply solve the other equation. In this case there are usually many solutions. We consider
only the equation ax+by = c; the other equation is handled similarly. If b � 0, then y = (c–
ax)/b. This is a straight line, which is horizontal if a = 0. If b = 0 but a � 0, then x = a/c (and y
can be anything); this is a vertical straight line. If a = b = 0, then a = d = b = e = 0, which is a
case we have already treated above.

8.4 The Program for Two Equations

We may now summarize the mathematics above, as follows:
• If ae–bd � 0, there is one and only one solution; and it is x = (ce–bf)/(ae–bd) and y = (af–
cd)/(ae–bd).
• If ae–bd = 0, and either ce–bf � 0 or af–cd � 0, there are no solutions.
• If a = b = c = d = e = f = 0, then every value of x and y is a solution.
• If a = b = d = e = 0, but either c � 0 or f � 0 (or both), there are no solutions.
• In all other cases, there are many solutions, lying along a straight line.

An initial version of our program is therefore as follows, using the enumerated type sim_eqn_stat
as in section 3.4, and with an important error to be explained in section 8.5 below:

sim_eqn_stat solve2(double a, double b, double c,
 double d, double e, double f, double &x, double &y) {
 // solves ax+by = c and dx+ey = f for x and y
 // returns a status code
 double u = a*e-b*d;
 double v = c*e-b*f;
 double w = a*f-c*d;
 if (u != 0) {x = v/u; y = w/u; return one_sol; }
 if (v != 0 || w != 0) return no_sol;
 if (a == 0 && b == 0 && d == 0 && e == 0)
 return (c == 0 && f == 0 ? many_sol : no_sol);
 return many_sol;
}

Note that, when we are testing whether a = b = d = e = 0, we cannot write it that way, in our
program; that is, if (a == b == d == e == 0) . This is not a syntax error; it will compile, but
its meaning is if ((((a == b) == d) == e) == 0) . That is, (a == b) is either 1 (if a = b) or 0
(if a � b); this 1 or 0 is then compared with d; the result of that (either 1 or 0) is compared with
e, and so on.

This time, we are using many_sol for two different cases, one in which the solutions lie along a
straight line, and the other in which every solution is possible. If we wanted to, we could expand
the type sim_eqn_stat to include a new value, every_sol, which could be returned if a, b, c, d,
e, and f were all zero.

8.5 Fudge Factors

The real problem with solve2, as given in section 8.4 above, is in the statement which starts with
if (u != 0) . This does not always work properly, due to floating point error. It might seem
that we can ask whether the answer, when we subtract bd from ae, is very small. However, this
depends on how you define “very small.” In our example, the real question is whether ae–bd is
small, compared to ae and bd themselves. We will test this while we subtract bd from ae, using
a function fsub (“floating subtract” or “fuzzy subtract”). The value of fsub(x,y) is x–y unless
x–y is “too small” compared to x (or to y), in which case it is zero. We may define fsub like
this:

inline double fsub(double x, double y) {
 // returns x-y or 0 if x-y is "too close" to 0
 double u = x-y;
 if (abs(u/x) <1.0e-6) u = 0;
 return u;
}

making it inline because it is so short. Here 1.0e-6 (that is, 1/1,000,000) is called the fudge
factor. If fsub(x,y) is calculated as zero, then statements like if (u != 0) , above, will work
properly, and there is no need to adjust them. Notice the need for abs here; it is the absolute
value of u/x that must be smaller than the fudge factor (since u/x might be –1, for example).

8.6 Calculating the Fudge Factor

We can now proceed in either of two directions. One is to modify our program by using fsub as
defined above, like this:

sim_eqn_stat solve2(double a, double b, double c,
 double d, double e, double f, double &x, double &y) {
 // solves ax+by = c and dx+ey = f for x and y
 // returns a status code
 double u = fsub(a*e,b*d);
 double v = fsub(c*e,b*f);
 double w = fsub(a*f,c*d);
 if (u != 0) {x = v/u; y = w/u; return one_sol; }
 if (v != 0 || w != 0) return no_sol;
 if (a == 0 && b == 0 && d == 0 && e == 0)
 return (c == 0 && f == 0 ? many_sol : no_sol);
 return many_sol;
}

This works, almost all of the time. One problem with it is that every so often we really mean for
ae–bd to be very small, compared to ae, but still not zero. This is a fundamental problem with
all fudge factors, and there is no solution that works in all cases.

8.7 Two Equations With Fractional Coefficients

The other approach to solving our equations is not to use type double at all, but rather type
fraction. Since the numerator and denominator of a fraction are integers, there is now no floating
point error to contend with. Then we would write

sim_eqn_stat solve2(fraction a, fraction b,
 fraction c, fraction d, fraction e,
 fraction f, fraction &x, fraction &y) {
 // solves ax+by = c and dx+ey = f for x and y
 // returns a status code
 fraction u = a*e-b*d;
 fraction v = c*e-b*f;
 fraction w = a*f-c*d;
 if (u != 0) {x = v/u; y = w/u; return one_sol; }
 if (v != 0 || w != 0) return no_sol;
 if (a == 0 && b == 0 && d == 0 && e == 0)
 return (c == 0 && f == 0 ? many_sol : no_sol);
 return many_sol;
}

Note that a, b, c, d, e, and f are now allowed to be fractions. When we introduced the
fraction type, these were supposed to be integers. However, we can still specify them as
integers, because they will be converted to fractions when solve2 is called.

8.8 Three Equations in Three Unknowns

How does the case of two unknowns generalize to the case of n unknowns? This is not obvious,
and, to make it clearer, we work out in detail the case of three unknowns (although we do not
write the program). If our three equations are

ax+by+cz = d
ex+fy+gz = h
ix+jy+kz = l

then we show that

afk–agj+bgi–bek+cej–cfi

must be nonzero, if the equations have one solution.

8.9 Determinants for Two and Three Equations

The quantity ae–bd in section 8.2, and the quantity afk–agj+bgi–bek+cej–cfi in section 8.8,
are known as determinants. The general rule is that every n-by-n matrix has a determinant.
When we solve n equations in n unknowns, we set up a matrix of the coefficients, as we saw in
section 8.1 above. If the determinant of this matrix is non-zero, then the equations have one
solution. We now introduce the usual method of calculating a determinant in the general case,
using minors.

Looking at the formulas of section 8.2 to solve two equations in two unknowns, we see that, not
only is the denominator a determinant in each case, but the numerators are also determinants of
new matrices, each of which is obtained by substituting the right-hand side of each of our
equations for the corresponding term in column 1 (or 2). Much the same thing happens for three
equations in three unknowns, as we now show in detail.

8.10 Error Cases for Three Equations

We have seen that the various error cases for two equations are more complex than they are for
one equation. In particular, there are now four cases: one solution, no solutions, many solutions,
and every solution. However, for two equations it is still not too difficult to keep track of all
possible cases. Let us now see what happens when we have more than two equations.

The first two cases are always the same. If the determinant of the matrix of coefficients is non-
zero, then there is always a unique solution. If this determinant is zero, then we look at the
numerators in the solution formula, which are also determinants. If any one of these is non-zero,
we have the second case, in which there are no solutions. If the denominator and all the
numerators are zero, in the formulas, you can always have either no solutions or many solutions,
but not a unique solution, in every case except n = 1 (where you must have “every solution”).

When do you have no solutions, in this case, and when do you have many solutions? This is
harder to keep track of, in three dimensions. The first problem is that there are now three forms
for the solutions, rather than two. The solutions can lie along a line, in three-dimensional space;
or along a plane; or they can be the entire three-dimensional space (if all the aij and the bj are
zero). More importantly, there are many more ways to draw a straight line in three-dimensional
space than in the plane; and the same is true of planes in three-dimensional space.

All these error cases become even harder to keep track of, when there are n equations.
Because of this, the functions which we write below will make no attempt to distinguish among
the error cases. They will use a simplified enumeration type of the form

enum sim_status {one_solution, singular);

The word singular is jargon for the case in which a determinant is zero.

8.11 Using Determinants to Solve the Equations

We will now look at two ways of solving n simultaneous equations in n unknowns. The first will
involve direct calculation of determinants. In this paper we omit the details, but merely mention
that minors are calculated by recursion, and that this becomes another example of how
recursion is used in programming.

8.12 The Elimination Method for Fractions

Whenever we have a recursive method of solving a problem, we try to look for another method,
which is not recursive, because explicit recursion is slow. We now introduce a method of
solving simultaneous equations which is faster than using determinants. It is, indeed, the method
generally used to solve such equations; and we can obtain it directly from the idea of eliminating
one of a set of n variables. If we can eliminate the nth variable, then we can eliminate the (n–
1)st, and so on all the way back to the second variable. This leaves only one variable, whose
value we can get. Then we can substitute its value into the second equation, giving us the second
variable; substitute the first two variables into the third equation, giving us the third variable, and
so on until we are done.

We illustrate the process for fractions first, since here there is no floating point error. Note that
in section 8.2 above, where we solved two equations in two unknowns, we multiplied the first
equation through by e, and the second one by b. If e � 0, we can improve this process by
multiplying the first equation by b/e, and leaving the second one as it stands. This will be our
general approach here; if ann � 0, then, for 1 � i � n–1, we multiply the ith equation by ann/ain,
obtaining (ann/ain)ainxn = annxn as the new nth term. Then we subtract the last equation, which
also has annxn as its nth term, giving a new equation with the nth term zero. There are n–1 of
these equations, and they are in the n–1 unknowns x1 through xn–1, because the term involving
xn is eliminated.

What if ann = 0? In that case, we first try to find an earlier equation with ain � 0. If we cannot
find such an equation, then the entire last column of the matrix is zero. In that case the
determinant is zero, and we report an error, just as we did before. However, if ain � 0 for some
value of i, then we interchange equation i and equation n. In other words, the old ith equation
becomes the new nth equation, and the old nth equation becomes the new ith equation. After
this exchange, we proceed as before.

8.13 The Elimination Method for Real Numbers

When we interchange the nth equation with some other equation, it does not matter, when we
work with fractions, which equation we exchange it with, so long as the nth coefficient is non-
zero. When we work with real numbers instead of fractions, however, it does matter.
Specifically, we need to exchange, with the nth equation, the equation having the smallest non-
zero coefficient (in absolute value) of the nth variable. Furthermore, we need to do this, in the
real-number case, whether the nth coefficient in the nth equation is zero or not.

The reason for this has to do with what we multiply the other equations by, before subtracting.
If, after any exchanging of equations, we have ann � ain, then ann/ain � 1. Thus, when we
multiply an equation through by ann/ain, as in section 8.12, we are multiplying it through by
something with absolute value not greater than 1. This tends to minimize the error in the floating
point subtraction that follows, as is taken up in a course on numerical analysis.
Our program to find the equation with which to exchange, and then performing the actual
exchange, is now

for (i = 1; i < n; i++)
 if (a[i][n] != 0) goto found;
error("determinant is zero");
found:
k = i; absmin = abs(a[i][n]);
for (j = i+1; j < n; j++) {
 newmin = abs(a[j][n]);
 if (newmin < absmin){k = j; absmin = newmin; }
}
if (newmin != absmin) {
 z = b[k]; b[k] = b[n]; b[n] = z;
 for (j = 1; j <= n; j++)
 {z = a[k][j]; a[k][j] = a[n][j]; a[n][j] = z; }
}

First we look for an element of the last column, a[i][n], which is not zero. If all of these are
zero, we have an error. Otherwise, we proceed from j equal to that specific value of i, through
n–1, looking for the smallest absolute value of a[j][n] over this range. If that happens to be
a[n][n], we are done. Otherwise, we need to exchange equation n with equation k, just as we
exchanged it with equation i earlier.

8.14 A Function For The Elimination Method

We now proceed to our function for the elimination method, using real numbers:

const int n = 10; // this constant can be changed,
 // and the program recompiled
typedef double matrix_type[n][n];
sim_status solve_n
 (double *x0, matrix_type a0, double *b0) {
 // solves n simultaneous equations in n unknowns
 matrix_type a = (matrix_type)((double *)a-n-1);
 double *x = x0-1; double *b = b0-1;

 double z,lower_right; int i,j,k,m;
 for (m = n; m > 1; m--) {
 // this is derived from the program of §11.25
 // (replacing n by m)
 for (i = 1; i < m; i++)
 if (a[i][m] != 0) goto found;
 return singular;

found:
 k = i; absmin = abs(a[i][m]);
 for (j = i+1; j < m; j++) {
 newmin = abs(a[j][m]);
 if (newmin < absmin){k = j; absmin = newmin; }
 }
 if (newmin != absmin) {
 z = b[k]; b[k] = b[m]; b[m] = z;
 for (j = 1; j <= m; j++)
 {z = a[k][j]; a[k][j] = a[m][j]; a[m][j] = z; }
 }
 // now we multiply equations and subtract
 lower_right = a[m][m];
 for (i = 1; i < m; i++) {
 term = a[i][m];
 if (term != 0) {
 factor = lower_right/term;
 b[i] = fsub(b[i]*factor, b[m]);
 for (j = 1; j <= m; j++)
 a[i][j] = fsub(a[i][j]*factor, a[m][j]);
 }
 }
 }
 z = a[1][1];
 if (z == 0) return singular;
 x[1] = b[1]/z;
 for (i = 2; i <= n; i++) {
 z = b[i];
 for (j = 1; j < i; j++) z = fsub(z, a[i][j]*x[j]);
 x[i] = z/a[i][i];
 }
 return one_solution;
}

First we interchange an equation with the last equation, if this is needed, as in section 8.13. Then
we perform the elimination of xm, from m = n down to m = 2. If at any time during this process
the last column of the matrix becomes zero, the program stops, and we return singular. The
same thing happens if a1 is now zero, when we solve for x1. Otherwise, we enter the final loop,
in which the values of a2 through an are calculated in order and placed in the result vector. Note
that equation i, for 2 � i � n, is of the form

ai1x1 + ai2x2 + ... + aiix i = bi

at this point, since aij = 0 for all j > i. Therefore, solving for x i, we obtain

x i = (bi – ai1x1 + ai2x2 + ... + ai–1,i–1x i–1)/aii

and this is calculated at the end of the function. Note that the original matrix is changed by
solven; if we want to re-use this matrix later on, we should copy it into another matrix, which is
then used as a parameter to solven, instead of the original matrix.

If we were using fractions here instead of real numbers, the following changes would be
made:

• we would replace double by fraction throughout;
• we would simplify the function of section 8.13 above;
• we would eliminate the uses of fsub, and just use ordinary subtraction.

9. PROGRAMMING EXERCISE

As part of our course, the students are expected to rewrite the solven function of
section 8.14 above, using fractions instead of integers, and making use of the changes suggested
at the end of that section. They then run it on several cases and check the results.

REFERENCES

Maurer, W. (2000). The first course: C is not Pascal. Journal of Computing in
Small Colleges , 15, 3, 91-100.

