Computer Solution Of Smultaneous Equations:
A Byproduct Of The First Programming Cour se

Prof. W. D. Maurer
Department of Computer Science
The George Washington University
Washington, DC 20052
Phone: (202)994-5921
Email: maurer @seas.gwu.edu

ABSTRACT

In our first programming course, which teaches C with asmal amount of C++, we have a
semester-long case study on the computer solution of S multaneous equations, which it is our
purpose here to describe. Red and integer-fractiona coefficients, error cases, status codes, and
the contrast between the determinant approach (using recursion) and the eimination gpproach
(using pivoting when the coefficients are real numbers) are consdered in detall. This case study
is being made at the request of our curriculum committee, which has observed that computer
solution of smultaneous equations should be required for al engineering students, but is not
taught anywhere elsein a course that would be required for them.

1. INTRODUCTION

At our university, the Computer Science Department is in the engineering school. Our numerica
methods course is not required for dl engineers; yet dl engineers deal with matrices and need to
know the specid requirements of computer solution of Smultaneous equations. A programming
exercise on thistopic has, therefore, become mandatory in our first programming coursein C,
as we found out upon assuming faculty overdght responghbility for that course.

What started as aroutine effort in support of anecessary requirement at our university has
become much more than that. Essentialy, we are now advocating such a requirement in any
presentation of C, with some C++, asthe first programming language. Thisis partly because dl
scientists and engineers learn how to solve simultaneous equations by hand, but solving them by
computer is very easy to get wrong, and indeed was gotten wrong, often and publicly, in the
early days of computing.

Also, s0lving smultaneous equiations by computer involves many festures of C and dementary
C++: two-dimengona arrays (for coefficients); enumerated types (for reporting the number of

solutions); afraction class (for exact solution of equations with integer coefficients); and even, as
we shall show, a chalenge to conventiona wisdom regarding the go-to satement.

2. STATUS CODES

Any smultaneous equation solver must be concerned with the error case in which the matrix is
sngular. A thorough gpproach to the subject will digtinguish two Stuations with sngular
matrices. As an example, the equations

2x+3y =18
2x+3y =19

have no solutions, because 2x+3y cannot be equd to both 18 and 19 at the same time; while
the equations

2x+3y = 11
6x+0y = 33

have more than one solution. These look like two different equations, but they are redly naot,
because the second equation is the first one multiplied through by 3. Any valuesfor x and y
which satify the firgt equation will automaticaly satisfy the second one— suchasx =4 andy =
1,orx =1andy = 3, or, more generaly, y = (11-2x)/3 for any vaue of x.

Thisisasmple example of aStuation which arises very often in programming, namely asingle
norma case and more than one error case. Conventiondly, thisis handled by means of a Satus
code, which is zero in the norma case and has other vaues, garting from 1, in the various error
cases. In C and C++, the usua way to declare status codes involves an enumeration, using the
keyword enum This then becomes our way, in the first course, of teaching enumand the issues
which arise fromiit.

3. ONE EQUATION IN ONE UNKNOWN

Perhaps surprisingly, we start with one equation in one unknown, ax = b. Evenin this case,
there are three possible outcomes: one solution (a [0); no solutions (a=0and b [J 0); or
many solutions (a = b = 0). We can therefore use this case as away of introducing enumeration
issues in asmple context.

Enumerations have to be motivated. Why not just use the codes O, 1, and 2 directly for one
solution, no solutions, and many solutions? In order to see why not, we start our presentation by

doing just that; setting a status variable equd to O, 1, or 2, and then using that status variable
later.

3.1 Global StatusVariables

There are three possible gpproaches to status variables. One is to make them globd, whichis
clearly unadvisable because of name conflicts. We do not even bring up this possibility until
much later, when we are looking at separate compilation issues.

3.2 Status Variables As Parameters

The second gpproach to a satus variable is to make it into a parameter of the smultaneous
equation solver. However, this requires a parameter which can be changed, and this cannot be
donein straightforward C.

Our approach to thiswas set forth in an earlier paper (Maurer, 2000). In the first course, we
are concerned, first of al, with teaching dl of dementary C. Too many introductory C++
courses, in our opinion, spend so much time teaching classes and object-oriented concepts that
large parts of dementary C are never learned at dl. Nevertheless, there are afew C++
concepts which ought to be taught from the beginning, because they make life easer for the
programmer. One of these is reference parameters. Y ou can fake up areference parameter in
graight C, usng theunary & and * operators, but thisis awkward; it is not necessary in any
other language; and, most important to us in an engineering schoal, it requires knowledge of
pointers, which is inappropriate for those who are concerned merely with scientific and
engineering formulas and not with the internals of a computer.

In fact, we use the status variable Situation as our way of teaching reference parameters. At this
point, our status variable still has vaues 0, 1, and 2, and it therefore becomes a parameter that
isdeclared by i nt & status; indead of Smply by i nt status; .

3.3 Returning A Status Variable

The third gpproach to a status variable, which isthe one most commonly found in practice, isto
return it as the value of the smultaneous equation solver. If thisis done, then thereis il a
reference parameter when we are solving ax = b, because now a, x, and b are al parameters,
and x is changed by the function. Therefore x becomes a parameter that is declared by doubl e&
x; ingtead of Imply by doubl e x; .

Returning a satus variable causes a subtle problem in understandability. The usud status
variable convention (0 = no error; nonzero = error) alows us to write code like

if (solvel(i,j,n) !=0) { perform someerror action }

where sol ve1 is the Smultaneous equation solver. Students have to be taught that such an
expresson dways actudly cdlssol vei(i,j, n); in other words, that when afunction is part of
an condition, that function is always actually called. This might seem strange to a beginner;
for example, consder f (k) , defined as

int f(int k)
{cout << "f(" << k << ")" << endl; return k; }

Thevdueof f (k) isdwaysthe same asthe value of k. However, this does not mean that i f
(f(k) 1= 0) meansthesameasif (k !'= 0) .If it were, then f (k) would not have to be
cdled,whenit (f(k) != 0) isdone Studentshave to know, explicitly, that heref (k) is
adways cdled, and the output is always produced.

3.4 Enumerations

We take up enumerations only now, after introducing al the above issues, which are easier to
understand if we use codes for status variables (0, 1, 2, and so on). In apractica Stuation, we
don’t use codes because they are easy to get wrong, and because, if we get them wrong, we
have a bug which it is unusudly difficult to find. In setting up an enumeration for Smultaneous
equations, we might define

enum si megn_stat {one_sol, no_sol, many_sol} status;

The basic concepts to be introduced here are the enumeration (in this case, si m eqn_st at) and
the enumerators, or enumeration constants (in this case, one_sol , no_sol , and nany_sol). The
strong Smilarity between enuumeration declarations and enumeration definitions must be
emphasized here; thus, in addition to enum nane {defn} vars; we aso have the declaration
formenum name {def n}; and the definition form enum narme vars; . It must dso be emphasized
that C and C++ give no protection (as Pasca and Ada do) against misuse of enumerations. In
C and C++, it ismerely custom, and not the enforced rules of the language, which dictates that,
once enumeration constants have been defined, you dways, in writing your programs, use these
constants rather than their associated integer codes.

3.5Using A Status Code

In our course, we introduce the swi t ch statement in C and C++ by using a character variable as
the switch expresson; but we immediately go on to a treatment of the very common use of

enumerations as switch expressons. Thusour si m eqn_st at variable above, cdled st at us,
could be used as follows (and we use this example):

switch (solvel(al, b1, x1)) {
case one_sol :
cout << "One solution: " << x1 << endl; break;
case no_sol: cout << "No solutions" << endl; break;
case nany_sol :
cout << "Many sol utions" << endl; break;
default: error("Error in simegn_stat");

}

4. FRACTION CLASSES

The main difficulty in working with Smultaneous equations has to do with control of floating
point error. This, however, is unnecessarily hard to understand for those who do not yet
aufficiently understand the basic dgorithm. It iseader to do thisif we Start with integer
coefficients, because here dl caculations are exact. However, smultaneous equations with
integer coefficients can easily have solutions which are fractiond. How do we ded with these?

In graight C, thiswould be difficult, much more so than working with red numbers. In C++, it is
easy, if weuseafraction class. However, how do we justify introducing this C++ concept in a
course which isbagicadly on C? We do it by noting that, evenin acourse on C, we have to
introduce a few class concepts, because the dternative would be to teach st r uct , which isvery
seldom used any more except for bit fidds.

Our choice has been to set aside one week for an introduction to classes, using afraction class
as an example. Note that, with afraction class, we can now treat Smultaneous equations with
fractiond, aswell asinteger, coefficients. All this materid, of course, will be covered in much
greater detail in the second course (on C++ and data structures). In that one week, we cover:
class and object declarations; design of afraction class, constructors; lowest terms; overloaded
operators, and safe constructors.

5. MEMBER FUNCTIONS

Member functions are mentioned only in passing, in this dementary course, and then only where
they illustrate points that are necessary for our treatment of simultaneous equations or for inpt,
such ascin. get andci n. get | i ne. Briefly Stated are:

* The two ways of defining a member function (insde and outside its class);

* The rules for overloaded operators as member functions;

* Declaration of private data;

* Friend declarations,

* The rule that private data may be accessed only by members and friends.

Thel ovest _t er ns function, introduced before, is now reintroduced as a member function,
which is private because it isintended for use only by congtructors, which are member functions,
and by overloaded operators expressed as member functions.

6. MIXING FRACTIONSWITH INTEGERS

In working with smultaneous equations, we will need to be able to combine fractions and
integers. Thisis anaogous to the usua ways in which we combine integers and red numbersin
C. Given an integer and area number, we can add them; the integer is converted to red and the
two real numbers are added. In the same way, we can have an i nt argument k to afunctionin
which the corresponding forma parameter is of type doubl e, which is then set to k as converted
fromanint toadoubl e.

Inthe sameway, givenani nt and afracti on, we can add them; thei nt isconverted to a
fraction and the two fractions are added. Smilarly, in afunction, we can have aforma fracti on
parameter and a corresponding i nt argument, which isthen converted to af ract i on. Neither

of these conversons, however, are automatic; they depend on a pecid property of one of our
congructors. The rule here is that when a congtructor has exactly one argument, it dso serves as
a coercion. We have a congtructor with one argument for fractions, which produces a fraction
equd to itsargument. Thisisthen used in converting int to fraction in both of the above cases.

Afraction plusanint could aso be caculated by an overloaded operator having f racti on
andi nt as parameters. This would be more efficient, because the calculation formulas are
sampler, and also because we do not haveto call 1 owest _t er ns (it can be shown that the result
isdready in lowest terms, in this case).

7. TWO-DIMENSIONAL ARRAYS

Many treatments of eementary C (or Pascd or Fortran, for that matter) bring up arrays only
near the end of the course. We have never done that, because arrays, to us, are of fundamental
importance and come up in awide variety of programming Situations. Two-dimensiond arrays,
however, are another matter. They are subject to a number of errors (as when their indices start
from 1, or when their names are used as parameters), and a good understanding of pointers,
which comes earlier in the course, is necessary to see how to circumvent these errors. Of
course, two-dimensional arrays are necessary for Smultaneous equations, and we now present
an entire week devoted to these two topics.

We motivate two-dimensond arrays by means of spreadsheets. The declaration of such an
aray, and the use of its elements, are straightforward. Further issues introduced here include
searching atwo-dimengond array; further examples of multidimensond arrays, array access
formulas, arrays of pointersto arrays, two-dimensional array names as parameters; genera
lower bounds (other than 0); and initidizing atwo-dimensond aray.

8. MATRICESAND SIMULTANEOUS EQUATIONS

Now, findly, the students have adl the basic materia they need in order to understand how to
solve smultaneous equations by computer.

8.1 Specifications Of A General Simultaneous Equation Solver

There are three parameters to a function which solves n amultaneous equations.

« an n-dimensiona vector for the right Sdes of the equations;

* an n-dimengiond vector for the variables being solved for; and

* an n-by-n matrix of the coefficients. By what we have just learned (see section 7 above), n
may not vary, from one cal of the function to the next.

8.2 Two Equations In Two Unknowns

In order to have a better understanding of the n-dimensional case, we now take up the two-
dimensona casein more detall. In this case, we do not use amatrix, but instead we ded with
eight quantities separately; that is, a, b, ¢, d, e, f, X, and y in the equations

ax+by
dx+ey

C
f
Our function is declared asfollows:

simegn_stat sol ve2(doubl e a, double b, double c,
doubl e d, double e, double f, double &, double &y);

If thereis one solution, it is easly obtained. We can multiply the first equation above through by
e, and the second one by b, then subtracting the second one from the first, obtaining an equation
for x which does not involve y. We can aso multiply the first equation through by d, and the
second one by a; thistime, when we subtract, we get an equation for y which does not involve
X. Thisisdl done asfollows

aextbey = ceadx+bdy = cd
bdx+bey = bfadx+aey = af
aex—bdx = ce-bf bdy—aey = cd-af

Or(ae—bd)x = ce-bf (ae-bd)y = af-cd

where we have multiplied the last equation through by —1, so that the factor, ae—d, comes out
the same in both equations. If this factor is not zero, our solutions are

X = (ce-bf)/(ae-bd)y = (af-cd)/(ae-bd)

If the factor is zero, we now ask whether ce-bf and af-cd are zero. If either of theseis not zero,
then the equations have no solutions, because either x or y (or both) is expressed as a non-zero
quantity, divided by zero. If ce-bf and af-cd are both zero, however, the Stuation is not as
ample asin the case of one equation in one unknown. Our equations might have many solutions,
as was the case then; but they aso might have no solution, as we will now see.

8.3 Dependent Equations

Wefirgt consder the casein which both ce-bf and af-cd (in addition to ae-bd) are zero. This
impliesthat ae = bd, ce = bf, and af = cd. Usudly, in this case, we have dependent equations.
In general, one equiation depends on another if the first equation is true only when the second
oneistrue. Our two equations here are ax+ by = ¢ and dx+ey = f, and the second of theseis
dependent on the firgt only if it is of the form g(ax+by) = gc, or gax+gby = gc, for someg.
Notethat inthiscased = ga, e = gb, and f = gc, S0 that indeed ae = agb = bd; ce = cgb = bf;
and af = agc = cd.

Supposefirst that a [0. Then d/a is defined, and d = ga where g = d/a. Also, e = gb because
ae = bd, and dividing through by a (CI 0) givese = bd/a = (d/a)b = gb. Smilarly, f = gc
because af = cd, and dividing through by a givesf = cd/a = (d/a)c = gc. Our second equation,
dx+ey = f, isnow gax+gby = gc, as above, s0 the two equations are dependent.

If a=0, and g, asabove, exigs at dl, then d = ga = 0. However, in generd, if d [O, then a/d
is defined, and a = hd where h = a/d. In this case it isthe first of our equations thet is dependent
on the second, rather than the other way around. That is, we now have a = hd; b = he (because
bd = ae and thus b = ae/d = (a/d)e = he after dividing through by d [0 0); and ¢ = hf (because
cd = af and thus ¢ = af/d = (a/d)f = hf).

There remainsthe casein which a = d = 0; and here the two equations can still be dependent.
Of course, in this case, d = ga and a = hd for any g and h whatsoever. Suppose first that b [
0. Then e/b is defined, and e = gb where g = e/b. Also, f = gc because ce = bf, and dividing
through by b (0 0) givesf = ce/b = (e/b)c = gc. On the other hand, if e O O, then b/eis
defined, and b = he where h = b/e. In this case it isthe first equation that is dependent on the
second, as before. Note that ce = bf, and dividing through by e (O 0) gives ¢ = bf/le = (b/e)f =
hf.

The only case in which the equations are not dependent isthat inwhicha=d=b=e=0.In
this case there are no solutions unlessc = f = 0, inwhich case every vaueof x andy isa
solution (and again the equations are dependent).

If one of our equationsis dependent on the other, it can be removed from consideration, and we
can smply solve the other equation. In this case there are usudly many solutions. We consider
only the equation ax+ by = c; the other equation ishandled smilarly. If b [0 O, then y = (c—
ax)/b. Thisisadraight line, whichishorizonta if a=0.1f b=0but a] O, then x = a/c (and y
can be anything); thisisaverticd graight line. If a=b=0,thena=d=b=e=0, whichisa
case we have already treated above.

8.4 TheProgram for Two Equations

We may now summearize the mathematics above, asfollows:

* If ae-bd [0 0, there is one and only one solution; and it is x = (ce-bf)/(ae-bd) and y = (af—
cd)/(ae—bd).

* If ae-bd =0, and either ce—bf [0 or af—cd [J O, there are no solutions.
elffa=b=c=d=e=f=0,thenevery vdueof x andy isasolution.
elfa=b=d=e=0, buteither c 0 0orf [0O (or both), there are no solutions.

* Indl other cases, there are many solutions, lying dong astraight line.

Aninitia verson of our program is therefore as follows, usng the enumerated typesm_egn_sa
asin section 3.4, and with an important error to be explained in section 8.5 below:

simegn_stat sol ve2(doubl e a, double b, double c,
doubl e d, double e, double f, double &, double &) {
/1 solves ax+by = ¢ and dx+ey = f for x and y
/1 returns a status code
double u = a*e-b*d;
double v = c*e-b*f;
double w = a*f-c*d;

if (u!=0) {x =v/u;, y =wu; return one_sol; }

if (v!=0]||] w!=0) return no_sol;

if (a==08&& b ==08&% d ==0 &% e == 0)
return (¢ == 0 & f == 0 ? many_sol : no_sol);

return nmany_sol ;

}

Note that, when we are testing whether a = b = d = e = 0, we cannot writeit that way, in our
program; thatis,if (a == b == d == e == 0) . Thisisnot asyntax error; it will compile, but
itSmeaningisif ((((a ==b) ==d) ==e) == 0) . Thais (a == b) isdthe 1(ifa=b)or0
(if a O b); this 1 or 0 isthen compared with d; the result of that (either 1 or 0) is compared with
e, and so on.

Thistime, we are usng many_sol for two different cases, one in which the solutionsliedong a
graight line, and the other in which every solution is possible. If we wanted to, we could expand
thetypesm_egn_dstat to include anew vaue, every_sol , which could be returned if a, b, c, d,
e, and f weredl zero.

8.5 Fudge Factors

The red problem with solve2, as given in section 8.4 above, is in the satement which starts with
if (u!=0) .Thisdoesnot dwayswork properly, due to floating point error. It might seem
that we can ask whether the answer, when we subtract bd from ae, is very smdl. However, this
depends on how you define “very smdl.” In our example, the rea question is whether ae—bd is
small, compared to ae and bd themsdves. We will test this while we subtract bd from ae, usng
afunction f sub (“floating subtract” or “fuzzy subtract”). Thevaue of fsub(x, y) iISx—y unless
x=Yy is“too smdl” compared to x (or to y), in which caseit is zero. We may definef sub like
this

inline double fsub(double x, double y) {
[/l returns x-y or O if x-y is "too close" to O
double u = x-y;
if (abs(u/x) <1.0e-6) u =0
return u;

}

making it inline because it is 0 short. Here 1. oe- 6 (that is, 1/1,000,000) is caled the fudge
factor. If fsub(x, y) iscaculaed as zero, then satementslikeit (u 1= 0) , above, will work
properly, and there is no need to adjust them. Notice the need for abs here; it isthe absolute
vaueof u/x that must be smdler than the fudge factor (since u/x might be—1, for example).

8.6 Calculating the Fudge Factor

We can now proceed in ether of two directions. Oneisto modify our program by using f sub as
defined above, like this:

simegn_stat sol ve2(doubl e a, double b, double c,
doubl e d, double e, double f, double &, double &) {
/1 solves ax+by = ¢ and dx+ey = f for x and y
/1 returns a status code
doubl e u = fsub(a*e, b*d);
doubl e v = fsub(c*e, b*f);
double w = fsub(a*f, c*d);

if (u!=0) {x =v/u;, y =wu; return one_sol; }
if (v!=0]||] w!=0) return no_sol
if (a==08&& b ==08&% d ==0 &% e == 0)

return (¢ == 0 & f == 0 ? many_sol : no_sol);

return many_sol

Thisworks, dmog dl of the time. One problem with it is that every so often we redly mean for
ae-bd to be very smdl, compared to ae, but Hill not zero. Thisis afundamenta problem with
al fudge factors, and there is no solution that worksin al cases.

8.7 Two Equations With Fractional Coefficients

The other approach to solving our equations is not to use type double at al, but rather type
fraction. Since the numerator and denominator of afraction are integers, there is now no floating
point error to contend with. Then we would write

simeqgn_stat solve2(fraction a, fraction b,

fraction ¢, fraction d, fraction e,
fraction f, fraction &, fraction &) {
/1 solves ax+by = ¢ and dx+ey = f for x and y
/1 returns a status code

fraction u = a*e-b*d

fraction v = c*e-b*f;

fraction w = a*f-c*d

if (u!=0) {x =v/u;, y =wu; return one_sol; }
if (v!=0]|] w!=0) return no_sol
if (a==0&%b==2048&%d==0 & e == 0)

return (¢ == 0 & f == 0 ? many_sol : no_sol);
return nmany_sol ;

}

Notethat a, b, ¢, d, e, and f are now alowed to be fractions. When we introduced the
fracti on type, these were supposed to be integers. However, we can still specify them as
integers, because they will be converted to fractions when sol ve2 iscaled.

8.8 Three Equationsin Three Unknowns

How does the case of two unknowns generdize to the case of n unknowns? Thisis not obvious,
and, to makeit clearer, we work out in detail the case of three unknowns (athough we do not
write the program). If our three equations are

ax+by+cz = d
ex+fy+gz = h
i x+ y+tkz =1
then we show that

af k—agj +bgi —bek+cej —cf

must be nonzero, if the equations have one solution.

8.9 Determinantsfor Two and Three Equations

The quantity ae—bd in section 8.2, and the quantity afk—agj+ bgi—bek+ cej—cfi in section 8.8,
are known as determinants. The genera rule isthat every n-by-n matrix has a determinant.
When we solve n equationsin n unknowns, we set up amatrix of the coefficients, aswe saw in
section 8.1 above. If the determinant of this matrix is non-zero, then the equations have one
solution. We now introduce the usud method of calculating a determinant in the genera case,
using minors.

Looking at the formulas of section 8.2 to solve two equations in two unknowns, we see that, not
only is the denominator a determinant in each case, but the numerators are dso determinants of
new matrices, each of which is obtained by substituting the right-hand side of each of our
equations for the corresponding term in column 1 (or 2). Much the same thing happens for three
equations in three unknowns, as we now show in detall.

8.10 Error Casesfor Three Equations

We have seen that the various error cases for two equations are more complex than they are for
one equation. In particular, there are now four cases: one solution, no solutions, many solutions,
and every solution. However, for two equationsit is still not too difficult to keep track of dl
possible cases. Let us now see what happens when we have more than two equations.

The firgt two cases are dways the same. If the determinant of the matrix of coefficientsis non-
zero, then there is ways a unique solution. If this determinant is zero, then we look at the
numerators in the solution formula, which are dso determinants. If any one of these is non-zero,
we have the second case, in which there are no solutions. If the denominator and al the
numerators are zero, in the formulas, you can dways have ether no solutions or many solutions,
but not a unique solution, in every case except n = 1 (where you must have “every solution”).

When do you have no solutions, in this case, and when do you have many solutions? Thisis
harder to keep track of, in three dimensions. The first problem isthat there are now three forms
for the solutions, rather than two. The solutions can lie dong aline, in three-dimensiond space;
or aong aplane; or they can be the entire three-dimensiona space (if dl the aj and the bj are
zero). More importantly, there are many more ways to draw a straight line in three-dimensiond
gpace than in the plane; and the sameistrue of planesin three-dimensional space.

All these error cases become even harder to keep track of, when there are n equations.
Because of this, the functions which we write below will make no attempt to distinguish among
the error cases. They will use asmplified enumeration type of the form

enum si m status {one_sol ution, singular);

Theword singular isjargon for the case in which a determinant is zero.

8.11 Using Determinantsto Solve the Equations

Wewill now look at two ways of solving n smultaneous equationsin n unknowns. Thefirg will
involve direct caculation of determinants. In this paper we omit the details, but merdy mention
that minors are caculated by recursion, and that this becomes another example of how
recurson is used in programming.

8.12 TheElimination Method for Fractions

Whenever we have arecursive method of solving a problem, we try to look for another method,
which is not recursive, because explicit recursion is dow. We now introduce a method of
solving Smultaneous equations which is faster than using determinants. It i, indeed, the method
generdly used to solve such equations; and we can obtain it directly from the idea of iminating
one of aset of n variadles. If we can diminate the nth varigble, then we can diminate the (n—
1), and so on dl the way back to the second variable. Thisleaves only one variable, whose
vaue we can get. Then we can subgtitute its value into the second equation, giving us the second
variable subgtitute the firgt two variablesinto the third equation, giving usthe third variable, and
S0 on until we are done.

Weilludrate the process for fractions first, snce here there is no floating point error. Note that
in section 8.2 above, where we solved two equations in two unknowns, we multiplied the first
equation through by e, and the second one by b. If e (I 0, we can improve this process by
multiplying the first equation by b/e, and leaving the second one as it stands. Thiswill be our
generd gpproach here; if a,, O O, then, for 1 [0 i O n—1, we multiply the ith equation by an./ain,
obtaining (an/ain)ainXn = annXs 8sthe new nth term. Then we subtract the last equation, which
aso has anXy, asits nth term, giving anew equation with the nth term zero. There are n—1 of
these equations, and they are in the n—1 unknowns x; through x,,_;, because the term involving
Xn, isdiminated.

What if a,, = 0?In that case, wefird try to find an earlier equation with a;, O 0. If we cannot
find such an equation, then the entire last column of the matrix is zero. In that case the
determinant is zero, and we report an error, just as we did before. However, if a;, 0 0 for some
vaueof i, then we interchange equation i and equation n. In other words, the old ith equation
becomes the new nth equation, and the old nth equation becomes the new ith equation. After
this exchange, we proceed as before.

8.13 The Elimination Method for Real Numbers

When we interchange the nth equation with some other equation, it does not matter, when we
work with fractions, which equation we exchange it with, so long as the nth coefficient is non-
zero. When we work with real numbersinstead of fractions, however, it does matter.
Specificaly, we need to exchange, with the nth equation, the equation having the smdlest non-
zero coefficient (in absolute vaue) of the nth variable. Furthermore, we need to do this, in the
real-number case, whether the nth coefficient in the nth equation is zero or not.

The reason for this has to do with what we multiply the other equations by, before subtracting.
If, after any exchanging of equations, we have a, L1 a,, then ann/ain O 1. Thus, when we
multiply an equetion through by a./ain, 8sin section 8.12, we are multiplying it through by
something with absolute vaue not greeter than 1. This tends to minimize the error in the floating
point subtraction that follows, asis taken up in a course on numerica anadysis.

Our program to find the equation with which to exchange, and then performing the actua
exchange, is now

for (i =1; i <n; i+

if (a[i][n] '= 0) goto found,
error("deterninant is zero");
f ound:
k =i; absmn = abs(a[i][n]);
for (j =i+1;, j <n; j++) {

newnn = abs(a[j][n]);

if (newnin < absmin){k =j; absmn = newrn; }
}
if (newmn !'= absmn) {

z = b[k]; b[k] = b[n]; b[n] = z;

for (j =1; j <=n; j++)

{z = a[k][j]; a[kl[j] =a[nl[j]; a[n][j] = z; }

}

First we look for an dement of the last column, a[i][n], whichisnot zero. If Al of these are
zero, we have an error. Otherwise, we proceed from j equa to that specific value of i, through
n—1, looking for the smdlest absolute value of a[j][n] over thisrange. If that happensto be

a[n] [n] , we are done. Otherwise, we need to exchange equation n with equation k, just as we
exchanged it with equation i earlier.

8.14 A Function For The Elimination M ethod

We now proceed to our function for the elimination method, using red numbers:

const int n =10; // this constant can be changed,
/1 and the programreconpil ed
typedef double matrix_type[n][n];
simstatus solve_n
(doubl e *x0, matrix_type a0, double *b0) {
/1 solves n simultaneous equations in n unknowns
matrix_type a = (matrix_type)((double *)a-n-1);
doubl e *x = x0-1; double *b = bO-1;

double z,lower _right; int i,j,k,m
for (m=n, m>1, m-) {
/1 this is derived fromthe program of §11.25
/1 (replacing n by m
for (i =1; i <m i++)
if (a[i][nm !'= 0) goto found;
return singular;
f ound:
k =i; absmin = abs(a[i][mM);
for (j =i+1; j <m j++) {
newnn = abs(a[j][n);
if (newnin < absnmin){k =j; absnmin = newrin; }
}
if (newnin !'= absmn) {
z = b[k]; b[k] =b[ni; b[nm = z;
for (j =1, j <=m j+4)
{z = a[k][j]; alkl[j] =alnm[j]l; alm[j] =z }
}
/1 now we nmultiply equations and subtract
lower_right = a[nj[n;
for (i =1; i <m i++) {

term=a[i][n;
if (term!=0) {
factor = lower_right/term
b[i] = fsub(b[i]*factor, b[n]);

for (j =1 | <=m j+¥)
a[i][j] = fsub(a[i][j]*factor, a[n[j]);

}
}
}
z = a[1][1];
if (z ==0) return singular;
x[1] = b[1]/z;
for (i =2; i <=n; i++) {
z = b[i];
for (j =1, j <i; j++¥) z =fsub(z, a[i][j]l*x[i]);
x[i1] = z/la[i][i];
}
return one_sol ution;

}

Firgt we interchange an equation with the last equation, if thisis needed, asin section 8.13. Then
we perform the imination of X, from m = n down to m = 2. If a any time during this process
the last column of the matrix becomes zero, the program stops, and we return si ngul ar . The
same thing happensif a; is now zero, when we solve for x;. Otherwise, we enter the fina loop,
inwhich the values of a, through a, are cdculated in order and placed in the result vector. Note
that equation i, for 2 [0 i O n, isof theform

X1+ AqXo + ... F AX = by
at thispoint, snce a; = 0for dl j > i. Therefore, solving for x;, we obtain

Xi = (b —aixqy + aiXe + ... + &_giaXia)/aii

and thisis caculated at the end of the function. Note that the originad matrix is changed by
sol ven; if wewant to re-use this matrix later on, we should copy it into another matrix, which is
then used as a parameter to solven, ingtead of the origind matrix.

If we were using fractions here ingtead of red numbers, the following changes would be
made;

» we would replace doubl e by fract i on throughout;

» we would smplify the function of section 8.13 above;

» we would diminate the uses of f sub, and just use ordinary subtraction.

9. PROGRAMMING EXERCISE

As part of our course, the students are expected to rewrite the sol ven function of
section 8.14 above, using fractionsinstead of integers, and making use of the changes suggested
at the end of that section. They then run it on several cases and check the results.

REFERENCES

Maurer, W. (2000). Thefirst course: Cisnot Pascal. Journal of Computing in
Small Colleges, 15, 3, 91-100.

