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Abstract 
 
Students of computer science commonly find their introduction to big oh notation to be a stumbling block.  
Most textbooks on data structures and algorithms cover asymptotic notation in varying degrees of 
mathematical rigor starting with the definition of big oh.  However, more and more computer science 
programs are requiring less and less mathematics of their majors.  As a result, when students first encounter 
the definition of big oh, they frequently lack the mathematical sophistication necessary to fully appreciate 
the treatment it is given in most texts.  Furthermore, they are unable to reconcile the definition with any 
intuitive understanding of complexity they have developed from their programming experience.   
 
The first part of this paper describes a more concrete conceptual framework for motivating the definition of 
big oh.  This motivation uses concepts familiar to a student who has taken or is taking the normal CS 1 
course.  The second part introduces the other asymptotic forms using only concepts normally covered in 
Discrete Mathematics. 
 
 
Introduction 
 
The treatment of asymptotic notation in many, if not most, textbooks in Data Structures is to begin with a 
mathematical definition of big oh similar to the following, found in [1]. 
 
Definition (Big Oh) 
 

Consider functions f and g, which are non-negative for all integers n ≥ 0.  We say that “f(n) is big 
oh of g(n),” for which we write f(n) = O(g(n)), if there exists an integer n0 and a constant c > 0 
such that for all integers n ≥ n0, f(n) ≤ cg(n). 

 
The typical approach is to then use this definition to prove the big oh relationship for selected functions.  
Eventually, theorems concerning the various properties of the big oh relation are stated and proven.  The 
texts normally concentrate on how to “use” the definition and seldom give much discussion of its 
motivation. 
 
The typical student majoring in computer science or information systems will not have developed the 
mathematical maturity necessary to fully appreciate the association between the abstract definition of the 
big oh relation and the relative complexities of programs they have written.  Without mathematical 
sophistication, the proofs of the big oh relation’s properties become something to memorize for the quiz or 
exam and then forget. 
 
This paper presents an approach that allows students to “discover” the big oh relation in terms that are 
familiar to their programming experience.  Given this more concrete foundation for the formal definition of 
the big oh relation, the proofs of its properties, while not necessarily easier, are less intimidating. 
 
 

mailto:dkaiser@southwest.msus.edu


Background 
 
Students in computer science at Southwest State University start with a one-year sequence in programming 
using C++ and then have a two-semester sequence in Data Structures and Algorithms.  The first semester of 
the programming sequence concentrates on the basic programming constructs such as primitive data types, 
functions, selection, iteration, recursion, arrays and the techniques of structured design.  The second 
semester concentrates on the object-oriented paradigm and introduces the elementary data structures of 
lists, stacks and queues. 
 
Within the first-year sequence, students are introduced to the ideas of time complexity by examining the 
number of basic operations performed by various algorithms.  For example, students consider the 
difference between the number of comparisons performed in a sequential search and the number performed 
in a binary search.  Complexities are also considered when studying the various ways to implement the 
elementary data structures.  Students thus develop some intuition regarding run time complexity.  The big 
oh notation my even be used without formally defining it. 
 
Asymptotic notation is introduced in the first Data Structures and Algorithms course.  Students generally 
take Discrete Mathematics during one of their first two semesters.  The Discrete Mathematics course 
introduces the students to prepositional and predicate logic, elementary set theory, functions, relations, 
graphs, trees and elementary combinatorics.  Thus, it is assumed that the students are reasonably proficient 
programmers and have studied some mathematical logic before being confronted with the big oh relation. 
 
 
“Discovering” the Definition 
 
The goal of asymptotic analysis is to provide a means of comparing algorithms regardless of their 
implementations.  That is, we what to answer the question, “Can we define what it means for one algorithm 
to be better than another?”  To begin their investigations students are presented with the following. 
Hypothetical Situation 
 

Consider two algorithms, A1 and A2, for solving the same problem.  Suppose we have determined 
that the number of basic operations performed by A1 on an instance of size n is n2 while A2 
performs 4n2 + 1000 of its basic operations.  It would appear that A1 is a “faster” solution of the 
problem than A2.  However, suppose we can implement A1 on a machine M1, that can perform 100 
of its basic operations per second while A2 can be implemented on a machine M2, that can perform 
500 of its basic operations per second.  Is A1 really better than A2?  Will the faster implementation 
of the “slower” algorithm eventually catch up with the slower implementation of the “faster” 
algorithm? 

 
To study the situation for varying instance sizes, we will use a spreadsheet.  Table 1 shows the number of 
operations performed by A1 and A2 and the execution times of their respective implementations for various 
instance sizes.  As the table indicates, for some input size between 30 and 35, the faster implementation of 
the A2 begins to outperform the slower implementation of A1. 
 

Table 1: n2
 vs. 4n2 + 1000 

 
 Number of Operations  Running Time  (seconds) 

Input Size A1 A2 A1 on M1   A2 on M2 
5 25 1100 0.25 < 2.20 

10 100 1400 1.00 < 2.80 
15 225 1900 2.25 < 3.80 
20 400 2600 4.00 < 5.20 
25 625 3500 6.25 < 7.00 



30 900 4600 9.00 < 9.20 
35 1225 5900 12.25 > 11.80 
40 1600 7400 16.00 > 14.80 
45 2025 9100 20.25 > 18.20 
50 2500 11000 25.00 > 22.00 

 T1(n) = n2 M1 @ 100 ops/sec 
 T2(n) = 4n2 + 1000 M2 @ 500 ops/sec 

 
 
The students can use the spreadsheet to investigate the behavior when various changes are made to the 
situation.  For example, what if M2 were able to execute only 300 of A2’s basic operations per second 
instead of 500.  Table 2 shows that in this case, as the input size increases, algorithm A1 running on M1 
increasingly out performs A2 running on M2. 
 
The spreadsheet can be set up so that the student can vary the ratio of execution speeds and find the input 
size at which the faster implementation of the “slower” algorithm does indeed outperform the slower 
implementation of the “faster” algorithm.  The student can also investigate the behavior of other function 
pairs using the same spreadsheet.  If set up properly, the student would only have to change the value in the 
first row of the Input Size column and the remaining rows would change accordingly.  Similarly, if the 
student changed the value of the cell containing the number of operations per second for either M1 or M2 
the running times would recalculate.  To investigate other pairs of functions, the formula for the new 
functions would be entered into the first cells of columns A1 and A2.  These formulae would then have to be 
copied to the remainder of the columns. 
 

Table 2: Slower M2 
 

 Number of Operations  Running Time  (seconds) 
Input Size A1 A2 A1 on M1   A2 on M2 

5 25 1100 0.25 < 3.67 
10 100 1400 1.00 < 4.67 
15 225 1900 2.25 < 6.33 
20 400 2600 4.00 < 8.67 
25 625 3500 6.25 < 11.67 
30 900 4600 9.00 < 15.33 
35 1225 5900 12.25 < 19.67 
40 1600 7400 16.00 < 24.67 
45 2025 9100 20.25 < 30.33 
50 2500 11000 25.00 < 36.67 

 T1(n) = n2 M1 @ 100 ops/sec 
 T2(n) = 4n2 + 1000 M2 @ 300 ops/sec 

 
After investigating various pairs of second degree polynomial functions, the students usually conclude that 
if one runs the “slower” algorithm on a “fast enough” machine, it will “eventually” out perform the “faster” 
algorithm running in a slower implementation.  Students are then asked to do the same with n2 and n3 (table 
3).   
 

Table 3: n2
 vs. n3 

 
 Number of Operations  Running Time  (seconds) 



Input Size A1 A2 A1 on M1   A2 on M2 
5 25 125 1.25 > 0.25 

10 100 1000 5.00 > 2.00 
15 225 3375 11.25 > 6.75 
20 400 8000 20.00 > 16.00 
25 625 15625 31.25 = 31.25 
30 900 27000 45.00 < 54.00 
35 1225 42875 61.25 < 85.75 
40 1600 64000 80.00 < 128.00 
45 2025 91125 101.25 < 182.25 
50 2500 125000 125.00 < 250.00 

 T1(n) = n2 M1 @ 20 ops/sec 
 T2(n) = n3 M2 @ 500 ops/sec 

 
After trying larger and larger machine speed ratios, they are forced to conclude that in this case, no matter 
how much faster the implementation of the n3 algorithm is than the implementation of the n2 algorithm, the 
n2 algorithm “eventually” outperforms the n3 algorithm. 
 
After performing the above investigations, the students are ready to attempt a definition of what it means 
for one algorithm to be no-slower-than another.  The usual consensus definition is some variation on the 
following. 
 
Definition (No-slower-than) 
 

Given algorithms A1 and A2 that solve the same problem, we will say that A2 is no-slower-than A1 
if we can run A2 on a machine that is “enough faster than” the machine on which we run A1, then 
the faster implementation of A2 will “eventually” out perform the slower implementation of A1. 

 
After discussing the need to make our definition more precise, we decide to make a second attempt in 
which we try to quantify the phrases “enough faster than” and “eventually”.  This produces the following 
refinement. 
 
Definition (No-slower-than — Refinement) 
 

Given algorithms A1 and A2 that solve the same problem, we will say that A2 is no-slower-than A1 
if there is some number R such that if we run A2 on a machine that is R times faster than the 
machine on which we run A1, there will exist some instance size N, such that the faster 
implementation of A2 will out perform the slower implementation of A1 on every instance of size 
greater than N. 

 
 
Other Relations 
 
Reflecting on our definition of no-slower-than we see that we can use it to define what it means for 
algorithms to be about-the-same-speed.  Certainly, if A1 is no-slower-than A2 and A2 is no-slower-than A1 
then it must be the case that A1 and A2 are about-the-same-speed. 
 
We may further notice that about-the-same-speed-as is an equivalence relation on the set of all algorithms 
that solve the same problem.  It is trivial to show that about-the-same-speed-as is reflexive (an algorithm is 
about-the-same-speed-as itself), symmetric (if A1 is about-the-same-speed-as A2 then A2 is certainly about-
the-same-speed-as A1) and transitive (if A1 is about-the-same-speed-as A2 and A2 is about-the-same-speed-
as A3 then A1 is clearly about-the-same-speed-as A3). 



 
Looking further we also see that no-slower-than is almost a partial order relation on the set of algorithms 
that solve the same problem.  It is very easy to argue that it has the reflexive property since an algorithm is 
no-slower-than itself.  The transitive property follows just as easily since if A1 is no-slower-than A2 and A2 
is no-slower-than A3 then A1 is surely no-slower-than A3.  We can’t quite get the anti-symmetric property.  
The best we can do is argue that if A1 is no-slower-than A2 and A2 is no-slower-than A1 then A1 and A2 are 
about-the-same-speed.  Thus no-slower-than is a partial order on the set of equivalence classes under the 
relation about-the-same-speed-as.  So, no-slower-than behaves on the equivalence classes of about-the-
same-speed-as just as “≤” behaves on the integers. 
 
If A1 is no-slower-than A2 then in certainly follows that A2 is no-faster-than A1.  Hence, no-faster-than is a 
relation that behaves on the equivalence classes of about-the-same-speed-as just as “≥” behaves on the 
integers. 
 
Now for an algorithm A1, to be inherently-faster-than another algorithm A2 it must be the case that A1 is 
no-slower-than A2 and that A1 is not about-the-same-speed-as A2.  It is easy to verify that is inherently-
faster-than is irreflexive and transitive and is therefore a quasi-order [2] on the set of all algorithms that 
solve the same problem.  Thus, inherently-faster-than behaves on the equivalence classes of about-the-
same-speed-as in the same way that “<” behaves on the set of integers. 
 
 
Summary 
 
Given algorithms A1 and A2 that solve the same problem, we have developed the following definitions. 
 
Definition (No-slower-than) 
 

A2 is no-slower-than A1 if there is some number R, such that if we run A2 on a machine that is R 
times faster than the machine on which we run A1, there will exist some instance size N, such that 
the faster implementation of A2 will out perform the slower implementation of A1 on every 
instance of size greater than N. 

 
Definition (No-faster-than) 
 

A1 is no-faster-than A2 provided A2 is no-slower-than A1. 
 
Definition (About-the-same-speed-as) 
 

A1 is about-the-same-speed-as A2 provided A1 is no-slower-than A2 and A2 is no-slower-than A1. 
 
Definition (Inherently-faster-than) 
 

A1 is inherently-faster-than A2 provided A1 is no-slower-than A2 and A1 is not about-the-same-
speed-as A2. 

 
If, in each of the above definitions, we replace algorithms A1 and A2 with their complexity functions, 
that is, “functions f and g, which are non-negative for all integers n ≥ 0” we have the familiar 
definitions of big oh, big omega, big theta and little oh. 
 
Definition (Big oh) 
 

We say that “f(n) is big oh of g(n),” which we write as f(n) = O(g(n)), if there exists an integer n0 
and a constant c > 0 such that for all integers n ≥ n0, f(n) ≤ cg(n). 

 
Definition (Big omega) 



 
We say that “f(n) is big omega of g(n),” which we write as f(n) = Ω(g(n)), if g(n) = O(f(n)) 

 
Definition (Big theta) 
 

We say that “f(n) is big theta of g(n),” which we write as f(n) = Θ(g(n)), if f(n) = O(g(n)) and 
g(n) = O(f(n)). 

 
Definition (Little oh) 
 

We say that “f(n) is little oh of g(n),” which we write as f(n) = ο(g(n)), if f(n) = O(g(n)) and f(n) ≠ 
Θ(g(n)). 

 
Note that the constants “c” and “n0” from the definition of big oh are simply the ratio of machine speeds R, 
and the instance size N, from the definition of no-slower-than. 
 
 
Concluding Remarks 
 
I submit that the conceptual framework presented has merit for the following reasons. 
 

• The student is allowed to “discover” the definition and work through its refinement instead of 
being presented with a polished version. 

 
• The approach draws off of the students’ programming experience. 

 
• The only mathematical background required is a typical course in discrete mathematics. 

 
• The approach reinforces the ideas of equivalence and partial order relations introduced in 

discrete mathematics. 
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