
The Role of Observation in Computer Science Learning

Rob Faux
Computer Science Education, Distance Education and Curriculum Consultant

rfaux@oneota.net

Abstract:

This paper investigates how observation is critical to learning and provides strategies for
supporting observation in Computer Science learning. Observation is a combination of
using the senses to experience an actual event followed by reflection of what was
experienced. Frequently, observation is not supported when course structures fail to
encourage reflection that leads to long-term integration of new knowledge. There are
many opportunities in the traditional Computer Science classroom to rectify this
imbalance. A set of possible approaches are discussed in this document.

Keywords: observation in learning, computer science, teaching techniques

1. Approaches to Learning

Just as there are many different kinds of people in the world, there are many different
approaches to learning. Teachers at every level need to recognize the personal nature of
learning and should work to support a broad variety of approaches to learning. The
application of different teaching methods to support the various learning styles should be
a goal of every educator at every level for any subject. With intelligent use of various
facilitation techniques, instructors may reach a larger and more diverse group of learners.

The focus of this paper is on the facilitation of learner observation to support learning.
Observation can certainly be a part of learning regardless of the teaching techniques used
and the learning preferences exhibited by the student. However, it is the author's opinion
that educators need to recognize the power of observation in learning and work to
facilitate its use in the classroom.

Passive versus Active Learning

The current trend in educational circles is to support active learning techniques, such as
collaboration and 'hands-on' approaches. It is argued that action on the part of the learner
will increase their interaction with the subject matter and aid them by forcing some
investment in their own learning [3]. In Computer Science courses, it is common to
encounter collaboration in the form of team projects (especially in later courses) and
various hands-on approaches in labs and via programming and other projects are
frequently used. Other active learning approaches, such as service learning and
discussion methods are much less common in CS, but are nonetheless potentially useful
tools for the CS educator. Innovation in the facilitation of active learning is currently a

mailto:rfaux@oneota.net

popular field in educational research and is certainly worthy of integration into the
repertoire of any CS faculty person's teaching toolbox.

Passive learning, on the other hand, is quite often seen as the reading and lecture portion
of classes. Both of these methods are intended to impart information to learners and rote
memorization is frequently a necessary component [2]. Many online tools using
multimedia are also highly passive in approach since many consist largely of reading text,
viewing pictures, or listening to audio components. Computer Science faculty are
frequently at the forefront of those using online tools for class notes, tutorials and other
items to support learning.

Unfortunately, the nearly exclusive use of reading and lecture by many instructors in the
past has brought about a backlash against passive learning methods. This often leads to
attempts by some facilitators to completely forsake these tools, which certainly is no
better than avoiding active learning approaches [5]. In other cases, it causes instructors to
be defensive about their use of passive approaches and leads to a polarization between
faculty that does not benefit the learner. Certainly, there are advantages and
disadvantages to each teaching technique. It is also quite possible for an instructor to be
effective or ineffective using any given strategy. Rather than discounting a technique or
approach entirely, instructors should concern themselves with the relative benefits of
various teaching approaches. Additionally, teachers should continuously challenge
themselves to improve the variety and quality of their instructional methods.

Concrete versus Abstract Capabilities

Most learners who are traditional college ages (17-23) are entering a point in the
maturation process where they can begin to process and learn from abstractions [8]. Of
course, each individual will be at a different point in this development. In some cases, an
individual may be quite willing and able to accept general assumptions, models and
axioms and apply them successfully. However, most individuals will struggle to some
extent unless there are concrete examples and situations from which they can learn. Even
given concrete examples, some people may find it nearly impossible to generalize the
concepts and apply them to different concrete examples. By the same token, there are
individuals who can readily accept high-level concepts, but will struggle to apply them in
a precise situation.

The facilitator of learning must recognize the difficulties some may have in crossing
between abstractions and applications. There must be recognition by Computer Science
educators that models, code fragments, and computing languages can be very abstract
from the perspective of the learner. Similarly, full programs for specific tasks or
scenarios can provide concrete examples. To make matters more complex, learners (and
instructors) do not always recognize the difference between an abstraction and an
application. This becomes clear when learners complain that a test question was unfair,
even though the instructor feels it is actually a similar problem to one that was covered
extensively in the classroom. Faculty must work to point out the difference between a

specific case and a general case. Once this is done, they can facilitate the translation
from one to the other.

What do we Mean by Observation?

Taken literally, observation can certainly occur regardless of the level of activity or the
level of abstraction in a learning event. Certainly, one could argue that observation is a
part of any learning. After all, a lab situation requires the learner to view the problem,
interpret it, attempt to solve it, and then see how the solution fairs. The observation of
the success or failure of the solution is part of the key to learning concepts in a laboratory
environment. Similarly, a student in a lecture hall observes by listening to the instructor,
viewing the notes and other visual aides and participating in discussion. These scenarios
certainly seem to fit a traditional sense of what it is to ‘observe.’ However, if we leave
our definition of observation here, we leave out a critical part of the learning process.

In each of the cases above, observation should be a 'two-part adventure.' The first part of
the process involves using the senses to watch what is happening and experience the
event. As was mentioned above, many of us might consider this to be the full extent of
observation in learning. However, observation for learning includes a second step. The
learner needs to reflect on the experience and determine where the experience belongs in
their pool of knowledge. Thus, in order to facilitate observation in learning, we must
consider ways that will both provide a useful experience and that will promote reflection
and integration of that experience [1,2,5].

With this definition in mind, it becomes fairly obvious that facilitation of observation will
usually require more concrete experiences than abstractions. This does not mean that
abstraction is ignored. As a matter of fact, concepts, applications, and instances of
traversals between the two can often be successfully 'observed.' But, we must recognize
that these are still instances of the more specific models. It is hoped, by the use of
applications in the experience, that the learner will be able to integrate the concept (or the
abstraction) as they reflect on what they have experienced. Further, events that show the
process and steps from concept to application (and/or vice versa) can facilitate successful
reflection.

Observation should occur regardless of the level of 'activity' in a learning event.
However, there are good reasons to consider observation as a passive activity.
Frequently, a highly active situation will cause the learner to fail to see what needs to be
seen during the event. Continued activity tends to dull the willingness to process and
reflect on what has been happening. In other words, the activity becomes the focus,
rather than the learning. The result is that participants become trained in a skill, but have
insufficient understanding of the reasons behind the process. This makes it increasingly
difficult for the individual to handle abstractions and exceptions. Teachers need to work
to encourage moments of observation in every active learning event so that the activity
might lead to more complete understandings of what has occurred.

On the other hand, passive events, such as lectures, can certainly be endured with a
minimum of observation. In these cases, some level of 'activity' can promote the
necessary reflection and integration. For example, instructors who provide learners with
questions prior to a lecture may find that learners are more willing to pay more to the
content of the lecture. Regardless of the level of activity in the event, the instructor must
identify ways that they can facilitate the necessary observation that will lead to learning.

A Revelation Regarding Observation

The ‘trial and error’ methodology is very commonly accepted in most European-style
educational format. Many persons who claim to be kinesthetic (hands-on) learners who
have grown up in this system see ‘trial and error’ as being the most common approach.
In this instance, one tends to learn by making mistakes and seeing how these mistakes
bring about results that are not necessarily those that were anticipated. With this
approach, better learning occurs when time is taken to view the results and reflect on how
those results differ from what was expected. This effort brings the learner to a point
where they can make conjectures as to why things were different and how changes might
bring about the desired result.

While ‘trial and error’ certainly allows for both phases in observation, it does not
necessarily mean that every learner will take the time for the entire process. Frequently
learners simply get frustrated with the results. When this occurs they either make ‘knee-
jerk’ alterations to the solution or they seek a ‘ready-made’ answer (often supplied by an
instructor). In short, ‘trial and error’ methods tend to encourage action, but the focus on
observation is often neglected.

Some interesting reading regarding the traditional learning approaches of many Native
American peoples reveals a different approach to learning that might provide an
interesting balance to ‘trial and error’ tactics. In this scenario, the teacher demonstrates
how something can be successfully completed while the learner(s) serve as an audience.
After observing a number of repetitions, the learner reflects on what they have
experienced and attempts to perform the task on their own (usually with no audience) [4].
Perhaps there will be some ‘trial and error’ at this stage, but the learner does have a
working model as a basis for their efforts. The advantage of this approach is the early
focus on the process of observation.

Certainly this approach could be useful in demonstrating both successful and
unsuccessful concepts and approaches in the Computer Science classroom. At the least,
this could encourage and exercise the observation skills of the participants. Further,
integration of this approach with ‘trial and error’ methods should provide opportunities
for individuals with varying learning styles to succeed.

The Value of Observation in Learning

Rather than provide lengthy descriptions of the advantages for two-part observation in
learning, it is appropriate to simply provide a list. This gives more opportunity to discuss

specific strategies in the CS classroom rather than a larger focus on theory. As the reader
views the strategies for facilitating observation, it may be beneficial to reconsider the
following as they relate to the technique. It is doubtful that many will disagree that each
of these can be true on a philosophical level. However, consider whether or not events in
the classroom, as they stand now, fully support these statements.

Valuable learning occurs:

♦ in seeing and reflecting on (observing) successful processes that are modeled by

others.
♦ in observing failed processes.
♦ in observing on the response to a failed process.
♦ in observing completeness.
♦ in observing repetitions.
♦ in reflection on one’s actions or activity.
♦ in observing comparisons.
♦ in observing decision making processes within a larger concept or process.
♦ in observing the details of a process or situation.
♦ in observing the impact of a process or event.
♦ in observing the tools of the trade as they are used.

2. Teaching Approaches that Facilitate Observational Learning

Many techniques facilitate observational learning in Computer Science. The following
examples are only a small group of ideas used by the author in CS classes and are
presented here in the hope that others may benefit in their use. Some of these ideas have
been frequently used by CS/IS faculty for some time, others seem to be common sense
and others are a reflection of the instructor himself. Of course, each of these examples
will have varying levels of success depending on the learners, the instructor and the
environment. Further, faculty must consider the time and effort required (for themselves
and the students) in order to make these events work. Before rejecting any of these
approaches on that basis, one must consider the potential value an event such as these
might have versus those events that are already planned.

Full Program Examples

Early in Computer Science, learners are working to learn a computing language.
Frequently, the only full program examples seen by the learner is an initial 'Hello World'
example in one of the first classes and whatever examples exist in the textbook. It is
natural for instructors and authors to provide code fragments, rather than complete code
in order to provide examples for learners. After all, it is tedious to write program headers
and the like when they are far from the point to be made. However, we should not forget
the value of viewing success and of viewing completeness as a part of observation. The
successful authoring of a complete, working program by the instructor while learners
view the process can have a strong impact on many of those learning programming
languages.

When providing full program examples, the instructor should consider that simply
providing copies of a full program does not suffice. Learners at the post-secondary level
often have good intentions (and sometimes they don’t) of reading materials provided for
them, but these materials are infrequently perused. More importantly, providing a fully
written and completed program deprives the learner of the value of viewing the process.
There is great strength in combining process, completeness and repetition, which is
provided by full program examples.

Before dismissing this idea as being too time-intensive or as being unnecessarily
redundant, one must consider the audience. First, learners do not have the wealth of
experience that the instructor presumably has. Things that the teacher takes for granted
aren’t necessarily even recognized as important by the newcomer. Second, judicious use
of full-program examples can provide the opportunity to impart new concepts as well as
repetitions for already covered, yet still uncertain, ones. And, finally, the ultimate goal
should be to bring the students to an appropriate level of understanding of the topic. Rote
memorization of concepts, algorithms and patterns certainly may give the appearance of
understanding, but it is not a wholly accurate indicator.

Provision of Working Solutions to Assignments

Projects, assignments and even exams are often viewed by professors as activities with a
definite ‘end’. Unfortunately, the result is that there is a focus on the initial activity, but
no focus is given to the learning opportunity that comes after assessment or completion of
the event. This effectively eliminates the second part of the observation process that is so
critical to long-term retention of concepts. For example, the student works to memorize
for the exam, performs their ‘regurgitation’ for the exam, and receives a score two weeks
after that point. No further discussion or effort is expended (in most cases) on these
questions or topics so that a better understanding can be reached (unless they hope to
cajole the instructor into a higher score). A large part of this attitude comes from the
feeling brought to the classroom that one must always be moving forward in the topic
material. But, how can learners be expected to move forward when key concepts are
misunderstood?

An excellent method for encouraging observation is to provide learners with solutions to
exercises, projects and exams. Once again, we must recognize that reading handout
material may not be the best solution. It is often more beneficial to start the process in
the classroom with a period of time to review the event. The instructor usually is aware
of those concepts and issues that caused the most trouble and can isolate those most
likely to help a majority of the students. Further, identification of the most common
mistakes can allow the teacher to illustrate the error and provide solutions that work by
modifying the solution that was in error. This provides the learner with an opportunity to
view the process of turning a ‘failure’ into a ‘success.’ Certainly, this is a valuable lesson
for any person involved in computing.

There are, of course, some issues that would cause instructors to choose to avoid this
approach. First, there is the assumption that evaluation can occur quickly so that
assessment information can be used to select appropriate subjects to discuss. This may
not necessarily have to be the case, however, since experienced instructors often have a
sense for what has caused problems in the past. Second, there are problems with
providing full answers to students. These assignments can’t readily be reused in future
classes. However, teachers need to remember that the primary goal is successful
learning, rather than easy grading or assignment development. The difficulties brought
about by providing an opportunity to reflect on graded events are actually quite small as
compared to the potential learning value.

'Playing Computer'

The event of fast compilers and near immediate feedback regarding a program’s
workability has removed some of the motivation to walk through a solution prior to
implementing. When CPU time cost the student money, learners found themselves
spending a great deal of time tracing and re-tracing their solutions prior to submitting
them for compilation and running. While it is certainly beneficial that learners have
unlimited CPU time and speedy compiling and testing tools, they should still be given the
opportunity and motivation to see and use tracing and walkthroughs of algorithms and
code.

An instructor can provide opportunities to illustrate the workings of a solution by walking
through solutions and code manually. They can supplement this approach by
encouraging and demonstrating the use of debuggers to follow code as it executes. And,
while this certainly sounds like a tool for earlier courses in a CS program, the instructor
should also model its use in later courses to illustrate the power code and solution tracing
can have. This approach provides learners with a demonstration of a strategy or process
for working through computing problems that can be quite valuable.

Debugging

The process of debugging is usually one that is taught nearly entirely by ‘trial and error’
processes in laboratories and in projects. Perhaps learners are given a quick tour of the
programming environment at the beginning of their first class, or they are provided with
an introduction to basic compiler errors. However, learners are often more successful in
debugging if they are given the chance to see successful debugging strategies in action.
Usually, this process has greater impact if it occurs after students have had a chance to
experience the frustration of debugging themselves. Because they now have a good
reason to seek out successful strategies, they will view and integrate them quickly as they
are modeled by the instructor.

An excellent method of promoting debugging strategies early in the CS program is to
gather code written by learners that does not compile or run correctly. These files can be
used to demonstrate how one can look for problems in the code. This approach increases
the feeling of ownership in the learners and may increase their desire to observe

successful techniques. Later in CS programs, we should not ignore chances to share or
reiterate useful debugging approaches. Instructors must remember that learners have to
be at a point where they are ready to learn new concepts. Frequently, learners simply are
not ready the first time it is presented. A second presentation, at a later point in time, my
find them quite ready to accept and integrate what they experience. In other words,
instructors should not view debugging as a ‘unit’ to be covered. Instead, debugging
should be modeled, discussed and viewed throughout larger topics.

This approach certainly costs the instructor class time and preparation time. However,
consider the large amount of time commonly devoted to individual debugging sessions in
nearly every CS class. It stands to reason that faculty will benefit from a concerted effort
to make debugging techniques part of their focus. This should encourage observation
from the standpoint that it supports the process of experiencing and integrating tools for
us in Computer Science. This approach models both process and success in response to
failure.

Developing and Implementing Test Plans

As an instructor, we certainly speak of testing code and verbally encourage it in our
students. However, testing is frequently viewed as tiresome, irritating and less creative
than the more development oriented portions of our projects. As a result, instructors and
students tend to do very little real testing. Certainly, faculty members are well aware of
what a good set of tests might be for a given piece of code. But we forget that learners do
not have this experience. Naturally, they will consider one set of test data to be
sufficient. If it runs successfully, they feel that the project is complete and no more effort
is required.

Testing and planning for testing can be one of the areas in CS that strongly supports
observation for learning. The testing process provides the learner with a chance to
consider what it is that will determine if a solution is working or not. They must take the
time to reflect on the problem and its limitations, so that they can select appropriate tests.
Further, they are given the chance to move away from active development so that they
can observe how their solution interacts with the data given. Once they have viewed the
results, they must determine whether the results are appropriate and how things should be
altered to get better results. This is the step in ‘trial and error’ processes that is necessary
in order to encourage two-part observation.

There are a number of approaches that can be used to encourage testing and test plans.
First, the instructor should model testing for learners frequently. If the professor is
illustrating a new algorithm for the class, he/she should take the time to demonstrate how
the algorithm performs in boundary cases (for example). If demonstration code is
provided, time should be taken to walk through a test set to show correctness (and maybe
even failure) of the code. At the very least, a test plan, test suite or set of tests might be
provided so that learners can be exposed to them. Learners can then be asked to
determine why each test was included in the plan. This encourages actual reflection and
integration rather than blind acceptance of listed procedures.

Learners can also be encouraged to test by requiring a test plan and set of test results for
each project and/or laboratory exercise. By making the process a required part of the
event, students become familiar with its inclusion. Further, inclusion of these test sets
can also provide the instructor with more resources for evaluating the work of the learner.

Making Mistakes Into a Valuable Resource

Professors should be viewed as being competent in their field. However, we should not
make the mistake of perpetuating the myth that we are infallible. Instructors who make
mistakes in the classroom should not work to cover them up. Instead, they should
recognize the value in turning the situation into a learning opportunity. It is not
suggested here that faculty should make mistakes continuously. After all, it is valuable
for a learner to observe success. Instead, the suggestion is that failure, and our reaction to
it, can be every bit as useful for the learner to observe as success.

Providing oneself with the opportunity to make mistakes may sound a little ridiculous
and even a bit scary. However, we should consider that professors certainly should be
comfortable with their topic and they should be quite capable of responding to and
correcting errors. Rather than entering the classroom with everything worked out prior to
the event, there are times when it is more useful to enter the classroom with only the
problem in mind, but no solution. The process of working to a solution can then be
displayed for the learners in such a way that they can observe how the instructor handles
adversity in the process. As the teacher works through the problem, they should clearly
demonstrate what they are doing and why they are doing it. If a problem is encountered,
they should indicate how they discovered the problem and why it is a problem. At that
point, they can show how they will deal with the situation.

This approach is often very enlightening to both faculty and students. Not only does it
provide learners with a chance to observe the processes used by an experienced
individual, it also gives the instructor a chance to consider the problems of a student.
Learners remain under the shadow of constant evaluation of their work and we often fail
to recognize the very real stress this puts on the individual. On the other hand,
performing work in front of a live audience can certainly remind one of the stress of
problem solving for the benefit of others!

Another valid approach is to purposefully make mistakes so that the error can be
demonstrated and solutions presented. In this case, it is usually best to be clear that you
are intending to make mistakes and that the focus is on what can go wrong and how it can
be corrected. If one includes an intentional mistake without forewarning the students, it
will often backfire since students become unsure as to the agenda being pursued by the
instructor. Announcing an intentional error after the fact is rarely taken well. On the
other hand, unintentional errors provide learners with a chance to see how mistakes can
be made into useful learning experiences.

Peer Interaction

Interaction and collaboration are excellent methods of supporting observation in learning.
The simple camaraderie felt by those placed in the situation of dealing with a common
problem tends to promote sharing of perspectives and opinions that can lead to a better
understanding of the task and the concepts behind it. The effort of successfully
conversing about the topic requires the participant to sharpen their own observation
skills. Sometimes one learner can model or tutor for another student. In other situations,
the learners use team efforts to attempt the task at hand. Regardless of the situation, the
interaction encourages observation because communication requires that the students
attain certain levels of understanding in order to converse on the problem topic. In short,
peer interaction supports observation by giving learners an ulterior motive to incorporate
observation into their learning.

Instructors can support peer interaction by providing paired projects and team projects.
Similarly, teachers can encourage and facilitate peer tutoring and study groups. By
encouraging students to accept learning efforts as a part of a community effort, it is
possible that individuals will begin to accept that observation and learning can occur
practically anywhere at any time.

Stump the Teacher

Providing a new twist to the classroom usually gets the attention of students. In this case,
the instructor challenges the students to find questions about the subject that might stump
him or her. For example, a second term programming class was challenged to come up
with a single-task recursion problem that the instructor could not solve in the class. In
this case, the class was given a day to try to come up with problems (either individually
or as a group). The day of the challenge was extremely successful as the teacher worked
with these problems while the learners observed the process. Learners were asked to take
time after the class to write down strategies used by the teacher in solving the problems
presented. Many learners expressed favorable opinions of this event.

Obviously, this event requires that learners provide sufficient problems for this to work.
Further, there are certainly individuals who will hunt down unsolvable or inappropriate
problems for the class. Even so, the instructor must be prepared to discuss how the
problem can be approached and why it can’t be done in entirely in that class. The second
difficulty is that the instructor places his or her ego on the line and surrenders some
control of the classroom to the students. The teacher must be ready to admit defeat while
illustrating approaches to solving the problem. Further, it is important that careful
guidelines for problem selection be given so that there is a higher likelihood that the
event will succeed.

Open Ended Questions

Computer Science, with its strong mathematical background, tends to often lend itself to
short, close-ended questions. Program syntax is either right or it is wrong. Algorithms
either find the correct solution or they do not. The more heavily mathematical
background of many faculty tends to make them much more comfortable with these types
of questions. Further, it is far easier to assess the response to such questions than it is to
assess responses to an open-ended question. However, there is also a great deal of
flexibility within the structure of Computer Science. An algorithm may be written more
than one way in order to produce correct answers. Databases may be optimized different
ways in order to promote efficiency. Large project designs may be implemented any
number of ways, each having different sets of pros and cons. In other words, there is a
need for the CS student to develop skills in determining which solutions are best for a
given situation. These skills lend themselves to open-ended questions.

The open-ended question also promotes observation in learning. If a learner is asked to
optimize a database using a prescribed set of steps with very few options, they have no
reason to really observe what is happening. Instead, they simply look at the ‘cook book’
and follow the ‘recipe’ in hopes that the correct solution will appear at the end. On the
other hand, learners could be asked to optimize the same database and explain WHY they
think it is now optimized. Or, if they were encouraged to give reasons for the changes
they make, they are more likely to ‘step back’ from the process and reflect and integrate
this knowledge. Once the ‘why’ is merged with the ‘how’, both become easier to
remember and the task is more likely to be performed adequately in the future.

Another use of open-ended questions is to supply questions at the beginning of a lecture
section that ask students to formulate opinions about topics covered in the lecture. For
example, a class covering various shortest path algorithms may include questions
centering around when one might select one algorithm over a different one. In this case,
it is often best for the lecturer to avoid giving these reasons in the lecture. Instead, they
should ask for feedback from the learners in an effort increase the activity in an otherwise
passive event. Adding this activity encourages active listening, which, in turn, facilitates
observation in learning.

Internships & Apprenticeships

The apprenticeship approach of years past relied heavily on the concept of using
observation in learning. Often, the apprentice was merely required to be around the
skilled craftsman while the craftsman did his or her work. Of course, the apprentice was
required to do many menial tasks during that time. However, the exposure to the
successful use of the tools, the process, the problems and the potential solution strategies
provided the learner with a chance to integrate that information into their own knowledge
base. As the level of comfort grows, the apprentice begins to attempt hands-on work and
learn by trial and error. Failed attempts often led to further demonstrations by the expert
as the apprentice watched.

Students may find great value in internships related to their field of study. These
arrangements provide the learner with an opportunity to observe that is valuable to their
future learning in the classroom. An internship can provide them with a more complete
picture of what is necessary to function in the field. At the very least, an internship can
clarify purpose and provide motivation for learners as they continue through the CS
program.

3. Conclusion

Instructors of Computer Science classes at the post-secondary level can certainly aid
learning by promoting the use of both phases of observation in the classroom. Many of
the strategies discussed here are likely to be similar or very close to techniques used by
many instructors. However, we must consider whether or not we take each strategy as far
as it needs to go in order to promote observation for learning. Even highly successful
educators discover that their techniques require adjustments and alterations over time. It
is hoped that this paper will challenge readers to critically evaluate teaching events in
their classroom and alter them to better support the learner.

References:

[1] Brookfield, S.D., The Skillful Teacher: On Technique, Trust, and Responsiveness in
the Classroom, Jossey-Bass, Inc., 1990.
[2] Bruffee, K., Collaborative Learning: Higher Education, Interdependence, and the
Authority of Knowledge, The Johns Hopkins University Press, 1993.
[3] Bateman, W.L., Open to Question: The Art of Teaching and Learning by Inquiry,
Jossey-Bass, San Francisco, CA, 1990.
[4] Tafoya, T., Coyote’s Eyes: Native Cognition Styles, Journal of American Indian
Education, Special Issue, Aug, 1989, pp. 29-41.
[5] Eble, K. The Craft of Teaching: A Guide to Mastering the Professor’s Art, 2nd Ed,
Jossey-Bass, 1988.
[6] Allan, J., Learning Outcomes in Higher Education, FT Magazine: Studies in Higher
Education, 21, (1), Spring, 1997, P. 245+.
[7] Brookfield, S., Becoming a Critically Reflective Teacher, Jossey-Bass, 1995.
[8] McKeachie, W., ed., Learning, Cognition and College Teaching, Jossey-Bass, 1980.

	Computer Science Education, Distance Education and Curriculum Consultant

