

MiNet: Managing Internet Connectivity in

Academic Computing Labs

Shaun M. Lynch, Ph.D.

Department of Mathematics and Computer Science

University of Wisconsin-Superior

Superior, WI 54880

slynch@uwsuper.edu

Abstract

Educators who teach coursework that rely on computer technology in labs designated for

instruction often have to compete with the novelty of the internet for student attention. As

a faculty member and administrator of the computing infrastructure in the Department of

Mathematics and Computer Science at the University of Wisconsin-Superior, one of the

most common requests made by instructors is how to disable internet access to lab

computers during scheduled class times. The author had an insight how to resolve this

problem and built a networking appliance called MiNet using open source software and

technology that overcame many of the challenges associated with managing network

traffic in an academic computing lab. This paper discusses the design and technologies

used to resolve this issue along with ways to deploy the application in academic

departments seeking a relatively elegant way to manage a difficult classroom problem.

1 Introduction

Educators who teach coursework that rely on computer technology in labs designated for

instruction often have to compete with the novelty of the internet for student attention.

News, email, sports results, social media are accessible in an instant and provide

immediate gratification to the distracted mind. It is convenient to think that students

should have the discipline to refrain from these activities during class and pay attention,

but the reality is that students are still learning self-discipline and suffer the same

challenges we all face at one time or another.

As a faculty member and administrator of the computing infrastructure in the Department

of Mathematics and Computer Science at the University of Wisconsin-Superior, one of

the most common requests made by other faculty and academic staff is how to disable

internet access to lab computers during scheduled class times. Ideally, instructors would

like an on-off switch that deactivates or at least limits internet access without totally

disabling the local network access they rely upon. If a solution were only that simple,

every computer lab used for instruction would have a switch installed!

During Fall Semester 2013, the author had an insight how to resolve this problem and

built a networking appliance called MiNet that relied solely on existing open source

software and technology. The solution overcame many of the technical challenges

associated with managing network traffic and can be easily replicated. In addition, the

application allows individual instructors to control internet access in broad strokes or at

fine-grained detail without disrupting other labs or users. The approach requires modest

hardware capabilities and can be easily virtualized and integrated into an Active

Directory environment and managed using group policy if desired.

This paper puts forward the design and technologies used to solve this problem.

Discussion begins with a background that provides an overview of mechanism used to

regulate network traffic followed by a simple model used to illustrate the difficulties of

managing and controlling network traffic in an academic computing environment. Next,

the MiNet application is presented along with details that cover configuration, core

functionality, deployment, and browser support necessary to manage internet access in a

computer lab. The paper concludes with ideas how to improve the application and to

simplify deployment so that it can be adopted by other academic departments seeking a

relatively elegant way to resolve a difficult classroom problem.

2 Background

Managing internet access in classrooms and labs populated with computer workstations

requires the coordination of interacting technologies to be effective. The problem yields a

number of challenges that include providing independent control across multiple labs,

scheduling between classes, access and security, accounting for human error, browser

support, as well as, a number of other issues all of which incur tradeoffs that must be

considered.

It is important to acknowledge that preventing students from surfing the internet during

class time on university owned lab computers is only one step toward addressing the

plethora of distractions students engage in. Student owned technology like smartphones

and laptops contain wireless technologies capable of connecting to networks beyond the

control of the local network administrator. Regardless, computing labs are a shared

resource and need to be managed effectively to create an environment conducive to

learning.

2.1 Regulating Network Traffic

A firewall refers to a class of devices that control incoming and outgoing network traffic

based on a set of rules. A firewall can be a discreet appliance or an application embedded

on a host system. Firewalls generally work by monitoring traffic through one or more

network interfaces and track settings in the communication protocol header.

A proxy server is a type of firewall that serves as an intermediary between one or more

clients and one or more servers. Also known as an application firewall or web proxy, a

proxy performs on behalf of a client when attempting to communicate with a server.

When a client requests content from a server, the proxy intercepts and evaluates the

request against a set of rules. If valid, the proxy issues a new request to the server in place

of the client. Upon receiving a reply from the server, the proxy evaluates the response

against a set of rules. If valid, the proxy delivers the server response to the client.

The rules that govern proxy behavior generally apply at the application level of the Open

Systems Interconnect (OSI) model. This layer is most closely aligned with programs

users interact with on a day-to-day basis that use protocols like HTTP, HTTPS, and FTP

to transfer data over the network. Proxy servers may also incorporate rules that track

lower layer protocols that include IP, TCP, and UDP. In the world of practice, proxy

servers often work in conjunction with other types of firewalls that provide specific

functionality (e.g. stateless and stateful firewalls) to enhance their overall security.

Proxy servers often contain additional capabilities important to network management that

include content caching, content filtering, client anonymity, and reporting. Content

caching improves network performance by storing frequently accessed content locally

without having to repeatedly contact the server. Content filtering ensures data sent over

the network complies with acceptable use policies. Client anonymity hides the identity of

client devices residing on internal networks from external observers. And reporting

organizes and collates proxy activity to facilitate administrative oversight.

These characteristic make proxy servers an ideal candidate to manage and control

network traffic to a pool of computing resources since it is transparent to the user under

normal operating conditions. Only in circumstances where the network communication

fails to comply with policy does the device makes its presence known. In that case, the

proxy server may simply drop the communication or provide a message to the user

indicating the rationale for denying the communication.

2.2 Illustrating the Problem

To fully illustrate the challenge of configuring a system to manage network traffic for an

academic computing lab, it is useful to look at a series of network configurations that

exemplify the problem at hand. Consider the scenario illustrated in Figure 1 where a

proxy serves as an intermediary between a pool of intranet residing computing resources

and servers on the internet. If one assumes consistent and homogenous traffic patterns

over time—a reasonable assumption in most cases, the proxy would require only a single

configuration deployed by the network administrator to manage network traffic.

Internet

IntranetProxy

Figure 1: Scenario using a single proxy server to control and manage

a single pool of computing resources.

This scenario can be extended by adding additional pools of computing resources as

shown in Figure 2. Each pool may represent different functional units in an enterprise or

computer lab in an academic environment. As the number of pools increase, so will the

physical resources—processing, networking, memory, and storage—to host the proxy

server. If the new pools being added have similar traffic patterns, it may be possible to

create a single proxy configuration that satisfies all pools. If however, each pool has a

distinct traffic pattern, then creating a single, monolithic configuration that encompasses

the nuances of each pool becomes increasingly difficult.

Internet

Proxy

Intranet

A

B

C

Figure 2: Scenario using a single proxy server to control and manage

multiple pools that share similar network traffic patterns.

An alternate solution may entail assigning separate proxy servers to each new pool as

shown in Figure 3. In this case, individual proxy servers can be configured to satisfy the

specific physical characteristics and traffic patterns associated with each pool. In the past,

each proxy would have been hosted on a separate physical server thus detracting from the

overall benefit of such a setup. Through virtualization, however, proxy servers can be

hosted on one physical host (server or cluster) and resources shared across virtual

machines or containers. Additional benefits include: simpler configurations, scalability,

traffic isolation, and failure compartmentalization.

Internet

IntranetProxy

A

B

C

Figure 3: Scenario using multiple proxy servers to control and manage

multiple pools with dissimilar network traffic patterns.

To complicate matters further, consider the scenario where there are multiple pools of

computing resources whose traffic patterns within each pool changes over time as shown

in Figure 4. This scenario most closely represents computing labs in an academic

environment where activities constantly change throughout the academic year. Changes

in network traffic patterns may stem from differences in course content (e.g. introductory

computer applications versus object-oriented programming), variations in class activities

(e.g. testing versus lecture), or changes in class schedules.

It is this scenario that makes controlling and managing internet access to academic

computing labs so difficult. Proxy applications often use static configurations to define

the rules used to control and manage network traffic. In normal circumstances, proxy

configurations are prepared by network administrators and maintained periodically over

the life of the server. In this situation, a dynamic proxy configuration is needed that

allows authorized users to change settings base on how the computing resource is being

used.

Internet

IntranetProxy

A

B

C

t

t

t

Figure 4: Scenario using multiple proxy servers to control and manage

multiple pools with network traffic patterns that change over time.

3 MiNet

The author designed MiNet to enable authorized users to dynamically configure a proxy

server to meet the needs of an academic environment. The application consists of a suite

of scripts built upon a Squid proxy server. As an introduction, Squid is an open-source

proxy application used to filter and cache web content [1]. The application is normally

installed on Linux-based operating systems and uses a static configuration file to define

the rules used for filtering and caching. MiNet manages the state of Squid’s configuration

file by responding to events that may stem from user input and schedule triggers.

3.1 Configuration

MiNet partitions proxy configuration settings into the file hierarchy shown in Figure 5.

The root of the hierarchy begins with the Squid configuration file located in Squid’s

configuration directory. Using the include directive, settings are expanded into separate

files that contain default rules that can be modified to provide the desired functionality.

To begin with, rules declared in the computers.acl file identify client workstations within

the scope of the proxy server. By default, systems matching the IP addresses or address

ranges listed in computers file are included within the proxy’s scope. In addition, client

workstations must have web proxy settings assigned to the respective proxy server.

Next, rules declared in the websites.acl file allow essential websites when the proxy is in

restricted mode. By default, websites are identified by domains listed in the websites file.

Web domains for teaching and class-related resources such as learning management

systems are generally included.

/etc/squid3/squid.conf

/etc/minet/computers.acl

/etc/minet/websites.acl

/etc/minet/minet.rules

/etc/minet/computers

/etc/minet/websites

/etc/minet/default.rules

/etc/minet/schedule/*.active

Figure 5: MiNet configuration file hierarchy.

Internet access is determined by rules defined in the minet.rules file. This file is

automatically updated to reflect the state of the proxy server and should not be modified

by hand. However, default internet access rules are declared in the default.rules file and

can be customized to meet particular needs. The schedule subdirectory contains proxy

rules created using the new-scheduleitem command. The command requires a unique

name that identifies the schedule item along with optional starting and ending dates and is

generally used to add default internet access rules for classes throughout the semester or

academic year.

3.2 Core Functionality

The primary function of MiNet is to manage the dynamic configuration of the proxy

server as depicted in the state diagram shown in Figure 6. Booting the host server will

automatically start the Squid service which enters the Use Default Access Level state.

Authorized users can change the state of the proxy by logging into the server using

PuTTY and enter commands directly on the command line.

Use Default
Access Level

Use User-Defined
Access Level

Update
Default Access

Scheduled Items

set-internetaccess

reset-internetaccess

expired

update-schedule

Start

Figure 6: MiNet state diagram.

Under normal operation, the Use User-Defined Access Level state can be entered using

the set-internetaccess command. Arguments for this command include enabled, disabled,

and restricted. Restricted is a hybrid mode that only allows access to web domains listed

in the websites file discussed previously. An optional expiration can also be included in

the form of a Linux at expression. If the expression is invalid, an error is posted and the

command terminates.

In the case where no expiration is provided, a default interval of 30 minutes is used. This

prevents the defined access level from being enforced indefinitely if one forgets to reset

the access level. It also provides a set-and-forget option for users who want immediate

control over internet access with the convenience of a quick setting. The default interval

was selected so that expected expiration would occur within one class period to prevent

disruption in a following class.

In the case where expiration evaluates to an interval greater than 120 minutes, the

command posts a warning and terminates without setting the access level. This prevents

the situation where an access level is set for an abnormally long period. This is

particularly important if the lab is left unattended after setting an access level that extends

beyond normal class times. There may be instances, however, where the expiration must

exceed the maximum. In this case, an override switch is provided that can be set to force

an expiration interval beyond the maximum.

Authorized users can update or reset internet access at any time from the command line.

Entering the set-internetaccess command will simply replace the old setting if another

user-defined access level is in effect. Alternatively, entering the reset-internetaccess

command will exit the user-defined access level and return the proxy to its default access

level.

Entering the Update Default Access Scheduled Items state is primarily controlled by an

entry place in the /etc/cron.d directory that invokes the update-schedule command. The

command is scheduled to run at midnight every day and flags scheduled items as active

or expired. The state can also be entering by adding new schedule items or by manually

invoking the command.

3.3 Deployment

Proxy server access and security is paramount since a proxy server is an internet facing

device and a potential target for internal and external attacks. Installing a software

firewall on the device is an essential first step. Fortunately, only two network ports are

required for use and include Port 3128 for the Squid proxy service and Port 22 (SSH) for

remote access. Ports should be only accessible from the devices on intranet. Changing the

default port for the Squid proxy service is also recommended since it is a widely

recognized signature that a proxy service is running.

Account management is another area that requires special consideration. In this particular

implementation, authorized users enter commands directly from the command line to

change internet access settings. The simplest way to provide access to authorized users is

to provide local accounts and place those users with access into a separate group.

Unfortunately, this can entail a significant amount of duplicate effort if multiple proxy

servers are being hosted. If the proxy server resides in a Windows managed environment,

then authenticating against Active Directory greatly simplifies account management.

In this particular implementation, the set-internetaccess and reset-internetaccess can be

called by any user. However, each command checks for root access before calling the

MiNet system level scripts set-internetaccess.sh and reset-internetaccess.sh used to

change and reload Squid configuration files. Adding an entry in the sudoers configuration

file allowing selected users or groups root privileges to run these scripts effectively

provides access to only those authorized to use the service.

The author paid special attention to embed messages that would be clearly visible to the

user when interacting with the application. Using the message-of-the-day mechanism

provides a simple way to display a splash screen when the user logs in containing helpful

command reminders. In addition, all commands contain help messages accessible using

the commonly recognized -h or --help command switches.

3.4 Browser Support

Workstations in the pool managed by the proxy must be configured to send internet

traffic through the proxy server to function properly. Determining which browsers to

support is first decision an administrator must make since it impacts the manner in which

settings are deployed and secured. Fortunately, the most popular browsers (Internet

Explorer, Mozilla Firefox, and Google Chrome at the time of this article) use the same

proxy settings in a Windows environment. However, each requires special configuration

to protect settings from being viewed or changed.

Configuring Internet Explorer on systems running Windows is a good place to start since

the configuration can be deployed using group policy. On the other hand, Firefox uses

local configuration files that must be deployed to individual workstations. While Google

Chrome uses both a local configuration file and custom group policy settings that can be

added to the domain controller. Regardless of which browsers are supported, it is

important to test each configuration to ensure web traffic is indeed going through the

proxy server.

Once the supported browsers are deployed it is critical to monitor systems for rogue

installations that allow a user to bypass proxy settings. This creates a security breach and

potentially offers savvy users a way to circumvent network controls. Students that do this

gain an unfair advantage in classes that restrict web access to prevent unauthorized web

access during tests. Google Chrome can be particularly challenging in this regard since it

uses its own installer and can be installed even if Windows Installer is disabled and

application installations require elevated privileges. The only sure way to prevent Google

Chrome from installing is deploy a group policy that explicitly prevents the Google

Chrome installer and ancillary applications from executing.

4 Parting Thoughts

Disabling internet access to an academic computing lab presents itself as a deceptively

simple concept but belies the true nature of the problem and the complexity it creates for

network administrators in academic computing environments. However, finding solutions

to these “simple” problems is one of many challenges individuals in technology-related

disciplines thrive upon and highlights the interconnectedness of all the system involved.

MiNet offers a solution for the challenge of managing internet access but its

implementation is far from complete and there is room for improvement. It is author’s

opinion that the first area to improve upon is the method to access and configure settings.

Although there are only two commands to manage internet access, users have to login

into the server and type the command on the command line. A small control panel on the

desktop or a live tile displaying the state of the proxy would be more informative and

much simpler to use.

Containerizing the application using Docker or similar application is another area to

consider and has the potential to significantly enhance deployment. In many regards, a

MiNet enabled proxy server is well suited for hosting in a container since there few, if

any, external dependencies or fixed constraints. Unlike hosting each instance on separate

virtual machine, containers offer a very efficient way to share common resources across

multiple instances. The biggest concern is ensuring true isolation across containers to

prevent the spread of a breach if it were to occur.

In summary, this paper presented a design and implementation of a novel application that

enable authorized users to dynamically configure a proxy server to meet the needs of an

academic environment. Topics discussed included the need for the solution, the nature of

the problem along with limits of current technology, and an overview of the mechanics

necessary to build the application. Using open source software and technologies, the

solution provides a number of capabilities that facilitate control of internet resources and

management of academic computing labs while promoting the effective use of computing

technology.

References

[1] Squid: Optimising Web Delivery (2015). squid-cache.org, http://www.squid-

cache.org.

