Raspberry Pi Computer Cluster

Noel J. Petit
Ken Johnson
Paulina Vo
Don Vo
Christian Grant

April 10, 2015

Computer Science
Augsburg College
2211 Riverside Avenue
Minneapolis,MN 55454
petit@augsburg.edu
vop@augsburg.edu

1 Abstract

A cluster of Raspberry Pi computers has been created to test and demon-
strate the effectiveness of small computers in parallel processing. The comput-
ers use MPICH, a message passing protocol to share a large task and then co-
ordinate their results at the end of the processing among a group of 8 or more
Raspberry Pi computers. We compare the single CPU (such as the common
Intel Core i5) vs cluster performance of various parallel algorithms such as
sorting and searching. We found limitations in the ability to speed up a pro-
cess because of the communication and operating system overhead among pro-
cessors. We tested various operating systems and configurations for their abil-
ity to speed up a process shared by many CPU’s. Results were improved by
using simpler operating systems and limiting the tasks assigned to the Rasp-
berry Pi. For example, by removing services such as Network Time Protocol,
Remote Desktop, and system logging, we were able to approximately double
the processing speed of an 8 node parallel system. In addition, we tested file
sharing with NFS and SecureNFS as well as file sharing with file systems out-
side the cluster (for example, Google storage). We will review the technical
findings as well as what we learned by building a cluster of small computers
to simulate a high performance processor.

2 Introduction

Created a cluster of inexpensive Raspberry Pi computers to demonstrate the
power of parallel computing. Each node of the cluster is a Raspberry Pi mini-
computer in a family of computers introduced in 2012 as a full-featured mini-
computer for $35. At that cost, it is possible to acquire many computers and
network them via Ethernet or WiFi. In our case we used an Ethernet switch
to join 6 to 8 model B Raspberry Pi’s and demonstrate various parallel pro-
cessing features.

3 Raspberry Pi

This minicomputer has passed through three versions — B, B+, and 2. Here is
a rough comparison of the models available.

Model Number | B B+ 2
Processor Broadcom BCM 2835 | BCM 2835 BCM 2836
CPU Speed 700 MHz Single 700 MHz Single 900 MHz Quad
Core ARM 1176 Core ARM 1176 Core ARM Cortex A7
Memory 512 MB SD RAM 512 MB SD RAM | 1 GB SD RAM

All have USB 2.0. ports, audio and video outputs as well as Ethernet and
power connectors. Each draws about 700 ma at 5 volts for a power draw of
about 4 watts.

A number of operating systems are available. The install manager for the
Raspberry Pi is NOOBS. The operating systems included with NOOBS are:

e Arch Linux ARM

e OpenELEC

e Pidora (Fedora Remix)

e Puppy Linux

e Raspbmc and XBMC open source digital media center

e RISC OS - The operating system of the first ARM-based computer
e Raspbian

In our case we wanted to have as many features and languages as possible so
we used the Raspbian available from the Raspberry Pi foundation. That may
not be the fastest of operating systems but it is very close to the Ubuntu that
students use in our public lab and provided the widest of features. The B and
B+ processors were measured at about 40 Megaflops with the quad core 2
processor at 98 Megaflops (1). On the CPUlevel the performance is similar to
a 300MHzPentium ITof 1997-1999. Connecting machines is done with a simple
100 Mbps Ethernet switch. Each processor in our cluster is assigned a fixed
IP.

4 MPICH

The MPICH consortium of contributors who develop and support a library
or message passing protocols for communication among computers. MPICH
includes compilers for FORTRAN, C, C++. In our case we chose C as our
language and used many of the example parallel programs to demonstrate
the cluster. MPICH includes a specialized compiler and run time for C which
manages the distribution and collection of tasks and data among connected
processors. To allow processors to share compiled programs and their data,
all computers share files via Network File Sharing (NFS) on either one of the
Raspberry Pi’s or a separate Ubuntu server running NF'S server.

For simple programs, MPICH starts all of the programs on as many proces-
sors as specified and runs all to completion. Each processor is aware of how
many other processors are in the cluster as well as its index in the array of
processors. Thus, every processor knows who it is as well as how to address
all of the other neighbor processors. Some of the programs distribute the task
among processors by breaking the shared data into blocks. Some distribute
the tasks by sending data to each processor and waiting for the “master” pro-
cessor to receive data from all the slaves.

5 Parallel vs Single Processor Tasks

As a start, let’s consider running a simple mathematical task on a single pro-
cessor and then distributing this task among several processors. There will
always be start-up time spent distributing the task to multiple processors so
we expect short tasks to take longer when distributed among processors.

5.1 Calculating Prime Numbers

Prime MPI calculates prime numbers and distributes the work amongst the

various numbers of processors. Prime MPIs code is derived from jburkardt@fsu.edu.

The work is divided up amongst two Raspberry Pi 2s. Each Raspberry Pi 2
has quad core capabilities. The way the work division is represented in this
paper is shown as ...

(Raspberry Pi #1) / (Raspberry Pi #2)

The work distribution of the two Raspberry Pis was tested on prime number
lists of size 3.2-10%, 6.4-10%, 1.25-10°, 2.56 - 10°, and 5.12-10°. The predicted
data for this segment will show a logarithmic plot for the graph. It is also pre-
dicted that the graph will display close to the same results between processes
between corresponding division. For example, 1/0 will display the same data
as 1/1. The process should run faster, however the time must also account for
the communication between Pis. It is also predicted that at 5/4 and 5/5, the
runtimes will increase since the code will divide up the processes to be run on
more processes that exist. The data collected is shown below.

Number of Processes per Pi

Number of
Primes 1/0 |1/1 |2/1 |2/2 |3/2 |3/3 |4/3 |4/4 |5/4 |5/5
32,000 3.66 3.66 1.84 1.84 0.92 0.92 0.65 0.92 0.95 1.25

64,000 13.6 136 | 6.84 |6.84 | 34 3.4 237 | 346 | 3.1

128,000 51.3 | 51.3 | 25.7 | 257 |13.0 |13.0 |8&.62 | 13.0 | 10.6

256,000 192.8 | 192.8 | 96.6 | 96.6 | 48.5 | 48.5 | 325 | 48.6 | 40.1

512,000 729.9 | 729.9 | 367.3 | 367.3 | 183.6 | 183.6 | 122.4 | 188.6 | 150.1

Using Microsoft Excel, the data was entered and compiled to form the graph
below. The horizontal axis represents the number of processors the work is
distributed amongst. The vertical axis represents the runtime for each test.

‘_"\-u—_h_-____)_‘__'r__'_'_r_,._._-—
0.1
) 3 4 5 6 7 8 9
—_— 32K 64K 28K 256K m— 512K

As shown from the data collected, the predictions made were true. There was
some variation once the program was run on eight (4/4) and nine (5/4) pro-
cessors. The variation between the two is fairly small except for size 512,000
(difference of 66.2). There is a max of eight processors, so when the code was
tested on nine processors the runtime decreased which was also predicted.

5.2 Ring MPI

Ring MPI sends messages of size 100, 1000, 10000, 100000, and 1000000 from
processor 0 to 1 to 2 to ... to P-1 then back to 0. P represents the number of
processors used. We expect the program to take longer with more processors
since the message needs to be relayed to more processors before returning to
processor 0.

Number of Processes per Pi

Values Sent | 1/0 | 1/1 | 2/1 | 2/2 | 3/2 | 3/3 |4/3 |4/4 |5/4 |5/5

100 N/A | 0.001 | 0.001 | 0.003 | 0.004 | 0.006 | 0.007 | 0.010 | 0.010 | 0.011
1000 N/A | 0.003 | 0.003 | 0.006 | 0.008 | 0.009 | 0.009 | 0.015 | 0.015 | 0.015
10000 N/A | 0.018 | 0.017 | 0.039 | 0.034 | 0.051 | 0.051 | 0.070 | 0.074 | 0.086
100000 N/A | 0.139 | 0.141 | 0.277 | 0.280 | 0.417 | 0.419 | 0.560 | 0.573 | 0.705
1000000 | N/A | 1.365 | 1.385 | 2.730 | 2.740 | 4.095 | 4.117 | 5.464 | 5.496 | 6.834

0.01
- _/_/_—
1 2 3 4 5 [7] 9 10 11
As expected, the amount of time it took to relay a message took longer with

more processors. There is no result for 1/0 processors because there is no
other processor to communicate with processor 0.

5.3 Search MPI

Search MPI is a function which utilizes parallel programming to find a value J
which satisfies the condition F(J) equals some value C. It works by searching
integers between two endpoint values, A and B, and evaluating each integer
on a function F. Based on the number of processors the function has access to
it will divide up the “search” work accordingly. We should expect to see the
time it takes for the program to run to decrease as the number of processors
increases.

Number of Processes per Pi

Range | 1/0 | 1/1 | 2/1]2/2 [3/2 [3/3 | 4/3 [4/4 | 5/4 | 5/5

1 3.0 1.5 1.0 | 75.0 | 0.64 | 0.51 | 0.46 | 0.38 | 0.39 | 0.41

1-10% [29.7 | 148 [9.9 [74 [6.0 |50 [42 [3.7 [40 |40

1-10% [297.0 | 148.0 [99.0 | 74.0 | 60.0 | 50.0 | 42.0 | 37.0 | 43.0 | 37.0

Search Time

Looking at the table above we can see the time it takes for the function to
execute decay as more processors are employed. The second row displays a
time of 14.8 when two are active and a time of 4 when 10 are active. This
data output is what we expected and agrees with our assumption about the
relationship between processors and time to execute.

6 Conclusion

After a series of tests, it can be concluded that there are benefits as well as
limitations when implementing parallel processing on Raspberry Pis. Some

of these limitations are simply due to the communication overhead that is in-
herent to many parallel processing structures. For certain problems, there is
a significant gain in performance however the best cases for these are divisible
problems that are not interdependent on results of other nodes. Cases that
depend on computation results from other nodes in a parallelized cluster ex-
perience less of a gain in performance time. This method of parallel process-
ing is ideally suited for Monte Carlo simulations.

7 Refrences

B. Peguero. (2014). MpichCluster in Ubuntu [Online].
Available https://help.ubuntu.com/community /MpichCluster
J. Burkardt. (2011). MPI C Ezamples [Online].
Available http://people.sc.fsu.edu/ jburkardt/c_src/mpi/mpi.html
MPICH. (2015). MPICH Guide [Online].
Available http://www.mpich.org/documentation/guides/
J. Fitzpatrick. (2013). The HTG Guide to Getting Started with Raspberry Pi
[Online]. Available http://www.howtogeek.com /138281 /the-htg-guide-to-
getting-started-with-raspberry-pi/all/

