A Mobile Application for Collecting Plant Observation Data

Jingbo Chu, Yu Qiu, Mao Zheng, Tom Gendreau
Department of Computer Science
University of Wisconsin-La Crosse
La Crosse WI, 54601
mzheng@uwlax.edu

Abstract

The aim of this project is to develop an Android application for collecting plant
observation data in the field.

Plant breeders, agronomists and scientists need to record a lot of information in the
field. Recording data by pen and paper has many problems. For example,
handwriting is often difficult to read and can easily be misinterpreted. In order to do
data analysis, handwritten data must be entered into a computer or the analysis
must be done by hand. In either case, the process is error prone. A mobile
application can increase the efficiency and the productivity of collecting plant
observation data. A mobile application also makes it easier to add additional
information such as an image of the plant, the time and weather conditions when
the data was collected and the location where the data was collected.

The architecture of this application is client-server structure. The client side is the
Android mobile application. The server is an Apache web server with a MySQL
database. PHP is used as the programming language on the server side. The client
communicates with the server through the http protocol. The application uses the
MAMP platform.

When the user is collecting the data in the field, the mobile device does not require
an Internet connection. When an Internet connection is available, the application
will upload data automatically to a server database. The application also allows
users to add, modify or delete the observation fields, to export recorded data into an
Excel file, and to do some simple data analysis.

There are two major platforms in the mobile device community: i0S and Android.
This project chose Android development mainly for the reason of its openness. In
addition, all the tools in Android development are free and no special hardware is
required.

1 Introduction

Plant breeders, agronomists and scientists need to record a lot of information in the
field. Recording data by pen and paper has many problems. For example,
handwriting is often difficult to read and can easily be misinterpreted. In order to do
data analysis, handwritten data must be entered into a computer or the analysis
must be done by hand. In either case, the process is error prone.

The aim of this project is to develop an Android application for collecting plant
observation data in the field. A mobile application can increase the efficiency and
the productivity of collecting plant observation data. A mobile application also
makes it easier to add additional information such as an image of the plant, the time
and weather conditions when the data was collected and the location where the
data was collected. Figure 1 below shows that a user can create an observation by
choosing Trait List, recording the corresponding values for the traits in the selected
trait list, setting a modification deadline, adding comments, and taking pictures for
the observation or drawing his/her own observation. A trait represents some
observable characteristic such as color, height or leaf type. A trait list is a collection
of traits.

1§ Create Observation SUBMIT

Observation Name:

Trait List:

Black Hawthorn p

Modify Deadline:

Pick Date e
Fruit type aggregate "] Modifiable
Bases | attenuate | Modifiable
| cordate
[] auriculate
[] clasping
Drawing Panel Comment
N S— O]

Figure 1 Create Data Observation

When the user is collecting the data in the field, the mobile device does not require
an Internet connection. When an Internet connection is available, the application

will upload data automatically to a server database. The application also allows
users to add, modify or delete the observation fields, to export recorded data into an
Excel file, and to do some simple data analysis.

There are two major platforms in the mobile device community: i0S and Android.
This project chose Android development [2] mainly for the reason of its openness.
In addition, all the tools in the Android development are free and no special
hardware is required.

2 Architecture Design

The architecture of this application is client-server structure. The client side is an
Android mobile application. The server is an Apache web server with a MySQL
database. PHP is used as the programming language on the server side. The client
communicates with the server through the http protocol. The application uses the
MAMP platform that is a software bundle to run dynamic web sites on Apple
Macintosh computers. MAMP is an acronym for Mac OS X operating system, Apache
web server, MySQL database and PHP language.

If the Internet is available during the data collection, the observation data will be
stored in both local and server databases. Otherwise, the data will be stored in the
local SQLite database first, then it will be synchronized to the server MySQL
database when the Internet is available.

Figure 2 shows the data synchronization procedure used in this project.

Network unavailable

add observation data

add index of
addsd:‘t: o data to "AddLog"
a table

delete observation data

add index of
de\etseqﬁ‘aeta o data to "DeleteLog"
table

Network available

synchronize deleted observation data

modify observation data

add index of
data to "DeleteLog"
table

modify data on
sqlite

add index of
data to "AddLog"
table

get index olda(a deleted in
eleteLog”

/\

JSON is contructed with
index of deleted data

JSON is posted to PHP
class using AsyncHttpClient
library

)

PHP Class decodes

JSON into PHP array an

delete data stored on
server (MySq\)

PHP Class returns
ON back to Android app
which contains deletion
status of data

2

empty " De\eleLog tableD

synchronize created observation data

J

get created data stored in
sqlite with index in “AddLog"

/\\

JSON is contructed wuh

created data

JSON is posted to PH
cless using Asyr\cHupCI jont

/\

PHP Class decodes JSON
into PHP array and store data
on server (MySqI)

(28)

PHP Class returns
ON back to Android app empty " AddLug table of
which contains insertion
status of data

Figure 2 Data Synchronization

There are three primary operations for making changes in the database: add, delete
and modify. In the local database, there are two additional tables: AddLog and
DeleteLog tables to keep track of all additions and deletions to the database when an
Internet connection is not available. For the modification operation, we simply
delete the previous data and then add the new data. Hence we add two entries in the
log tables to keep a record of the modification in the local database when the
Internet is not available. Later on when the network is available, the server will
make changes to the MySQL database based on the contents in the two log tables.

The source code for checking if the network is available is listed below:

public boolean isNetworkConnected(Context context) {

if (context != null) {

ConnectivityManager mConnectivityManager =

(ConnectivityManager) context

.getSystemService(Context. CONNECTIVITY_SERVICE);
NetworkInfo mNetworkInfo = mConnectivityManager
.getActiveNetworkInfo();

if (mNetworkInfo != null) {

return mNetworkInfo.isAvailable();

}
}

return false;

3 Database Design

The E-R diagram for the local SQLite database is shown below in Figure

1
Observation
rvationID(in
observationName(varchar)
username(varchar)
traitListiD(integer)

addLog

[addLoalD(Integer)
)

createTime(datetime)
endTime(datetime)
photoPath(varchar)

firstiD(integer)
sssss ID(integer)
stringID(varchar)

ObserContent

TraitList

User traitListiD(integer)
traitListName(varchar)

username(varchar)
Integer)

lr nameVersion(Integer)

deletelog
deleteLoglD(Integer)
)

raitlD (integer
traitValue(varchar)
editable(blob)

firstiD(integer)
dID(inte

TraitListContent

traitListiD(integer.
traitiD (integer

stringID(varchar)

Trait
triatiD (integer

bt
traitName(varchar)

varchar)

9
unit(varchar)
accessible(Integer)

PredefineVal

L

predefineVallD(integer)
traitiD(Integer)
value(varchar)

Figure 3 E-R Diagram for the Local Database

As we discussed in the previous section, addLog and deleteLog tables keep track of
all the changes made to the local database tables when the network is not available.
Hence they are connected with all the tables. Once the network is available, the
server will make changes to the server database based on the contents of the two
log tables, then delete all the rows in the two log tables.

Figure 4 is the E-R diagram for the server database. It basically has identical tables
with the server database, except for a few differences:

a) The server database does not have two log tables.

b) The server has a File table that is used to store the Excel files for data
analysis later on.

c) Every table in the server has one more data field: devicelD. It is a unique ID
that is used to record the device that was used by the user. In the real world
environment, it is possible that a user has multiple devices. He/she can login
using any device. It is also possible that multiple users can login and use the
same device. Adding the devicelD along with the data when the local data is
synchronized to the server is used for data consistency.

Observation

observation|D(integer)
devicelD(integer
observationName(varchar)
username(varchar)

ObserContent

observationID(integer)

traitiD (integer’

traitListiD(integer) } devicelD(integer)
createTime(datetime) traitValue(varchar)
endTime(datetime) editable(blob)

photoPath(varchar)

N4

User

TraitList

username(varchar)
devicelD(integer)
password(varchar)

traitListiD(integer)
devicelD(integer’
traitListName(varchar)
username(varchar)
accessible(Integer)
nameVersion(Integer)

Vi

TraitListContent

traitListiD(integer:
traitlD (integer
devicelD(integer

Trait
triatID (integer)

devicelD(integer)
traitName(varchar)

File
fileName(varchar

devicelD(integer
fileType

\4

PredefineVal

predefineVallD(integer)
devicelD(integer)

widgetName(varchar)
unit(varchar)
accessible(Integer)

traitlD(Integer)
value(varchar)

Figure 4 E-R Diagram for Server Database

4 Export to Excel file and Data Analysis

Once the user records his/her observations, the mobile application has the
functionality of exporting the observation data into an Excel file. The application will
first read all the observation data into a two-dimensional array, then use a Java

Excel API called “IML.jar” [3] to generate the Excel file.

The source code of generating the excel file from the two-dimensional array is listed

below:

try {

spreadsheet

// use workbook to create itself to write data into the file

wwb = Workbook.createWorkbook(new File(fileName));

} catch (I0Exception e) {

e.printStackTrace();

if (wwb != null) {

// create a writable spreadsheet
// @param1-name of spreadsheet, @param2-location of

WritableSheet ws = wwb.createSheet("sheet1", 0);
// create unit
for (inti=0;i<numrows + 1; i++) {
for (intj = 0; j < numcols; j++) {
// @paral-column @para2-row
Label labelC = new Label(j, i, records[i][j]);

try {
// insert unit into spreadsheet
ws.addCell(labelC);
} catch (RowsExceededException e) {
e.printStackTrace();
} catch (WriteException e) {
e.printStackTrace();
}
}
}
try {

// write it into file
wwhb.write();
// close rescourse and release memory
wwb.close();

} catch (I0Exception e) {
e.printStackTrace();

} catch (WriteException e) {
e.printStackTrace();

}

Once the Excel file is generated, the user can use Excel to view the file assuming the
Microsoft Office app is available in the device.

The user can also do some simple data analysis using the Excel file. For example, the
user can choose the traitList, then select one or two traits from the traitList to
generate either bar or line charts. The screen shot to invoke data analysis is shown
in Figure 5 below. It is required that the user needs to choose the time period in
order to do observation data analysis. The generated bar chart is shown in Figure 6.
The application used AChartEngine [4] for this functionality. AChartEngine is a
charting library for Android applications.

'3' Fieldworker1

TraitList: ~ Black Hawthorn
Trait1: plant height1
Trait2: UnSelected

Chart Type: @) Bar | Line

From: 2013-09-24 To: |2015—03—08

[] test3
| obervation

[] test111

Cancel

Figure 5 Observation Data Analysis Figure 6 Bar Chart

5 Conclusions

This mobile application assumes that each user will use one device at any given time
even if he/she has multiple devices. It is critical to keep data consistency between
local data and server data in this application.

When the user registers him/herself in order to use the mobile application, it is
required that the registration process must be done when the Internet is available.
This is to be sure the username is unique in the entire system. The local data will be
appended with the username when it is synchronized into the server database for
the same reason of data consistency.

This project aims to provide an electronic-journal for recording science fieldwork
data and for bookkeeping. The problem domain we choose in this application is
plant observation. It can be easily modified to work in other scientific fields for
recording purposes.

References

[1] Computer Science 2008, An Interim Revision of CS
2001 (http://www.acm.org/education/curricula/ComputerScience2008.pdf)

[2] Android Developer’s Guide. http://developer.android.com/guide/index.html

[3] Java Excel API. http://jexcelapi.sourceforge.net/
[4] AChartEngine, the charting library for Android Application
https://code.google.com/p/achartengine/

[5] Abelson, W.F., Collins, C., Sen, R. Unlocking Android - A Developer’s Guide.
Manning Pub. April 2009.

[6] Victor Matos, Rebecca Grasser, Building Applications for the Android OS Mobile

Platform: A Primer and Course Materials, Journal of Computing Sciences in Colleges,
Volume 26 Issue 1, pp: 23-29, October 2010

[7] Derek Riley, Using Mobile Phone Programming to teach Java and Advanced
Programming to Computer Scientist, ACM Special Interest Group on Computer
Science Education SIGSCE 2012, pp:541-546. Feb. 29-March 3, 2012.

[8] B. N. Schilit, N. Adams, and R. Want. Context-aware Computing Applications. In
Proceedings of IEEE Workshop on Mobile Computing Systems and Applications, pp.
85-90, Santa Cruz, CA, Dec. 1994. [EEE Computer Society Press.

[9] A. K. Dey and G. D. Abowd, “Towards a Better Understanding of Context and
Context-awareness,” in CHI 2000 Workshop on the What, Who, Where, When and
How of Context-awareness, 2000.

[10] R. Lowe, P. Mandl, M. Weber. “Context Director: A Context-aware Service for
Mobile Context-aware Computing Applications by the Example of Google Android”,
Tenth Annual IEEE International Conference on Pervasive Computing and
Communications Workshops (PERCOM Workshops 2012), Lugano, Switzerland,
March 2012.

[11] Y. Qiu, J. Chu, M. Zheng, T. Gendreau. “The Architecture Design of A Mobile
Application for Collecting Plant Observation Data”, poster presentation, The 3rd

Regional Celebration of Women in Computing in the Upper MidWest
(MinneWIC2015), Minneapolis, Feb. 20-21, 2015.

