

Nifty Assignment: Model the Monte Hall Problem

using Event-Driven Programming

Andrew A. Anda

Computer Science Department

Saint Cloud State University

Saint Cloud, MN, 56301

aanda@stcloudstate.edu

Abstract

We describe how to guide students through the modeling of the Monty Hall problem.

The Monty Hall problem can be modeled in a CS0 or CS1 programming and problem

solving course by a student using only the following tools: an event-driven programming

language such as JavaScript, if-else syntax, an ability to use the rand() function to

generate pseudo-random integer values in a range, and a basic ability to apply functional

decomposition to program design. The use of the mod (%) operator can be taught and

exploited at this time to simplify the logic at a critical point. Rather than start from

scratch, the students reverse engineer an existing applet for which the Java source is not

visible.

1

1 Pedagogical Motivations

Piaget stated that developmental learning is driven primarily by a process of equilibration

following a disequilibrating experience, an experience that challenges assumptions. He

suggested that designers of interactive experiences design tasks that both attract learners

and provoke disequilibration. Experience in which learners construct a working physical

arrangement significantly impact knowledge construction. (Roschelle, 1995)

Few experiences are more disequilibrating than wrestling with a paradox. A class of

paradoxes which lend themselves to verification through computational modeling are

veridical paradoxes - paradoxes where the result appears counterintuitive, but can

nonetheless be demonstrated. (Cucić, 2009) Commonly known veridical paradoxes

which admit verification through computational modeling include: (political

representation system) apportionment paradoxes, the birthday paradox (probability that

some pair within a larger set of people will share a birthday), and the "Let's Make a Deal"

paradox (also termed the Monty Hall problem). Both the birthday paradox and the

Monty Hall problem are members of a larger class of probabilistic paradoxes which can

all be demonstrated through discrete stochastic simulation.

Peter Denning (2003) identifies modeling and validation as one of the five main

categories of computing practice. Any programming assignment which includes

modeling and validation strengthens and broadens a student’s perceptions regarding the

utility of programming as a problem solving methodology and utility.

After a student models a veridical paradox, and after the student proceeds to test the

model to confirm the counterintuitive solution, the student gains an enhanced

appreciation for the value of computational modeling. (as well as reinforcing recently

learned programming language components and algorithmic heuristics)

2 The Assignment

2.1 The Problem to be Solved (Modeled)

Students model, through reverse engineering of an existing Java applet, the Monty Hall

problem. (‘Wikipedia’, The Monty Hall problem). The Monty Hall problem refers to a

puzzle based on the U.S. televised game show, Let’s Make a Deal. The player is

presented with three doors and informed that there is a desirable prize behind one of the

doors and booby prizes (often represented as a goat) behind the other two doors. When

the player selects a door, one of the doors not selected is opened revealing a booby prize.

The player is then presented with the option of staying with their selection or switching

their selection to the other remaining unopened door.

To facilitate the students’ modeling process, students will be presented with a pre-

existing computational event-driven emulation (West, 1996) of the game which they will

be expected to analyze (via state tables and/or state diagrams) then reverse engineer and

emulate, As the existing emulation is based on a Java applet, the students will not have

access to its Java source code.

2

2.1.1 Problem Analysis and Strategy

The common naïve intuitive assumption is that there will be an equal probability of

winning (1/3) regardless of whether one stays with one’s choice or switches. A more

careful analysis proves that one doubles one’s probability of winning (2/3) upon

switching. Because this solution is so counterintuitive, it can be classified as a veridical

paradox.

2.2 Prerequisites

Level: CS0 – CS1

Students should be able to apply the following structured programming language

components: an event-driven programming language such as JavaScript, if-else logic,

an ability to use the rand() function to generate pseudo-random integer values in a

specified range, and a basic ability to apply functional decomposition to program design.

The use of the mod (%) operator can be taught and exploited at this time to simplify the

logic at a critical point (to facilitate the random selection of a booby prize door to open).

Note, that loops are not required if JavaScript or a comparable event-driven programming

language is used.

Using the event-driven features of JavaScript, the students will be able to perform the

modeling of the game, so students should have had prior experience with event-driven

program design (e.g. clicking on the image of one face of a six-sided die to “roll” the

die).

2.3 Lesson Plan

To facilitate the students’ modeling process, students will be presented with a pre-

existing computational event-driven emulation (West, 1996) of the game which they will

be expected to analyze (via state tables and/or state diagrams), reverse engineer and

emulate) As the existing emulation is based on a Java applet, the students will not have

access to its Java source code.

First, acculturate the students to the game applet by demonstrating the playing of a few

rounds. If the students all have terminals, they can explore the applet themselves. Then

introduce the concept of a finite state automaton, where a system moves from state to

state based on events/actions. Ask the students how many states the applet cycles through

before returning to a start state. Note that some actions can result in a preservation of

state (e.g. clicking on the donkey image immediately after it has been revealed performs

no visible action) Present a state table as a framework to facilitate the exploration and

mapping of actions to states. Have the students populate their state tables as they explore

the applet. When the students have completed their state tables (they can compare their

state tables with their neighbors’ tables at this time), state diagrams may be introduced.

Have the students translate their state tables to an equivalent state diagram.

3

Now, you can present the students with your formal assignment document. With state

tables and diagrams in hand, the students can proceed to apply functional decomposition

in conjunction with event-driven programming design to implement their model of this

game. In my formal assignment document (Anda, 2015), [which assumes use of the Reed

(2011) textbook] I provide links to the images used for each of the doors (I allow students

the option to express their creativity by allowing them to link to image files of their

choice) and an JavaScript/HTML framework for the doors and the function that is called

when a door is selected. I stipulate the set of counters to display the proportion of games

won when switching or staying put respectively. I also present a JavaScript statement

which facilitates the random selection of a donkey image door when the user happens to

have selected the winning door:
door_to_open = (winning_door + RandomInt(1, 2)) % 3;

This example of the use of the mod operator can be used to initiate a more thorough

discussion of its applications and properties.

When the student has (in the student’s opinion) completed the programming, the student

is to run their program through a sufficiently numerous count of iterations. They are to

then use the computed tallies (that they are displaying) to assess whether their results

verify the counter-intuitive theoretical probability analysis. If their results continue to

significantly deviate from the expected outcome, then they should recognize that a logic

error is the cause. If a logic error is indicated, the student will be expected to try to locate

and eliminate it (perhaps with assistance from the instructor).

In a standard CS1 course using cin and cout for I/O, this problem could be

implemented using a menu-based textual user interface within a loop.

2.4 Assessment

I have been assigning this problem in our CS0 JavaScript-based class for several years.

All students are challenged by this assignment, but because they are implementing an

interactive game, I find them motivated to rise to the challenge. Some students benefit

from instructor assistance in a lab setting if they are having problems with their design or

implementation. Despite the challenge, most students complete this assignment. After

successfully completing this assignment, students should have a stronger command of

functional decomposition, modeling, and a stronger appreciation for the utility of

computational modeling.

4

References

Anda, Andrew A. (2015) “Let’s Make a Deal Assignment”

URL: http://web.stcloudstate.edu/aanda/cs200/assignments/MontyHall.html

Cucić, Dragoljub (2009) Types of Paradox in Physics.

URL:http://arxiv.org/ftp/arxiv/papers/0912/0912.1864.pdf

Denning, Peter (2003) “Great principles of computing”, Commun. ACM 46, 11

(November 2003), 15-20. DOI=10.1145/948383.948400

http://doi.acm.org/10.1145/948383.948400

Reed, David (2011) A Balanced Introduction to Computer Science, 3rd Ed., Prentice Hall,

Boston.

Roschelle, Jeremy (1995) Learning in Interactive Environments: Prior Knowledge and

New Experience . American Association of Museums.

URL:http://www.exploratorium.edu/ifi/resources/museumeducation/priorknowledge.html

Accessed: 2015-03-22.

(Archived by WebCite at http://www.webcitation.org/6XEXm10td)

West, R. Webster and Street, Scott (1996) The Let's Make a Deal Applet.

URL:http://www.stat.sc.edu/~west/javahtml/LetsMakeaDeal.html Accessed 2015-03-20.

(Archived by WebCite at http://www.webcitation.org/6XBWTqAVO)

‘Wikipedia’, Monty Hall problem, (wiki article), March 11, 2015, Available from

<http://en.wikipedia.org/wiki/Monty_Hall_problem>.[20 March 2015]

http://web.stcloudstate.edu/aanda/cs200/assignments/MontyHall.html
http://arxiv.org/ftp/arxiv/papers/0912/0912.1864.pdf
http://doi.acm.org/10.1145/948383.948400
http://www.exploratorium.edu/ifi/resources/museumeducation/priorknowledge.html
http://www.exploratorium.edu/ifi/resources/museumeducation/priorknowledge.html
http://www.webcitation.org/6XEXm10td
http://www.stat.sc.edu/~west/javahtml/LetsMakeaDeal.html
http://www.webcitation.org/6XBWTqAVO
http://en.wikipedia.org/wiki/Monty_Hall_problem

