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Abstract 

 
To better understand the intricacies of motor control, two types of data are necessary: 
neural data, and movement data. Optical motion capture recordings were taken of a 
rhesus macaque monkey performing natural free movement tasks. An algorithm was 
implemented in order to reconstruct the arm positions of the monkey. This solution takes 
advantage of fundamental distance constraints that must hold true for markers attached to 
an articulated structure. Validation data with functions to add noise or missing data was 
created to assess the accuracy of the algorithm. Simulations were run to evaluate the 
effectiveness of this algorithm on data sets that have inconsistencies in the markers. The 
algorithm was sensitive to the addition of noise to the data as well as missing data. If the 
datasets meets specific conditions regarding the amount of noise and missing data, the 
algorithm can be considered reliable for reconstructing arm positions from optical motion 
capture data. 
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Introduction: 

  Motor control has been explored for decades with the primary motivation of 
learning more about how the brain controls movement. In order to analyze motor control, 
two types of data are necessary: movement and neural data.  There are several different 
ways of collecting motor output data—these techniques include the use of exoskeletons, 
joysticks, and video paired with image processing software[1].  Motion capture 
technologies, however, drastically improve the ease and flexibility of measuring motor 
outputs.  

 Motion capture, the process of recording the movement of objects or people, has 
made a significant impact on many contemporary fields[2]. It is used in the military, 
entertainment industry, athletic development, as well as medicinal applications. In the 
entertainment world—largely filmmaking and video game development—motion capture 
refers to recording actions of human actors and using that information to animate digital 
models in 2D or 3D computer animation.  Motion capture technology has been available 
for researchers for a few decades and has given new insights into many disciplines. It has 
provided vast amounts of new information on gait analysis[3].   

 In the world of computer graphics, specifically animation, the surroundings are 
specifically designed to incorporate commercial motion tracking equipment with minimal 
missing data—markers that are not always successfully recorded. The same motion-
tracking technology, however, has been shown to be very effective in a scientific research 
environment. Unlike movie sets, often times these scientific research facilities are not 
designed with motion tracking functionality in mind. In theses cases, data recorded from 
motion tracking equipment is not as robust and reliable as in the cases where the set up is 
specifically designed for motion tracking. Because of this, motion capture data sets 
recorded for scientific purposes are more likely to be wrought with missing and or noisy 
data[3]. 

 Specifically, when recordings were taken from a Rhesus macaque monkey 
preforming free arm movement tasks in a laboratory setting, the raw experimental data 
had many inconsistencies stemming from noise from the markers as well as obstructed 
markers leading to missing data. The movements that the monkey was making were very 
quick, and relatively concise. This is believed to have led to noise in the marker 
recordings. There were various obstructions in the room that led to markers being 
obstructed form view of the camera over the time of the experiment. Figure 1 shows an 
excerpt from the raw data demonstrating the inconsistencies in the dataset. The x 
coordinate of one marker was mapped over time, and there are at least 2 gaps of around 
10 seconds where there is no data being recorded.  

 Using the algorithm developed in Kirk et al.’s paper[4], in order to reconstruct the 
joint positions of the monkey, only 3 markers need to be recorded for any given frame, 
two on one segment and at least one on the other. For datasets involving such 
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inconsistencies, the flexibility of this algorithm is a perfect match for extracting the     
joint positions from raw, noisy data. 

 

Figure 1: Example of Raw Data Inconsistencies. Figure 1 shows the x-coordinate of an 
arbitrary marker over time. The breaks in the line correspond to data that was not 
collected. 

Methods: 

 The Phasespace Improv motion capture system was employed to track arm 
movements while a rhesus macaque monkey was completing natural arm movements to 
reach for food offered at random points by the experimenter. The monkey was allowed to 
take whatever path it desired to reach out, grab the food, and bring it back to its mouth. 
The animal performed the task for one hour with its right arm. Figure 2 demonstrates the 
experimental set up. The monkey’s head and shoulder were fixed in place, but its arm 
was free and allowed to move in any direction of its choosing. The monkey was wearing 
a motion-tracking sleeve made up of 16 markers from which motion capture data was 
recorded by the motion tracking system.  While performing the task, a chronic multi-
electrode array was recording single unit spikes and local field potentials from both 
hemispheres of the animal’s brain.  

 The Phasespace Improv motion tracking system records at 60 Hz, but upsamples 
through interpolation to 240 Hz. The first step was to remove the interpolated data to be 
left with only the real data recorded directly from the monkey rather than interpolated 
from the system. Data that was sorted, and if there was no data associated with a 
particular marker at any particular time, the data supplied by the system was masked and 
not used in the calculations of reconstructed arm positions.  
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Figure 2: Experimental Setup: The animal wore an LED sleeve and performed free arm 
movements to obtain a food reward. 

 The algorithm implemented is split into two distinct steps (one using the subset of 
time samples and the other using all of the samples) for runtime purposes. The first step 
is a complex optimization, and is very computationally and energetically expensive. The 
output of this first step can be used to make the second step much less complex. 

 After the data was preprocessed, a subset of frames was selected to use for the 
first step of the algorithm. These frames were chosen specifically so there was no missing 
data included.  The algorithm implemented was developed by Kirk et al. with the aim of 
reconstructing the joint positions of the monkey[4]. Taking advantage of fundamental 
distance constraints that must hold true for markers attached to an articulated structure—a 
structure that has a joint and obeys the laws of movement according to that joint, this 
algorithm is used to locate the joint position from motion capture data. Essentially, this 
algorithm is built upon the idea that the distance from each marker to the joint position 
does not change over time, as articulated in Figure 3.  

 To find the joint positions across the time samples, the idea that the distance 
between the markers and the joint position does not change is taken advantage of by 
using a minimization on the mean variance between the maker positions and the joint 
position. This process is repeated until the joint position is found that minimizes the 
variance in distance between the joint position and marker positions for each time 
sample. This step is the incredibly energetically expensive step that was mentioned 
above, and is only preformed on a subset of the time samples.  

LED markers

Chronic multi-
electrode array

Food Reward
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Figure 3: Articulated Structure of an Arm: The distances in red do not change regardless 
of the position of the arm, while the distances in black are dynamic distances. 

 The arbitrary solution to this step in the algorithm is to go infinitely far from the 
marker position because as distance goes to infinity, variance goes to zero. To encourage 
the algorithm to find the correct joint position rather than the arbitrary position, a distance 
penalty is added to the variance value [4]. The joint position of the subset of frames was 
then determined by a minimization function  from Scipy’s optimization module which 
minimized the variance of the distance from the marker to the joint position 

 After the estimated joint location was determined for the subset of frames, the 
distance from each marker to the joint location for each time sample was calculated. With 
these mean distances, in theory the geometric principle of trilateration, as described in 
Figure 4, can be used to more efficiently locate the joint position in the rest of the frames. 
But this principle can only be used if the distances are exact and since the data being used 
contained such inconsistencies, a more indirect route was taken to locate the joint 
positions. The distance from each marker to the joint is static, and known from the first 
step of the algorithm. Relying on this fact, a linear regression was used to find the set of 
joint locations that minimize the error between the known distance and the distance from 
the marker to the possible joint position in question. This optimization leads to the output 
of the estimated joint positions for all of the frames. 

= marker
= static distance
= dynamic distance

= joint position



5 
 

 

Figure 4: Geometric principle of trilateration as applied to an articulated structure.  

 The output of this function was the main objective of this project, but using raw 
data alone, there is no way to test the accuracy of the function. Two sets of data are 
necessary to calculate the accuracy of a function like this: the real positions of the joint, 
and the marker positions of the LEDs in order to find the generated positions of the joint. 
The function described above outputs the generated positions, but to determine how 
effective this algorithm is, the real position of the joint also needs to be known. For this 
reason, validation data was generated.  

 In order to generate validation data, a simulated arm with shoulder fixed at the 
origin was used. To find the ‘real joint position,’ random points on a sphere with a radius 
of the distance from the monkey’s shoulder to elbow were chosen. Another set of random 
points on a sphere were chosen with a new radius of the distance from the monkey’s 
elbow to wrist, and then each of these points was adjusted to fit the frame of reference 
established by the elbow position (see Figure 4). After the shoulder, elbow, and wrist 
positions were known, simulated marker data could be generated. For each set of arm 
positions, simulated markers were placed at even increments along the segments of the 
simulated arm. Three markers were placed on each segment of the arm.  This set of 
simulated marker positions represented the data that was gathered by the motion 
capturing system. 

 In order to make the simulated dataset more realistic, functions were written to 
add Gaussian noise to the marker positions as well as take out a designated percentage of 
the data. The noise was added to simulate the degree of inaccuracy in the positions 
recorded by the motion tracking system, and to account for the obstructions in the data, 
the function was added to take out a specified percentage of the data.  

 The effect of added noise and missing data was tested by creating a set of 
simulated data with varying levels of noise and missing data—consisting of the simulated 
elbow and wrist positions, as well as the positions of the simulated markers, and 
measuring the accuracy of our method for estimating the joint positions. The accuracy 
was measured by finding the distance between the simulated elbow positions and the 
estimates of those positions generated by our analysis.  

r1

r2

r3
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Figure 5: Process used in generating validation data. The blue sphere represents the 
possible elbow locations, while the red sphere chooses an arbitrary elbow position, and 
gives the set of possible wrist positions. 

Results: 

 The degree to which manipulation of the noise in the data affected the accuracy of 
the elbow position generated was recorded, and the results are shown in Figure 6. The 
accuracy of the algorithm is very susceptible to inaccuracies in the recorded data. When 
2.0 mm of Gaussian noise was added to the marker positions, there was an average of 30 
mm of error between the real elbow position and the elbow position reconstructed from 
the input data. 

 

Figure 6: Degree of inaccuracies expected upon inconsistencies in the data manifesting in 
inaccurate marker recordings, or missing data. the error was measured as the distance 
between the generated elbow position and the elbow position. 
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 Missing data affected the accuracy of the algorithm to a lesser extent than 
manipulation of the amount of noise. If the same threshold of acceptable error is upheld 
(30 mm), then 40% of the data can be missing.    

 

 

Figure 7: Example arm position reconstructions from the algorithm applied to 
experimental marker position data. The raw data input in the form of marker positions are 
shown as the multicolored dots, and the articulated structure reconstructed by the 
algorithm is shown in 3D by the black line (the grey line is a shadow).  

Discussion: 

The dataset that was being modeled by the validation data had about 20% of time 
samples missing, and less than 1 mm of error in the recorded marker positions according 
to the specifications of the Phasespace Imrov motiontracking system. When simulated 
data matching the raw data input as closely as possible, the error was 10.16 mm. This is 
within the upper threshold of acceptable error (30	
  mm) in this case, and the algorithm can 
be considered an effective way to reconstruct the figure from optical motion capture data. 

 In order to improve the efficacy of the validation to simulate the raw data input, 
the markers could be placed non-collinearly. The collinear markers give the algorithm 
less information to use in the ‘trilateration’ (regression) step. This problem could be fixed 
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by using staggered markers. The validation data could also be made more realistic by 
adjusting the distribution of the missing data. In the raw input data, the missing data is 
not distributed completely random, as certain arm positions correlate to more missing 
data (when the monkey brought the food to his mouth, many of the markers were 
missing). The validation data could be made to more accurately reflect the simulated 
input data.  
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