Using Android Fragments in A Campus Guide System

Boheng Wei, Xi Yan, Mao Zheng
Department of Computer Science
University of Wisconsin-La Crosse
La Crosse WI, 54601
mzheng@uwlax.edu

Abstract

Smartphones, tablets and wireless data plans are already a trillion dollar a year
business. However, this is just the beginning. More and more students are interested
in Mobile Computing. The Android application, a campus guide system, is a practice
in mobile development.

There are two major platforms in the mobile device community: i0S and Android.
This project chose Android development, mainly for the reason of its openness. In
addition, all the tools in the Android development are free and no special hardware
is required.

Application components are the essential building blocks of an Android application.
There are four different types of application components. Each type serves a distinct
purpose and has its own lifecycle that defines how the component is created and
destroyed. One of the application components is Activity. An activity represents a
single screen with a user interface. A multi-screen application will consist of a
number of activities that work together to form a cohesive user experience. This
project uses fragments in the activity to support a dynamic and flexible user
interface.

Android introduced fragments in Android 3.0 (API level 11). A Fragment represents
a behavior or a portion of a user interface in an Activity. We combine multiple
fragments in a single activity to build a multi-pane user interface. The fragment
information can be reused in the activity. For example: when a campus map is
displayed in the designated panel, the user can move the building of interest to the
center of the map. The user can then click to view the detailed information about the
building. When the user returns to the previous screen, the selected building still
remains in the center of the map. The fragment is able to “remember” previous
screen information. Without the use of fragments, the activity has to call for
instructions to store and retain the previous actions, to recreate the view in order to
have the same screen layout.

The application gives directions, allows a user to view and search campus buildings,
and creates a customized tour route from the user’s current location to the selected
buildings.

1 Introduction

Smartphones, tablets and wireless data plans are already a trillion dollar a year
business. However this is just the beginning. More and more students are interested
in Mobile Computing. The Android application, a campus guide system, is a practice
in mobile development.

There are two major platforms in the mobile device community: i0S and Android.
This project chose Android development, mainly for the reason of its openness. In
addition, all the tools in the Android development are free and no special hardware
is required.

Application components are the essential building blocks of an Android application.
There are four different types of application components. Each type serves a distinct
purpose and has its own lifecycle that defines how the component is created and
destroyed. One of the application components is Activity. An activity represents a
single screen with a user interface. A multi-screen application will consist of a
number of activities that work together to form a cohesive user experience. This
project uses fragments in the activity to support a dynamic and flexible user
interface. It also applies the navigation-drawer pattern and sliding pane layout from
the responsive pattern in different places to handle multi-panes interactions.

The application gives directions, allows a user to view and search campus buildings,
and creates a customized tour route from the user’s current location to the selected
buildings.

2 A Campus Guide Application

This mobile application intends to provide information about a university campus to
a tourist using his/her current location. When the user opens the app in his/her
mobile device, there will be a map showing the overall view of the campus. The user
can center the map over an area of interest, zoom in on that area to get detailed
information, or select one or more buildings in the campus to visit. The application
will be able to navigate the user to a point of interest. In addition, detailed
information about a building, such as the name, the services provided, the residing
departments, and current events hosted in the building, can be obtained by the user.

Figure 1 is a screen shot of showing a map of the entire University of Wisconsin-
LaCrosse campus. The blue arrow is the user’s current location. The red circles are
the points of the interest.

¥ © =gl 2 8:03
=Y Qo |

Myrick Hixon
Ecopark
<o O

Myrick Park

Oak Grove
Cemetery

rs
= (&) =1
cse St (] . 8 =1
va O ® o) %7
_) =
(S ® @ =
>
adaer 2
Badger St ® S
®
= (O]
= Pine St N ® <>
= . @ <= =
— = S =
L Vine st ® & < >
= = = () e =
= !
State St 23 = =
= =3

University of
Wisconsin-La

Main St
Crosse

13t StS

15t StS

King St

=
= Cass St
1%

16th St S
17th St S
19th StS

nd$tS

Figure 1 A Campus Map of the University of Wisconsin-LaCrosse

3 User Interface Design

This project uses new techniques developed in Google /0 for the interface design to

improve the user experience. These techniques include Fragment, Navigation
Drawer and SlidingPaneLayout.

3.1 Android Fragment

Android introduced fragments in Android 3.0 (API level 11). A Fragment represents
a behavior or a portion of a user interface in an Activity. We combine multiple
fragments in a single activity to build a multi-pane user interface. The fragment
information can be reused in the activity. For example: when a campus map is
displayed in the designated panel, the user can move the building of interest to the
center of the map. The user can then click to view the detailed information about the
building. When the user returns to the previous screen, the selected building still
remains in the center of the map. The fragment is able to “remember” previous
screen information. Without the use of fragments, the activity has to call for

instructions to store and retain the previous actions, to recreate the view in order to
have same screen layout.

The following source code segment is where the project sets the MapFragment in
the MainACtivity.java.

mapFragment = (SupportMapFragment) getSupportFragmentManager()
findFragmentByTag(MAP_FRAGMENT_TAG);

// only create a fragment if it doesn't already exist.

if (mapFragment == null) {
// SupportMapFragment programmatically adds the map
mapFragment = SupportMapFragment.newlnstance();

FragmentTransaction fragmentTransaction =
getSupportFragmentManager().beginTransaction();
fragmentTransaction.add(R.id.main_content, mapFragment,
MAP_FRAGMENT_TAG);
fragmentTransaction.commit();

}

if (savedInstanceState == null) {
// Firstincarnation of this activity.
mapFragment.setRetainlnstance(true);
JSONLoader jl = new JSONLoader(this);
jlexecute("/all");

}else {
// Reincarnated activity. The obtained map is the same map instance
// in the previous activity life cycle. There is no need to reinitialize it.
mMap = mapFragment.getMap();

}

setUpMaplfNeeded();

3.2 Navigation Drawer

The navigation drawer is a panel that transitions in from the left edge of the screen
and displays the app’s main navigation options. It is hidden most of the time, but is
revealed when the user swipes a finger from the left edge of the screen. A navigation
drawer contains of two panes: the master pane and the detail pane. The master pane
is the place that you put your navigation items on it, such that user is able to access
different screens by just swiping out the drawer and clicking on the item. The detail
pane is where you put the contents of different screens. After you click on the item,
the navigation drawer collapses and the detail pane will switch to the destination
screen. Because they are transient, navigation drawers make views less cluttered.
Navigation drawer is the way to access any top level content from anywhere in the
app, no matter how deep a level the user has navigated to.

In this project, the navigation drawer is used for switching options between two
main modes in the map view. These modes are Normal map view mode and Satellite
map view mode. The user is able to choose between these two modes to his/her
preferred way of getting to know the campus. Figure 1 is a map of the University of

Wisconsin-LaCrosse in normal map view mode. Figure 2 is the same map in satellite
view mode.

9 =.dlm 7:09
T

e &

(2]
Oak Grove
pem CemElelY i —
o

Figure 2 A Map of the University of Wisconsin-LaCrosse in Satellite View Mode

Below are the code segments that initialize the DrawerLayout and related option
list.

mDrawerLayout = (DrawerLayout) findViewByld(R.id.drawer_layout);

mDrawerList = (ListView) findViewByld(R.id.left_drawer);
mDrawerList.setAdapter(new ArrayAdapter<String>(this,
R.layout.drawer_list_item, titles));
mDrawerList.setOnltemClickListener(new DrawerltemClickListener());

3.3 SlidingPaneLayout

The Campus Guide application is intended to run on various mobile devices with
different screen sizes. We are certainly interested in creating an application that is
scalable to a wide range of Android devices. A powerful tool that can help do this is
SlidingPaneLayout. SlidingPaneLayout provides a horizontal, multi-pane layout for
use at the top level of a user interface. A left (or first) pane is treated as a content list

or browser, subordinate to a primary detail view for displaying content. A
SlidingPaneLayout consists of two panes: the master pane and the detail pane.
Selecting an item in the master pane will update the detail pane. The core of
SlidingPaneLayout is that the rightmost pane, the detail pane, can be dragged
horizontally to uncover the master pane below. On a screen that is large enough to
display both panes, the user will see both simultaneously. On a small screen, the

user will see a single pane, but the user can slide the detail pane to reveal the master
pane.

In this project, we are not using the traditional SlidingPaneLayout. Instead we are
using a modified version called sliding up pane. Using this sliding up pane, the detail
pane can be dragged vertically, but not horizontally.

When the user selects one of the red circles in Figure 1, information about the
building of interest can be found in the detail pane. The detail pane is shown in
Figure 3. Once the user slides up the detail pane, the initial map displayed in the

master pane will be covered by the detail pane. It can also be uncovered by sliding
down the detail pane.

MIYTICK FFark

Oak Grove
Cemetery

~>
— S =
cee St (S ® _ =1
va Cf° (]) 2
S
(S ® @ =
Badger St ® lj_,ué
35) | @
; Pine St ® @ >
= _ _ <
L 2 = © Q‘Q‘é\ =
> £ Vine St @ © @ < &
= — - = o <72
z = = &] =~
= State St (72 = =
= o University of
Wisconsin-La Main St
k2 Crosse
o o
= (753 (95} 195} <2
= = > > =
King St = = == = = >
ing = = g = z
5 A =
o i Cass St s .3
2 P Weigent Park f;) &
z = 3
3
Wing Technology Center /

) —)

Figure 3 Sliding Up Pane

The SlidingPaneLayout is a tool for handy layout, especially when creating
applications that work well on any size device. However, it's certainly not a
replacement for the Navigation Drawer paradigm. SlidingPaneLayout is distinct
from a navigation drawer, as described in the design guide and should not be used
in the same scenarios. SlidingPaneLayout should be thought of only as a way to
allow a two-pane layout, normally used on larger screens, to adapt to smaller
screens. The interaction pattern expressed by SlidingPaneLayout implies a
physicality and a direct information hierarchy between panes, that does not
necessarily exist in a scenario, where a navigation drawer should be used instead.

4. Conclusions

This project uses a Client-Server architecture. The server is developed in Python with
Django framework. A SQLite database is included in the server side.

The current application can be enhanced in two areas. One is augmented reality. This
augments the user’s view of the real world, with additional virtual information. For
example, current event information can be overlaid on a picture of a building. The second
area is the ability of the user to leave comments on the interactive map.

Such a guide system can also be developed for museum visitors and exhibition
tourists. In this type of systems, the user’s location and orientation are used as
active environment inputs. Different content is delivered to the mobile device
whenever the user relocates.

References

[1] Computer Science 2008, An Interim Revision of CS
2001 (http://www.acm.org/education/curricula/ComputerScience2008.pdf)

[2] Android Developer’s Guide. http://developer.android.com/guide/index.html

[3] Abelson, W.F., Collins, C., Sen, R. Unlocking Android - A Developer’s Guide.
Manning Pub. April 2009.

[4] Victor Matos, Rebecca Grasser, Building Applications for the Android OS Mobile
Platform: A Primer and Course Materials, Journal of Computing Sciences in Colleges,
Volume 26 Issue 1, pp: 23-29, October 2010

[5] Derek Riley, Using Mobile Phone Programming to teach Java and Advanced
Programming to Computer Scientist, ACM Special Interest Group on Computer
Science Education SIGSCE 2012, pp:541-546. Feb. 29-March 3, 2012.

[6] B. N. Schilit, N. Adams, and R. Want. Context-aware Computing Applications. In
Proceedings of IEEE Workshop on Mobile Computing Systems and Applications, pp. 85-
90, Santa Cruz, CA, Dec. 1994. IEEE Computer Society Press.

[7] A. K. Dey and G. D. Abowd, “Towards a Better Understanding of Context and
Context-awareness,” in CHI 2000 Workshop on the What, Who, Where, When and How
of Context-awareness, 2000.

[8] R. Lowe, P. Mandl, M. Weber. “Context Director: A Context-aware Service for
Mobile Context-aware Computing Applications by the Example of Google Android”,
Tenth Annual IEEE International Conference on Pervasive Computing and
Communications Workshops (PERCOM Workshops 2012), Lugano, Switzerland, March
2012.

