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Abstract  

The open-source Robot Operating System (ROS) is a heterogeneous and scalable P2P network-
based robotics framework.  We present path-planning algorithms over a P2P network for 
collision-free autonomous ground-robot navigation under uncertainty constraints. We then 
describe a practical application of this navigation facility to a natural stone processing plant 
factory floor.  
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1. Introduction 

The ROS robotics framework, including affiliated open source autonomy libraries, all 
integrated into a ground robot equipped with sensors, (essentially called a work platform), is 
sufficient to present robot behaviors, robot manipulation, and robot (P2P) communication as 
part of our research conducted in the plant. With basic robotic knowledge now we realize how 
quickly robots may be used in an industrial environment, to help improve production flow and 
cost efficiency. This paper presents an easy implementation of robots into a natural stone 
production process. Robotic technology connects information to the physical world around us. 
Such applications include: unmanned ground vehicles (UGV), unmanned aerial vehicles 
(UAV), and robots exploiting visual optics that can use the internet to navigate with partial 
classification. A robot’s structure, chassis, geometry, and joints, are all important aspects of 
robot design. The knowledge of kinematics and dynamics (how a robot moves), is essential for 
a successful design. During our research we adapted an already developed platform available on 
the market, to perform production tasks. The ROS is supported by full time developers from the 
Open Source Robotics Foundation (OSFR) and by independent contributors including graduate 
students, robot builders, application developers, and hobbyists [11]1. This paper is structured as 
follows: Section 2 discusses the robot communications, Peer-to-Peer network and networks 
styles of communication. Section 3 explains how to develop an intelligent robot considering 
navigation and paths planning algorithms. Section 4 discusses path planning with uncertainty, 
tools, and nonlinear state estimation. Section 5 presents the navigation problem of autonomous 
robots, simultaneous Localization and Mapping. Application algorithm in natural stone 
processing plant is described in Section 6. Conclusion is outlined in Section 7. 
 
 
2. Peer-to-Peer Network  
 
 A P2P network is a decentralized and distributive network architecture in which all 
individual nodes are called “peers”. In decentralized P2P network peers arrange themselves into 
an overlay network which is a logical network made on top of a physical network. Nodes are 
processes performing computation in the ROS system (Vertices in the ROS computational 
graph). Each instance must have a unique name and type (filesystem location of the executables). 
All the messages are packets of data sent between ROS nodes. Unidirectional communication 
links between ROS nodes is named topic. ROS is a distributed computing environment 
comprised of hundreds of nodes and multiple machines. Any node may communicate with 
another at any time. ROS P2P network is loosely coupled and uses a few different styles of 
communication. 

The following paragraphs describe synchronous RPC communication, asynchronous streaming 
and parameter server. 

Synchronous RPC communication over services: The RPC protocol allows the construction of 
client-server applications, using a demand/response protocol with management of transactions. 
The client is blocked until a response is returned from the server, or a user-defined optional 

1 Contributions are coordinated via ROS.org, compiling wiki documentation, and the ROS 
standards [11]. 

                                                           



timeout occurs. RPC guarantees at-most-once semantics for the delivery of the request. It also 
guarantees that the response received by a client is definitely that of the server and corresponds 
effectively to the request (and not to a former request to which the response might have been 
lost). RPC also allows a client to be unblocked (with an error result) if the server is unreachable 
or if the server has crashed before emitting a response. Finally, this protocol supports the 
propagation of abortion through the RPC. This mechanism is called abort propagation. When a 
thread that is waiting for an RPC reply is aborted, this event is propagated to the thread that is 
currently servicing the client request. 

Asynchronous streaming of data over topics: Asynchronous transmission uses start and stop bits 
to signify the beginning and ending bits, so a character would actually be transmitted using ten 
bits instead of 8. For example, "0100 0001" would become "1 0100 0001 0". The extra one (or 
zero, depending on the parity bit) at the start and end of the transmission tells the receiver first 
that a character is coming and secondly that the character has ended. This method of 
transmission is used when data are sent intermittently as opposed to in a solid stream. In the 
previous example the start and stop bits are in bold. The start and stop bits must be of opposite 
polarity. This allows the receiver to recognize when the second packet of information is being 
sent. 

Storage of data on parameter server; A parameter server is a shared dictionary that is accessible 
via network APIs. Nodes use this server to store and retrieve parameters at runtime. As it is not 
designed for high-performance, it is best used for static, non-binary data such as configuration 
parameters. It is meant to be globally viewable so that tools can easily inspect the configuration 
state of the system and modify if necessary. The parameter server runs inside of the ROS master, 
which means that its API is accessible via normal RPC libraries [11]. 

 
. 

3. Robotic Navigation  
 

Developing intelligent robots that can accomplish production tasks without human help 
has fascinated many in artificial intelligence communities. From a technical point of view, 
autonomous robot navigation focuses primarily on generating optimal global paths to maneuver 
the robot to a target production station in a real time environment. Autonomous robots can 
reactively correct their course by circumventing obstacles with collision avoidance and at the 
same time explore and map the unmapped region. When the robot sees a target from the distance, 
it may not be an accurate distance. Using parameter estimation and a Kalman Filter [9] the robot 
can estimate the target position most accurately. Using all the data the sensors have processed, 
the robot uses a Kalman Filter for the parameter estimation and the state estimation. Figure 1 
illustrate measurement uncertainty associated with the result. 

 

http://wiki.ros.org/Nodes
http://wiki.ros.org/Master


   

  Figure 1: Quantifying Uncertainty [1] 

 

   

  Figure 2: Covariance matrix [1] 

Figure 2 illustrates a covariance matrix which contains off-diagonal elements, reflecting 
correlation between two axes. 

 
Global path planning (GPP) addresses autonomous robot navigation in contexts 

including unmanned ground vehicles control [18], an unmanned aircraft [13], and the Mars 
Rover [15]. A robot global path planning (RGPP) system senses the information from the 
environment and plans a collision-free trajectory to navigate to a destination; in our case, the 
production station. Initially, GPP algorithms assumed a robot has complete knowledge of its 
environment, production floor, and its own placement. However, in real applications, 
information is partially available or completely unavailable in advance. Therefore, more recent 
work has focused on how to generate a global path in the presence of sensor noise and map 
incompleteness [12]. For GPP the paper used Dijkstra algorithm expressed in pseudo code, 
Figure 3 [16]. 

 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  Figure 3:  Dijkstra’s pseudo code [16] 
 
Figure 5 shows the A* algorithm which combine both Dijkstra and Best First Search 

presented in figure 6, to find the shortest path .The map navigation used ROS’s move_base 
planner architecture. The default global planner is a wrapper around Dijkstra's algorithm. The 
default local planner is called TrajectoryPlannerROS. It wraps an approach called dynamic 
window.  

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

     Figure 4:  Best First Search Algorithm [16] 

 1 Function Dijkstra (Graph, source): 
 2      for each vertex v in Graph:         // Initializations 
 3          dist[v]:= infinity;             // Unknown distance function from  
 4                                          // source to v 
 5          previous[v]:= undefined;        // Previous node in optimal path 
 6      end for                             // from source 
 7       
 8      dist [source]:= 0;                  // Distance from source to source 
 9      Q: = the set of all nodes in Graph; // All nodes in the graph are 
10                                          // unoptimized – thus are in Q 
11      while Q is not empty:               // the main loop 
12          u: = vertex in Q with smallest distance in dist []; // Source node in 
first case 
13          remove u from Q ; 
14          if dist[u] = infinity:
15              break;                       // all remaining vertices are 
16          end if                           // inaccessible from source 
17           
18          for each neighbor v of u:        // where v has not yet been  
19                                           // removed from Q. 
20              alt: = dist[u] + dist_between (u, v); 
21              if alt < dist[v]:             // Relax (u, v, a) 
22                  dist[v]:= alt; 
23                  previous[v]:= u; 
24                  decrease-key v in Q;      // Reorder v in the Queue 
25              end if 
26          end for 
27      end while 
28      return dist; 
29  end function 

 

 
1 OPEN = [initial state] 
2 CLOSED = [] 
3 While OPEN is not empty 
4 Do 
 Remove the best node from OPEN, call it n, add it to CLOSED. 
  If n is the goal state, backtrack path to n (through recorded parents) 
 and return path. 
 Create n's successors. 
  For each successor do: 
        a. If it is not in CLOSED and it is not in OPEN: evaluate it, add it to 
  OPEN, and record its parent. 
        b. Otherwise, if this new path is better than previous one, change its  
  recorded  parent.  
           i.  If it is not in OPEN add it to OPEN.  
           ii. Otherwise, adjust its priority in OPEN using this new 
      evaluation.  
5 Done 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

       Figure 5:  A* Pseudo Code [16] 
  
  
 Classical path planning (CPP) usually represents the world called the configuration space 
[18] [4]. The configuration space uses generalized coordinates (parameters that define the 
configuration of a system) and vector space. Methods which transform the configuration space 
into cell regions that can be used for path planning are termed cell decomposition methods. 
Cell decomposition (CD) methods are the most popular approaches to a wide number of 
applications in robotics. One of these methods, tiling the configuration space into convex 
polygons and termed cells, uses path search methods to search through cells to find the optimal 
path to the goal. Roadmap methods fill the configuration space with roadmaps/graphs that 
contain nodes representing reachable robot configurations and edges which are one-dimensional 
curves representing the free space between the nodes corresponding to topographical properties. 
Conventional Roadmap Methods for finding shortest paths include visibility graphs, which 
connect the nodes of polygonal obstacles, and Voronoi roadmaps which use borders as edges 
[5].Other methods in use are Probabilistic Roadmap Methods (PRM) (see Figure 6), Potential 
Field Methods (PFM), and Harmonic Potential Field Map Methods (HPFM). Robotic systems 
can achieve global planning and avoid being trapped in local minima. This is achieved by 
integrating the methods of certainty grids used for obstacle representation and potential fields 
devised for navigation and by considering the entire path [5].  
 
 

1 Function A*(start, goal) 
2    closedset: = the empty set    // the set of nodes already evaluated. 
3    openset: = {start}     // the set of tentative nodes to be evaluated,  
   //initially containing the start node 
4    came_from:= the empty map    // the map of navigated nodes. 
5    g_score [start]:= 0    // Cost from start along best known path. 
6    // Estimated total cost from start to goal through y. 
7    f_score [start]:= g_score [start] + heuristic_cost_estimate (start, goal) 
8     while openset is not empty 
9        current: = the node in openset having the lowest f_score [] value 
10        if current = goal 
11          return reconstruct_path (came_from, goal) 
12          remove current from openset 
13          add current to closedset 
14        for each neighbor in neighbor_nodes (current) 
15          if neighbor in closedset 
16            continue 
17          tentative_g_score:= g_score [current]+ dist_between (current,neighbor) 
18          if neighbor not in openset or tentative_g_score < g_score [neighbor]  
19              came_from [neighbor]:= current 
20                g_score [neighbor]:= tentative_g_score 
21                f_score [neighbor]:= g_score [neighbor]+ heuristic_cost_estimate 
    (neighbor, goal) 
22          if neighbor not in openset 
23                 add neighbor to openset 
24     return failure 
25   Function reconstruct_path (came_from, current_node) 
26   if current_node in came_from 
27        p: = reconstruct_path (came_from, came_from[current_node]) 
28        return (p + current_node) 
29    else 
30        return current_node 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Figure 6:  Cell Probabilistic RoadMap Method (PRM) pseudo code [19] 

4. Path Planning with Uncertainty  
 
 The current position estimate of the robot is given by calculating the mean of the 
previous paths. However in practice, the estimate is likely to be noisy and we have to take this 
uncertainty into account in order to ensure collision free and efficient paths. The CPP is 

1  INITIALIZE() 
2  for all (cell ∈ cells) do 
3      cell.dist = distPointQueryLine(cell.origin); 
4   end for 
5   OP EN = {parentCell(ninit )}; 6:  CLOSED = ∅; 
7   GROWPRMINCELL(cell) 
8   numSamples = 0; 
9   while (numSamples < nodeIncrementPerCell) do 
10           sample random configuration cnew in cell;  
11      cell.numTrials++; 
12      if (isFreeConfig(cnew)) then 
13           add node nnew  to N ; 
14            connect nnew  to neighbors, add edges to E;  
15           update cell.numComponents of cell; 
16            numSamples++; 
17       end if 
18   end while 
19   cell.numSamples += numSamples; 20:  updateOccupancy(cell); 
21  updateConnectedness(cell); 
22   updateValue(cell); 
23   SOLVEQUERY(ninit ,ngoal ) 24:  Initialize(); 
25   add ninit , ngoal  to N ; 
26   connect ninit , ngoal  to neighbors, add edges to E; 27:  loop 
28      if (OP EN = ∅) then 
29            report failure; 
30       end if 
31       cell = takeFirst(OP EN ); 
32       GrowPRMInCell(cell); 
33      PerformRandomWalksInCell(cell); 
34      if (cell.occupancy > occupancyThresh or cell.numSamples ≥       
                         maxNodesPerCell) then 
35           CLOSED ← cell; 
36       else 
37          OP EN ← cell; 
38       end if 
39      for all (neighbor ∈ neighbors(cell)) do 
40          if (neighbor ∈/ CLOSED) then 
41                OP EN ← neighbor; 
42       end if 
43       end for 
44      sortAscendingByValue(OP EN ); 
45       if (parentComp(ninit ) = parentComp(ngoal)) then 
46            path = findShortestPath(G); 
47           if (path satisfies quality condition) then 
48                 return  path; 
49            else 
50                 publish path; 
51            end if 
52       end if 
53  end loop 
54  MAIN() 
55  create array cells; 56:  N = ∅; 
57  E = ∅; 
58 G = (N, E); 
59  for all (query ∈ queries) do 
60       solutionPath = SolveQuery(query.ninit,query.ngoal); 
       
    

 



performed by robots in fully observable environments. System conditions are usually assumed to 
be deterministic and discrete. Probability based approaches aided by statistical tools (extended 
Kalman Filter [9] and particle filter–sequential Monte Carlo [10]) were employed. The Extended 
Kalman Filter (EKF), figure 7, which is the nonlinear variant of the Kaplan filter linearizes about 
an estimate of the current mean and covariance. The EKF has been considered the standard in the 
theory of nonlinear state estimation, navigation systems, and GPS.  
 

          
 Figure 7: Extended Kalman Filter (EKF) deals with nonlinear systems represented  
    by nonlinear state and output equations [9], [1] 
 
Suppose that robot is at point A at the time t having a state estimation error covariance Pt. The 
robot wants to acquire more data to estimate the location of its position relative to the target. 
Quantified gathering of new data provides the robot with more useful information (see Figure 8). 
 
    
 
 
 

                                      
 
   Figure 8 : Two-step state transition with no estimate correction [1] 
 
The particle filters or sequential Monte Carlo (SMC) [10] method consists of a set of on-line 
posterior density estimation algorithms that estimate the posterior density of the state-space by 
directly implementing the Bayesian recursion equations. SMC methods use a grid-based 
approach, and use a set of particles to represent the posterior density. SMC methods provide a 
methodology for generating samples from the required distribution without requiring 
assumptions about the state-space model or the state distributions [10]. Figure 9 gives a map of 
the environment; the goal of the algorithm is for the robot to determine its pose within the 
environment. 
 
 



 
 
 
  
 
 
 
 
 
 
 
 
  Figure 9: Particle Filter-sequential Monte Carlo Algorithm [14] 
 
The basic MCL algorithm, pseudo-code for generating time t in the next set of samples St+1 from 
current set St is illustrated in figure 10. The next xt is the location and the wt  are the probabilities 
(xt, wt) pair represents the sample. The distance traveled is ut and the sensor reading is zt. . The 
location of sample i at the time t is xt

(i),where n is number of samples. 
 
 
  
 
 
 
 
 
 
 

   Figure 10: MCL Basic Algorithm [14] 
 
5.  Simultaneous Localization and Mapping (SLAM) 
 
 During the process of path planning, the robot is continuously learning its environment.   
Presently performed by building a map of the environment where the robot is locating and 
localizing itself concurrently ,termed Simultaneous Localization and Mapping (SLAM). As the 
robot learns the locations, it will reach the destination more quickly and efficiently. The SLAM 
was introduced by IEEE Robotics during an automation conference [5]. Mathematically, SLAM, 
being a nonlinear filter, estimates the distribution over robot poses and significant locations in a 
recursive fashion over time, given sensor readings corrupted by noise and systematic errors. 
Slam shown in figure 11 maintains probability distribution over current pose and map (step 1), 
then predict time (step 2), and finally update the measure (step 3).  
 
 
   
 
 
    
  Figure 11: Probability distribution over current pose 
 

1 Function MCL:  ( Xt-1, ut,zt) 
2 Xt = Xt = 0 
3  for m = 1 to N 
4   Xt(m) = motion_update(ut,xt-1(n)) 
5   Wt(m) = sensor_update(zt,xt-1(n))  
6   Xt = Xt +{Xt(n),wt(n)} 
7  end for 
8  for m  = 1 to M 

9           draw  from  with probability  
10        Xt = Xt+ Xt(i)    
11  end for     
12 return Xt    

 

1 Inputs: Distance ut, sensor reading zt, sample set St ={(xt(i), wt(i) )| i= 1…n} 
2 for  i=1 to n do   // first update of current set of samples 
3  xt = updateDist(xt,ut)   // compute new location 
4  wt(i) =prob(zt|xt(i)) // compute new probability  
5 St+1 = null   // resample for next generation of samples
6 for I = 1 to n do  
7  Sample an index j from distribution given in weights St 
8 Add (xt(i), wt(i)) to St+1 // Add sample j to new set of samples  
9  return St+1 
 
 

 
  1.  p (xt+1,M | zt+1, ut+1),  
  2.  p (xt,M | zt,ut) ut+1        p(xt+1,M | zt,ut+1),  
  3.  p (xt+1,M | zt,ut+1)  zt+1       p(xt+1,M | zt+1,ut+1), 
 

 



 Local navigation follows the global path and determines the next motion command based 
on local observations in real time. Local navigation generates a new path by overwriting the 
original global path in response to a regional change in an environment such as new obstacles. 
SPOTT’s local path planner is based on a potential field method using harmonic functions, 
which are guaranteed to have no spurious local minima [17]. A harmonic function on a domain 
Ω C Rn is function which satisfies Laplace’s equation: 
                           δ2ϕ 
   V2ϕ= Σ i=1 

n _______________ = 0  
     δ2xi

2 

The value of ϕ is given on a closed domain Ω in the configuration space C. 
The default local planner is called TrajectoryPlannerROS. It wraps an approach called dynamic 
window. The DWA is a velocity-based local planner that calculates the optimal collision-free 
('admissible') velocity for a robot required to reach its goal. It translates a Cartesian goal (x, y) 
into a velocity (v, w) command for a mobile robot. There are two main goals, calculate a valid 
velocity search space, and select the optimal velocity. The search space is constructed from the 
set of velocities which produce a safe trajectory i.e. allow the robot to stop before colliding, 
given the set of velocities the robot can achieve in the next time slice given its dynamics 
'dynamic window'. The optimal velocity is selected to maximize the robots clearance, maximize 
the velocity and obtain the heading closest to the goal (See Figure 12).  
 

  

 

 

 

 

 

 

 

 

 

 

 

 

  Figure 12: Local Planner Algorithm DWA 
 

6.  Robot Application in Natural Stone Processing Plant 
 
Natural stone processing plants process stone pieces of different sizes and weights, 

which involve heavy lifting and manual labor. Autonomous robots may improve the production 
process, reduce production costs and enhance safety by introducing robotic navigation into the 
plants. Modern stone processing plants have sophisticated cutting equipment, but product 

1 BEGIN DWA (robotPose, robotGoal,robotModel) 
2   desiredV = calculateV(robotPose,robotGoal) 
3   laserscan = readScanner() 
4   allowable_v = generateWindow(robotV, robotModel) 
5   allowable_w = generateWindow (robotW, robotModel) 
6   for each v in allowable_v 
7     for each w in allowable_w 
8     dist = find_dist(v,w,laserscan,robotModel) 
9     breakDist = calculateBreakingDistance(v) 
10    if (dist > breakDist)  //can stop in time 
11        heading = hDiff(robotPose,goalPose, v,w) 
12        clearance = (dist-breakDist)/(dmax - breakDist) 
13        cost = costFunction(heading,clearance, abs (desired_v - v)) 
14       if (cost > optimal) 
15          best_v = v 
16            best_w = w 
17            optimal = cost 
18    set robot trajectory to best_v, best_w 
19  END 

 



movement is labor-dependent and a major part of the production cost. Figure 13 illustrate how  
robots may complement to the “U” production cells [2] that are designed to reduce operator and 
product movement based on “one pieces flow” factory floor [3] illustrated in figure 2. With 
access to the ROS, industry is in a good position to implement robots into the production 
process for heavy lifting, transport, and safe waste removal, without the prohibitively high costs 
of robots in the past. Cells designed to eliminate waste help optimize material, people, and 
information flow. U, J, or L-shaped cells, with stations interlinked by manual roller conveyors, 
eliminate wasted space so operators can move swiftly from station to station without 
unnecessary steps or energy. Ergonomic principles can minimize reach distances and times to 
help eliminate worker fatigue. Parts should be provided from the rear of the cell via parts 
“stores”. This simplifies replenishment and any line changeovers. 

 

                         

Figure 13: “U” Production in a Single Cell Robot Path. 

One piece flow or one piece at the time, a product moves from machine to machine in the 
“U” shaped cells with a worker operating inside the “U” shaped cell and the robot moving parts 
outside following an also “U” shaped path. Figure 14 present production floors consist of 
multiple mobile “U” shaped cells spread out over the factory floor. Product movement, even 
some production steps such as precise stone cutting and waste removal, may now be done by the 
ROS autonomous robots. The key to optimizing material and people flow is to insist on one-
piece flow making one complete part at a time, or passing completed work to the next operator 
only when that operator is ready for it. In a poorly balanced cell, work-in-process (WIP) stacks 
up between each station. This is waste. And quality re-works means you have to find the error 
and re-make a lot of inventory. With one-piece flow, you will find errors immediately and fix the 
problem. The robot path algorithm is developed to follow a “U” shaped line carrying one piece 
at a time from one machine station to the next. This approach allows us to divide the process into 
simple production stations. All robots communicate to each other to avoid collisions. Once one 
production process is completed robots move parts to the next station, or turn 180 degrees 
preparing the piece for another cut. The operator is situated inside the “U” shaped production 
cell, executing production tasks without extensive movements. Robot height is designed to 
provide a safe working environment for operators to avoid extensive bending. Product handling 
and heavy lifting is completely eliminated. The piece is completed once the robot with the piece 
leaves the production cell, and soon after the robot will decide where to take the piece next; 
either the next “U” shaped cell for another operation, or to the shipping warehouse. 

 



 

 

Figure 2: One Piece Production Flow with four “U” Shaped Spaces and Independent Production 
Cells 

 
 
7. Conclusion  
   
 Real world robot navigations have significant challenges such as path planning, obstacle 
avoidance, fault isolation, and system resiliance. Autonomous robot movement (navigation) is a 
collection of hybrid design systems which are capable of handling all aspects of robotic 
navigation requirement. This paper presented paths algorithms used in the ROS. The open source 
library maintained by the robot volunteer community has proven a useful and helpful tool for all 
educational purposes. First, the paper presented robot movements in a fully functioned one piece 
flow production environment, using “U” shaped production cells for the robot’s path. Thereafter 
we briefly described the robot processing plant implementation and robot movements on the 
factory floor. The probabilistic techniques are promising. Global planning, frameworks capable 
of coping with uncertanity have become increasingly popular. Partially Observable Markov 
Decision Process (POMDP), [7], and SLAM are advances in solving problems in global 
planning, local navigation, and exploration. The robot’s local movement has a number of 
methods proposed for obstacle avoidance and horizon control. Research in autonomous robot 
navigation has made significant progress. Navigation applications require the capability to solve 
problems offering nearly optimal solutions. For this reason, global planning algorithms, local 
navigation routines, and exploration procedures must be integrated to achieve a global goal.   
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