
 Path Planning Algorithms For The Robot Operating System

Aleksandar Tomović
Computer Science

Saint Cloud State University
Saint Cloud, MN 56301- 4498

toal1201@stcloudstate.edu

Abstract

The open-source Robot Operating System (ROS) is a heterogeneous and scalable P2P network-
based robotics framework. We present path-planning algorithms over a P2P network for
collision-free autonomous ground-robot navigation under uncertainty constraints. We then
describe a practical application of this navigation facility to a natural stone processing plant
factory floor.

mailto:toal1201@stcloudstate.edu

1. Introduction

The ROS robotics framework, including affiliated open source autonomy libraries, all
integrated into a ground robot equipped with sensors, (essentially called a work platform), is
sufficient to present robot behaviors, robot manipulation, and robot (P2P) communication as
part of our research conducted in the plant. With basic robotic knowledge now we realize how
quickly robots may be used in an industrial environment, to help improve production flow and
cost efficiency. This paper presents an easy implementation of robots into a natural stone
production process. Robotic technology connects information to the physical world around us.
Such applications include: unmanned ground vehicles (UGV), unmanned aerial vehicles
(UAV), and robots exploiting visual optics that can use the internet to navigate with partial
classification. A robot’s structure, chassis, geometry, and joints, are all important aspects of
robot design. The knowledge of kinematics and dynamics (how a robot moves), is essential for
a successful design. During our research we adapted an already developed platform available on
the market, to perform production tasks. The ROS is supported by full time developers from the
Open Source Robotics Foundation (OSFR) and by independent contributors including graduate
students, robot builders, application developers, and hobbyists [11]1. This paper is structured as
follows: Section 2 discusses the robot communications, Peer-to-Peer network and networks
styles of communication. Section 3 explains how to develop an intelligent robot considering
navigation and paths planning algorithms. Section 4 discusses path planning with uncertainty,
tools, and nonlinear state estimation. Section 5 presents the navigation problem of autonomous
robots, simultaneous Localization and Mapping. Application algorithm in natural stone
processing plant is described in Section 6. Conclusion is outlined in Section 7.

2. Peer-to-Peer Network

 A P2P network is a decentralized and distributive network architecture in which all
individual nodes are called “peers”. In decentralized P2P network peers arrange themselves into
an overlay network which is a logical network made on top of a physical network. Nodes are
processes performing computation in the ROS system (Vertices in the ROS computational
graph). Each instance must have a unique name and type (filesystem location of the executables).
All the messages are packets of data sent between ROS nodes. Unidirectional communication
links between ROS nodes is named topic. ROS is a distributed computing environment
comprised of hundreds of nodes and multiple machines. Any node may communicate with
another at any time. ROS P2P network is loosely coupled and uses a few different styles of
communication.

The following paragraphs describe synchronous RPC communication, asynchronous streaming
and parameter server.

Synchronous RPC communication over services: The RPC protocol allows the construction of
client-server applications, using a demand/response protocol with management of transactions.
The client is blocked until a response is returned from the server, or a user-defined optional

1 Contributions are coordinated via ROS.org, compiling wiki documentation, and the ROS
standards [11].

timeout occurs. RPC guarantees at-most-once semantics for the delivery of the request. It also
guarantees that the response received by a client is definitely that of the server and corresponds
effectively to the request (and not to a former request to which the response might have been
lost). RPC also allows a client to be unblocked (with an error result) if the server is unreachable
or if the server has crashed before emitting a response. Finally, this protocol supports the
propagation of abortion through the RPC. This mechanism is called abort propagation. When a
thread that is waiting for an RPC reply is aborted, this event is propagated to the thread that is
currently servicing the client request.

Asynchronous streaming of data over topics: Asynchronous transmission uses start and stop bits
to signify the beginning and ending bits, so a character would actually be transmitted using ten
bits instead of 8. For example, "0100 0001" would become "1 0100 0001 0". The extra one (or
zero, depending on the parity bit) at the start and end of the transmission tells the receiver first
that a character is coming and secondly that the character has ended. This method of
transmission is used when data are sent intermittently as opposed to in a solid stream. In the
previous example the start and stop bits are in bold. The start and stop bits must be of opposite
polarity. This allows the receiver to recognize when the second packet of information is being
sent.

Storage of data on parameter server; A parameter server is a shared dictionary that is accessible
via network APIs. Nodes use this server to store and retrieve parameters at runtime. As it is not
designed for high-performance, it is best used for static, non-binary data such as configuration
parameters. It is meant to be globally viewable so that tools can easily inspect the configuration
state of the system and modify if necessary. The parameter server runs inside of the ROS master,
which means that its API is accessible via normal RPC libraries [11].

.

3. Robotic Navigation

Developing intelligent robots that can accomplish production tasks without human help
has fascinated many in artificial intelligence communities. From a technical point of view,
autonomous robot navigation focuses primarily on generating optimal global paths to maneuver
the robot to a target production station in a real time environment. Autonomous robots can
reactively correct their course by circumventing obstacles with collision avoidance and at the
same time explore and map the unmapped region. When the robot sees a target from the distance,
it may not be an accurate distance. Using parameter estimation and a Kalman Filter [9] the robot
can estimate the target position most accurately. Using all the data the sensors have processed,
the robot uses a Kalman Filter for the parameter estimation and the state estimation. Figure 1
illustrate measurement uncertainty associated with the result.

http://wiki.ros.org/Nodes
http://wiki.ros.org/Master

 Figure 1: Quantifying Uncertainty [1]

 Figure 2: Covariance matrix [1]

Figure 2 illustrates a covariance matrix which contains off-diagonal elements, reflecting
correlation between two axes.

Global path planning (GPP) addresses autonomous robot navigation in contexts

including unmanned ground vehicles control [18], an unmanned aircraft [13], and the Mars
Rover [15]. A robot global path planning (RGPP) system senses the information from the
environment and plans a collision-free trajectory to navigate to a destination; in our case, the
production station. Initially, GPP algorithms assumed a robot has complete knowledge of its
environment, production floor, and its own placement. However, in real applications,
information is partially available or completely unavailable in advance. Therefore, more recent
work has focused on how to generate a global path in the presence of sensor noise and map
incompleteness [12]. For GPP the paper used Dijkstra algorithm expressed in pseudo code,
Figure 3 [16].

 Figure 3: Dijkstra’s pseudo code [16]

Figure 5 shows the A* algorithm which combine both Dijkstra and Best First Search

presented in figure 6, to find the shortest path .The map navigation used ROS’s move_base
planner architecture. The default global planner is a wrapper around Dijkstra's algorithm. The
default local planner is called TrajectoryPlannerROS. It wraps an approach called dynamic
window.

 Figure 4: Best First Search Algorithm [16]

 1 Function Dijkstra (Graph, source):
 2 for each vertex v in Graph: // Initializations
 3 dist[v]:= infinity; // Unknown distance function from
 4 // source to v
 5 previous[v]:= undefined; // Previous node in optimal path
 6 end for // from source
 7
 8 dist [source]:= 0; // Distance from source to source
 9 Q: = the set of all nodes in Graph; // All nodes in the graph are
10 // unoptimized – thus are in Q
11 while Q is not empty: // the main loop
12 u: = vertex in Q with smallest distance in dist []; // Source node in
first case
13 remove u from Q ;
14 if dist[u] = infinity:
15 break; // all remaining vertices are
16 end if // inaccessible from source
17
18 for each neighbor v of u: // where v has not yet been
19 // removed from Q.
20 alt: = dist[u] + dist_between (u, v);
21 if alt < dist[v]: // Relax (u, v, a)
22 dist[v]:= alt;
23 previous[v]:= u;
24 decrease-key v in Q; // Reorder v in the Queue
25 end if
26 end for
27 end while
28 return dist;
29 end function

1 OPEN = [initial state]
2 CLOSED = []
3 While OPEN is not empty
4 Do
 Remove the best node from OPEN, call it n, add it to CLOSED.
 If n is the goal state, backtrack path to n (through recorded parents)
 and return path.
 Create n's successors.
 For each successor do:
 a. If it is not in CLOSED and it is not in OPEN: evaluate it, add it to
 OPEN, and record its parent.
 b. Otherwise, if this new path is better than previous one, change its
 recorded parent.
 i. If it is not in OPEN add it to OPEN.
 ii. Otherwise, adjust its priority in OPEN using this new
 evaluation.
5 Done

 Figure 5: A* Pseudo Code [16]

 Classical path planning (CPP) usually represents the world called the configuration space
[18] [4]. The configuration space uses generalized coordinates (parameters that define the
configuration of a system) and vector space. Methods which transform the configuration space
into cell regions that can be used for path planning are termed cell decomposition methods.
Cell decomposition (CD) methods are the most popular approaches to a wide number of
applications in robotics. One of these methods, tiling the configuration space into convex
polygons and termed cells, uses path search methods to search through cells to find the optimal
path to the goal. Roadmap methods fill the configuration space with roadmaps/graphs that
contain nodes representing reachable robot configurations and edges which are one-dimensional
curves representing the free space between the nodes corresponding to topographical properties.
Conventional Roadmap Methods for finding shortest paths include visibility graphs, which
connect the nodes of polygonal obstacles, and Voronoi roadmaps which use borders as edges
[5].Other methods in use are Probabilistic Roadmap Methods (PRM) (see Figure 6), Potential
Field Methods (PFM), and Harmonic Potential Field Map Methods (HPFM). Robotic systems
can achieve global planning and avoid being trapped in local minima. This is achieved by
integrating the methods of certainty grids used for obstacle representation and potential fields
devised for navigation and by considering the entire path [5].

1 Function A*(start, goal)
2 closedset: = the empty set // the set of nodes already evaluated.
3 openset: = {start} // the set of tentative nodes to be evaluated,
 //initially containing the start node
4 came_from:= the empty map // the map of navigated nodes.
5 g_score [start]:= 0 // Cost from start along best known path.
6 // Estimated total cost from start to goal through y.
7 f_score [start]:= g_score [start] + heuristic_cost_estimate (start, goal)
8 while openset is not empty
9 current: = the node in openset having the lowest f_score [] value
10 if current = goal
11 return reconstruct_path (came_from, goal)
12 remove current from openset
13 add current to closedset
14 for each neighbor in neighbor_nodes (current)
15 if neighbor in closedset
16 continue
17 tentative_g_score:= g_score [current]+ dist_between (current,neighbor)
18 if neighbor not in openset or tentative_g_score < g_score [neighbor]
19 came_from [neighbor]:= current
20 g_score [neighbor]:= tentative_g_score
21 f_score [neighbor]:= g_score [neighbor]+ heuristic_cost_estimate
 (neighbor, goal)
22 if neighbor not in openset
23 add neighbor to openset
24 return failure
25 Function reconstruct_path (came_from, current_node)
26 if current_node in came_from
27 p: = reconstruct_path (came_from, came_from[current_node])
28 return (p + current_node)
29 else
30 return current_node

 Figure 6: Cell Probabilistic RoadMap Method (PRM) pseudo code [19]

4. Path Planning with Uncertainty

 The current position estimate of the robot is given by calculating the mean of the
previous paths. However in practice, the estimate is likely to be noisy and we have to take this
uncertainty into account in order to ensure collision free and efficient paths. The CPP is

1 INITIALIZE()
2 for all (cell ∈ cells) do
3 cell.dist = distPointQueryLine(cell.origin);
4 end for
5 OP EN = {parentCell(ninit)}; 6: CLOSED = ∅;
7 GROWPRMINCELL(cell)
8 numSamples = 0;
9 while (numSamples < nodeIncrementPerCell) do
10 sample random configuration cnew in cell;
11 cell.numTrials++;
12 if (isFreeConfig(cnew)) then
13 add node nnew to N ;
14 connect nnew to neighbors, add edges to E;
15 update cell.numComponents of cell;
16 numSamples++;
17 end if
18 end while
19 cell.numSamples += numSamples; 20: updateOccupancy(cell);
21 updateConnectedness(cell);
22 updateValue(cell);
23 SOLVEQUERY(ninit ,ngoal) 24: Initialize();
25 add ninit , ngoal to N ;
26 connect ninit , ngoal to neighbors, add edges to E; 27: loop
28 if (OP EN = ∅) then
29 report failure;
30 end if
31 cell = takeFirst(OP EN);
32 GrowPRMInCell(cell);
33 PerformRandomWalksInCell(cell);
34 if (cell.occupancy > occupancyThresh or cell.numSamples ≥
 maxNodesPerCell) then
35 CLOSED ← cell;
36 else
37 OP EN ← cell;
38 end if
39 for all (neighbor ∈ neighbors(cell)) do
40 if (neighbor ∈/ CLOSED) then
41 OP EN ← neighbor;
42 end if
43 end for
44 sortAscendingByValue(OP EN);
45 if (parentComp(ninit) = parentComp(ngoal)) then
46 path = findShortestPath(G);
47 if (path satisfies quality condition) then
48 return path;
49 else
50 publish path;
51 end if
52 end if
53 end loop
54 MAIN()
55 create array cells; 56: N = ∅;
57 E = ∅;
58 G = (N, E);
59 for all (query ∈ queries) do
60 solutionPath = SolveQuery(query.ninit,query.ngoal);

performed by robots in fully observable environments. System conditions are usually assumed to
be deterministic and discrete. Probability based approaches aided by statistical tools (extended
Kalman Filter [9] and particle filter–sequential Monte Carlo [10]) were employed. The Extended
Kalman Filter (EKF), figure 7, which is the nonlinear variant of the Kaplan filter linearizes about
an estimate of the current mean and covariance. The EKF has been considered the standard in the
theory of nonlinear state estimation, navigation systems, and GPS.

 Figure 7: Extended Kalman Filter (EKF) deals with nonlinear systems represented
 by nonlinear state and output equations [9], [1]

Suppose that robot is at point A at the time t having a state estimation error covariance Pt. The
robot wants to acquire more data to estimate the location of its position relative to the target.
Quantified gathering of new data provides the robot with more useful information (see Figure 8).

 Figure 8 : Two-step state transition with no estimate correction [1]

The particle filters or sequential Monte Carlo (SMC) [10] method consists of a set of on-line
posterior density estimation algorithms that estimate the posterior density of the state-space by
directly implementing the Bayesian recursion equations. SMC methods use a grid-based
approach, and use a set of particles to represent the posterior density. SMC methods provide a
methodology for generating samples from the required distribution without requiring
assumptions about the state-space model or the state distributions [10]. Figure 9 gives a map of
the environment; the goal of the algorithm is for the robot to determine its pose within the
environment.

 Figure 9: Particle Filter-sequential Monte Carlo Algorithm [14]

The basic MCL algorithm, pseudo-code for generating time t in the next set of samples St+1 from
current set St is illustrated in figure 10. The next xt is the location and the wt are the probabilities
(xt, wt) pair represents the sample. The distance traveled is ut and the sensor reading is zt. . The
location of sample i at the time t is xt

(i),where n is number of samples.

 Figure 10: MCL Basic Algorithm [14]

5. Simultaneous Localization and Mapping (SLAM)

 During the process of path planning, the robot is continuously learning its environment.
Presently performed by building a map of the environment where the robot is locating and
localizing itself concurrently ,termed Simultaneous Localization and Mapping (SLAM). As the
robot learns the locations, it will reach the destination more quickly and efficiently. The SLAM
was introduced by IEEE Robotics during an automation conference [5]. Mathematically, SLAM,
being a nonlinear filter, estimates the distribution over robot poses and significant locations in a
recursive fashion over time, given sensor readings corrupted by noise and systematic errors.
Slam shown in figure 11 maintains probability distribution over current pose and map (step 1),
then predict time (step 2), and finally update the measure (step 3).

 Figure 11: Probability distribution over current pose

1 Function MCL: (Xt-1, ut,zt)
2 Xt = Xt = 0
3 for m = 1 to N
4 Xt(m) = motion_update(ut,xt-1(n))
5 Wt(m) = sensor_update(zt,xt-1(n))
6 Xt = Xt +{Xt(n),wt(n)}
7 end for
8 for m = 1 to M

9 draw from with probability
10 Xt = Xt+ Xt(i)
11 end for
12 return Xt

1 Inputs: Distance ut, sensor reading zt, sample set St ={(xt(i), wt(i))| i= 1…n}
2 for i=1 to n do // first update of current set of samples
3 xt = updateDist(xt,ut) // compute new location
4 wt(i) =prob(zt|xt(i)) // compute new probability
5 St+1 = null // resample for next generation of samples
6 for I = 1 to n do
7 Sample an index j from distribution given in weights St
8 Add (xt(i), wt(i)) to St+1 // Add sample j to new set of samples
9 return St+1

 1. p (xt+1,M | zt+1, ut+1),
 2. p (xt,M | zt,ut) ut+1 p(xt+1,M | zt,ut+1),
 3. p (xt+1,M | zt,ut+1) zt+1 p(xt+1,M | zt+1,ut+1),

 Local navigation follows the global path and determines the next motion command based
on local observations in real time. Local navigation generates a new path by overwriting the
original global path in response to a regional change in an environment such as new obstacles.
SPOTT’s local path planner is based on a potential field method using harmonic functions,
which are guaranteed to have no spurious local minima [17]. A harmonic function on a domain
Ω C Rn is function which satisfies Laplace’s equation:
 δ2ϕ
 V2ϕ= Σ i=1

n _______________ = 0
 δ2xi

2

The value of ϕ is given on a closed domain Ω in the configuration space C.
The default local planner is called TrajectoryPlannerROS. It wraps an approach called dynamic
window. The DWA is a velocity-based local planner that calculates the optimal collision-free
('admissible') velocity for a robot required to reach its goal. It translates a Cartesian goal (x, y)
into a velocity (v, w) command for a mobile robot. There are two main goals, calculate a valid
velocity search space, and select the optimal velocity. The search space is constructed from the
set of velocities which produce a safe trajectory i.e. allow the robot to stop before colliding,
given the set of velocities the robot can achieve in the next time slice given its dynamics
'dynamic window'. The optimal velocity is selected to maximize the robots clearance, maximize
the velocity and obtain the heading closest to the goal (See Figure 12).

 Figure 12: Local Planner Algorithm DWA

6. Robot Application in Natural Stone Processing Plant

Natural stone processing plants process stone pieces of different sizes and weights,

which involve heavy lifting and manual labor. Autonomous robots may improve the production
process, reduce production costs and enhance safety by introducing robotic navigation into the
plants. Modern stone processing plants have sophisticated cutting equipment, but product

1 BEGIN DWA (robotPose, robotGoal,robotModel)
2 desiredV = calculateV(robotPose,robotGoal)
3 laserscan = readScanner()
4 allowable_v = generateWindow(robotV, robotModel)
5 allowable_w = generateWindow (robotW, robotModel)
6 for each v in allowable_v
7 for each w in allowable_w
8 dist = find_dist(v,w,laserscan,robotModel)
9 breakDist = calculateBreakingDistance(v)
10 if (dist > breakDist) //can stop in time
11 heading = hDiff(robotPose,goalPose, v,w)
12 clearance = (dist-breakDist)/(dmax - breakDist)
13 cost = costFunction(heading,clearance, abs (desired_v - v))
14 if (cost > optimal)
15 best_v = v
16 best_w = w
17 optimal = cost
18 set robot trajectory to best_v, best_w
19 END

movement is labor-dependent and a major part of the production cost. Figure 13 illustrate how
robots may complement to the “U” production cells [2] that are designed to reduce operator and
product movement based on “one pieces flow” factory floor [3] illustrated in figure 2. With
access to the ROS, industry is in a good position to implement robots into the production
process for heavy lifting, transport, and safe waste removal, without the prohibitively high costs
of robots in the past. Cells designed to eliminate waste help optimize material, people, and
information flow. U, J, or L-shaped cells, with stations interlinked by manual roller conveyors,
eliminate wasted space so operators can move swiftly from station to station without
unnecessary steps or energy. Ergonomic principles can minimize reach distances and times to
help eliminate worker fatigue. Parts should be provided from the rear of the cell via parts
“stores”. This simplifies replenishment and any line changeovers.

Figure 13: “U” Production in a Single Cell Robot Path.

One piece flow or one piece at the time, a product moves from machine to machine in the
“U” shaped cells with a worker operating inside the “U” shaped cell and the robot moving parts
outside following an also “U” shaped path. Figure 14 present production floors consist of
multiple mobile “U” shaped cells spread out over the factory floor. Product movement, even
some production steps such as precise stone cutting and waste removal, may now be done by the
ROS autonomous robots. The key to optimizing material and people flow is to insist on one-
piece flow making one complete part at a time, or passing completed work to the next operator
only when that operator is ready for it. In a poorly balanced cell, work-in-process (WIP) stacks
up between each station. This is waste. And quality re-works means you have to find the error
and re-make a lot of inventory. With one-piece flow, you will find errors immediately and fix the
problem. The robot path algorithm is developed to follow a “U” shaped line carrying one piece
at a time from one machine station to the next. This approach allows us to divide the process into
simple production stations. All robots communicate to each other to avoid collisions. Once one
production process is completed robots move parts to the next station, or turn 180 degrees
preparing the piece for another cut. The operator is situated inside the “U” shaped production
cell, executing production tasks without extensive movements. Robot height is designed to
provide a safe working environment for operators to avoid extensive bending. Product handling
and heavy lifting is completely eliminated. The piece is completed once the robot with the piece
leaves the production cell, and soon after the robot will decide where to take the piece next;
either the next “U” shaped cell for another operation, or to the shipping warehouse.

Figure 2: One Piece Production Flow with four “U” Shaped Spaces and Independent Production
Cells

7. Conclusion

 Real world robot navigations have significant challenges such as path planning, obstacle
avoidance, fault isolation, and system resiliance. Autonomous robot movement (navigation) is a
collection of hybrid design systems which are capable of handling all aspects of robotic
navigation requirement. This paper presented paths algorithms used in the ROS. The open source
library maintained by the robot volunteer community has proven a useful and helpful tool for all
educational purposes. First, the paper presented robot movements in a fully functioned one piece
flow production environment, using “U” shaped production cells for the robot’s path. Thereafter
we briefly described the robot processing plant implementation and robot movements on the
factory floor. The probabilistic techniques are promising. Global planning, frameworks capable
of coping with uncertanity have become increasingly popular. Partially Observable Markov
Decision Process (POMDP), [7], and SLAM are advances in solving problems in global
planning, local navigation, and exploration. The robot’s local movement has a number of
methods proposed for obstacle avoidance and horizon control. Research in autonomous robot
navigation has made significant progress. Navigation applications require the capability to solve
problems offering nearly optimal solutions. For this reason, global planning algorithms, local
navigation routines, and exploration procedures must be integrated to achieve a global goal.

References

[1] MIT -Robotic Summer Course 2013 - Harry Asada - Ford Professor of Engineering, MIT,
Michael Boulet a member of the technical staff in the Control Systems Engineering Group at
MIT Lincoln Laboratory.
[2] http://www.tpslean.com/glossary/cellmfgdef.htm
[3] http://www.thetoyotasystem.com/lean_concepts/one_piece_flow.php
[4] Gehrig, S. & Stein, F. (1993). Collision avoidance for vehicle-following systems. IEEE
Transactions on Intelligent Transportation Systems, 8(2), 233 – 244.
[5] Durrant-Whyte, H. & Bailey, T. (2006). Simultaneous localization and mapping: Part I. IEEE
Robotics and Automation Magazine,13(2), 99–110
[6] Voronoi, Georgy (1908). "Nouvelles applications des paramètres continus à la théorie des
formes quadratiques". Journal für die Reine und Angewandte Mathematik
[7] Smallwood, R.D., Sondik, E.J. (1973). "The optimal control of partially observable Markov
decision processes over a finite horizon". Operations Research 21 (5): 1071–88
[8] Introduction to Modern Robotics II , edited by Daisuke Chugo, Sho Yokota, Concept press
Ltd.
[9] R.E. Kalman (1960). "Contributions to the theory of optimal control". Bol. Soc. Mat.
Mexicana: 102–119.
[10] Cappe, O.; Moulines, E.; Ryden, T. (2005).Inference in Hidden Markov Models. Springer
[11] http://www.ros.org
[12] http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6712082&tag=1
[13] Dalamagkidis, K., Valavanis, K. P., & Piegl, L. A. (2010). Autonomous autorotation of
unmanned rotorcraft using nonlinear model
[14] http://en.wikipedia.org/wiki/Monte_Carlo_localization
[15] Tompkins, P., Stentz, A., & Wettergreen, D. (2004). Global path planning for mars rover
[16] http://en.wikipedia.org/wiki/
[17] Connoly C. and Grupen R, (1993). The Aplication of harmonic functions to robotics.
Journal of Robotic Systems, 10(7);931-946,October
[18] Giesbrecht, J. (2004). The global path planning for unmanned ground vehicles. The
technical report, exploration. In Proceedings of the IEEE Aerospace Conference - predictive
control. Journal of Intelligent and Robotic Systems, 57(1-4), 351–369.
[19] http://www.lsr.ei.tum.de/fileadmin/backup/klasing-Cell-basedProbabilisticRoadmaps_ICAR2007.pdf

http://www.tpslean.com/glossary/cellmfgdef.htm
http://www.thetoyotasystem.com/lean_concepts/one_piece_flow.php
http://www.ros.org/
https://mail.stcloudstate.edu/owa/redir.aspx?C=eztxk44eKkm0KtI0PV4N5OotVyokCdEIgnlRvvdOZAAnYY2XXvBe4m_uYaCHW4g68PHi32vh7yY.&URL=http%3a%2f%2fieeexplore.ieee.org%2fstamp%2fstamp.jsp%3ftp%3d%26arnumber%3d6712082%26tag%3d1
http://en.wikipedia.org/wiki/Monte_Carlo_localization
http://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
http://www.lsr.ei.tum.de/fileadmin/backup/klasing-Cell-basedProbabilisticRoadmaps_ICAR2007.pdf

