
3D Modelling in Blender Based on Polygonal Data

James Ribe
MSCS Department

St. Olaf College
1500 St. Olaf Ave

Northfield, MN 55438
ribe@stolaf.edu

Alora Killian
MSCS Department

St. Olaf College
1500 St. Olaf Ave

Northfield, MN 55438
killian@stolaf.edu

Dan Anderson
MSCS Department

St. Olaf College
1500 St. Olaf Ave

Northfield, MN 55438
adersede@stolaf.edu

Abstract

We present a method of modelling a realistic interior of a building based on polygonal
data from stereoscopic image pairs. By receiving the data from a previous stage in a
pipeline, we use the 3D modelling program Blender to render and export a model into the
game engine Irrlicht. We created importer and vertex merging tools in order to transport
the data from raw information into .obj files. We used the .obj files to display a mesh in
Blender, then exported it into COLLADA format for rendering in Irrlicht. We also
suggest improvements and possible additions to better the process.

1 Introduction

Realistically modelling the interior of a building is a challenge in the field of computer
vision and graphics. We were presented with the opportunity to participate in a college
course attempting to fully render a model of St. Olaf College's Regents building. The
project was a month-long endeavor involving a seven stage pipeline-- each one passing
on relevant data to the next. Our team, Team LightsCameraRender, was the sixth stage in
the pipeline. Our team's goal was to receive polygonal data and coordinates, import it into
the program Blender, apply strategic lighting and reflectance values, then export the
model into a format suitable for the game engine Irrlicht. The team following ours then
uses Irrlicht to display our model in a 3D format.

1.1 Background

The success of the project, and our eventual 3D structure, depends on the existence of
good, stereoscopic pairs of images. Other research on successfully modelling large
objects does not use stereoscopic imaging to create their final structure, but instead uses
overlapping images. Researchers from Hong Kong, for instance, used cameras attached to
the tops of cars to capture Hennepin Avenue in Minneapolis, Baity Hill Drive in Chapel
Hill, and Dishifu Road in Canton [9]. Their method decomposed photos of the streets into
simple geometric forms and texture maps, and produced a model of the exteriors of
buildings with a minimal amount of polygons and flat textures. Our method, on the other
hand, hoped to create a model of the interior of our science building, which contains
more polygons resulting in an extremely complex model. Another team of researchers
created a 3D model of famous architecture, pulling thousands of images off of Flickr [1].
In contrast to this, our project had a specific team of photographers, who calculated the
coordinates of the camera and also captured exact stereoscopic pairs of images.

In order to model the data we receive, we use the open source 3D model creator Blender.
The program is generally used by artists sculpting a mesh for use with animation,
character creation, or personal use [4]. Hand modelling is used extensively, and the
technique can also be used to sculpt highly realistic objects on the caliber we aim to
achieve with our model [6]. However, we do not use this method because it would take
an inconvenient amount of time to realistically hand-model an exact duplicate of the
Regents building. Our methods require only a minimal amount of hand-modelling --in
order to delete minor artifacts-- due to the time limit constraints on our project.
We use Blender to model Regents because it is a convenient program with a large
repertoire of useful tools. There is little-to-no current research in realistically rendering a
3D model from images using Blender. We hope that our paper will be useful for further
research on creating meshes in Blender based on stereo imaging and polygonal data.

1

1.2 Overview

In this paper we present our methods on successfully interpreting data received from
other teams, and rendering it in an accurate manner. We discuss the three different stages
in order to effectively create a large mesh. In section one, we present what is required to
import 3D data in the form of an .obj file. In section two, we discuss what necessary
processes we must go through in Blender, as well as creating texture and specularity
maps. In section three, Irrlicht is analyzed and the details of correctly exporting the mesh
are explained. Finally, we conclude with what research we hope will continue with
Blender in the future.

2 Importing Files

After receiving data from earlier stages in the pipeline, our task was to turn raw
information into polygons that could be imported into Blender. Because Blender has a
plethora of various import formats, we chose to translate the initial data into the
wavefront .obj format, due to its easy syntax and simple conversion properties.

The data we received contained source images, polygon vertex lists in the image
coordinate space, and polygon vertex lists in the final 3D coordinate space. The polygons
we received were planes with many vertices (70 or more in some cases) listed in counter-
clockwise order. Ultimately, the polygons needed to be broken into triangles for the
renderer, but .obj supports polygons with arbitrary numbers of faces and Blender’s .obj
importer automatically converts large polygons to triangles, so we didn’t need to address
that problem directly. It is also worth noting that texture coordinates in the .obj format are
floating point values between zero and one with the origin placed at the bottom-left
corner of the image and all the data we received used pixel coordinates with the origin at
the top-left corner, so we needed to perform a coordinate space transformation on the
texture vertices. Apart from the texture coordinates, the format conversion was simply
rearranging existing data into a format that Blender (and many other renderers) can read
in.

After the files were converted, we took some steps toward accounting for errors in the
model which included merging vertices and deleting erroneous polygons. In the initial
data we received, vertices which obviously belonged together appeared separate from one
another, due to minor errors and estimations made in previous stages of the pipeline. To
account for these errors, we wrote an algorithm which merged similar vertices and faces.

To find like vertices, we simply calculated the distances between each pair of vertices and
merged them if their distance was below a certain threshold. We set this threshold by
experimenting with different values until we arrived upon a threshold that produced good
results with our data set. To locate like faces, we first calculated a normal vector for each
face and then chose faces with small angles between their normals. We then further
reduced the set of faces by selecting faces with similar areas. Finally, we compared the
axis-aligned bounding boxes of the faces. If all three of these differences were within

2

acceptable bounds, we concluded that the faces probably represented the same face in the
physical world and we deleted the face with less detail.

3 Blender Modelling

After importing the data we need as an .obj file, Blender provides a method to view the
data from the previous five teams. This is an important step in the pipeline, for the other
teams cannot visualize their data without the help of this program. Giving input to the
other teams based on what the model looks like is an important step in debugging. If the
data is generally correct, a few minor corrections are made, then lighting is applied by
hand. Tools in Blender make this easy to apply various types of lighting, depending on
the nature of different light sources.

Normal maps and other related effects add a unprecedented and customizable level of
realism to a mesh [8]. Unfortunately, we did not have enough data nor time to apply
normal and specularity maps to the model based on texture. If we did have time, we
would have used the Windows program xNormal to create normal maps for man-made
surfaces [5]. By taking four photographs of what we want the texture of, with the light
source in a different spot in each photo, and assigning it to relevant spots in the program,
a tangent-spaced normal map is generated. The specularity map is then generated from
the normal map with slight hand modification. We would then apply the maps by hand,
using the UV mapping feature in Blender. This process would only have been repeated
only a few times, since many of the building’s textures (such as dry wall and whiteboard),
are common throughout Regents.

4 Exporting Files

The initial export process is extremely straightforward. Irrlicht is a diverse engine that
may import many formats. We felt the best format for our purpose was the COLLADA
file format. This format saves textures, lighting, and other information in XML syntax,
which was easily editable and correctable. However, COLLADA had difficulties
exporting the various maps correctly. Therefore, baking the maps in Blender and
exporting them as .png’s would have been necessary if we had continued with our
detailed modelling. New specularity maps and normal maps would have been created in
this manner. These would then be applied separately in Irrlicht, using simple engine
commands. Exporting shadow maps is not necessary for Irrlicht, since the engine
automatically generates them based on the lighting.

One hassle in dealing with exporting meshes in Blender involves the direction of normals
on the object. While generally, the normals are facing the way they should be, sometimes
they are flipped, which Blender does not show in general preview mode. Textures are
only one sided in Irrlicht and COLLADA, so care must be taken to correctly determine
the destined direction in Blender.

3

Another challenge we faced was the limited polygon import in our version of Irrlicht.
Due to the 16-bit indices in Irrlicht, only 65,535 vertices can be imported at one time.
Therefore, each different .obj file we receive must be exported as a COLLADA file
individually, and not combined with other .obj’s. Because global coordinates remain the
same in Irrlicht, the meshes always correctly align.

4 Other Work

Unfortunately, much of our work was hindered by a shortage of usable data from the
teams charged with generating 3D polygons from source images. In response to this
problem, we invested a significant portion of our time building tools that expedited and
informed the other teams’ debugging runs. Among these tools were a bad polygon finder,
input file cleaners, and a script to distribute compute jobs on the campus clusters directly
from lab workstations.

5 Conclusion

Our methods effectively created a model based on polygon data and coordinates. We first
received the data and translated it into a .obj file, then merged related vertecies. In
Blender, we corrected the models and would have applied various maps if we had the
time. Finally, we exported the meshes into Irrlicht, which displayed the model we
created. Due to the month-long time constraint, we did not have enough data from the
other teams in order to effectively render the entirety of the Regents building. However,
the entire rendering and display of a 3D Regents will eventually be completed. Our work
will hopefully be used in the final creation of a 3D model of the Regents building.

4

Image Appendix

Figure 1: Left stereo image of fish tank, taken by camera team.

Figure 2: Same view of a 3D model in the Blender edit interface, showing all polygons.

5

References

[1] Agarwal, Sameer, Yasutaka Furukawa, et al. "Building Rome in a Day."
Communications of the ACM. 54.10 (2011): 105-112. Web. 26 Jan. 2012.
<http://grail.cs.washington.edu/rome/>.

[2] Blender. Blender Foundation, 14 Dec 2011. Web. 26 Jan 2012.
<http://www.blender.org/>.

[3] Gebhardt, Nikolaus, et al. Irrlicht Engine. Nikolaus Gebhardt, 15 Nov 2010. Web. 26
Jan 2012. <http://irrlicht.sourceforge.net/>.

[4] "Getting support: the Blender community." Blender Wiki. Blender Foundation, 17 Jan
2012. Web. 26 Jan 2012.
<http://wiki.blender.org/index.php/Doc:2.6/Manual/Introduction/Community>.

[5] Orgaz, Santiago. xNormal. Santiago Orgaz & co., 29 Dec 2011. Web. 26 Jan 2012.
<http://www.xnormal.net/>.

[6] Salman, Nader, and Mariette Yvinec. "High resolution surface reconstruction from
overlapping multiple-views." Proceedings of the 25th annual symposium on
Computational geometry (SCG . (2009): n. page. Web. 26 Jan. 2012.
<http://dl.acm.org/citation.cfm?id=1542362.1542386&coll=DL&dl=ACM>.

[7] Thormählen, Thorsten, and Hans-Peter Seidel. "3D-modelling by ortho-image
generation from image sequences." ACM Transactions on Graphics (TOG) - Proceedings
of ACM . 27.3 (2008): n. page. Web. 26 Jan. 2012.
<http://dl.acm.org/citation.cfm?id=1399504.1360685&coll=DL&dl=ACM>.

[8] Toler-Franklin, Corey, Adam Finkelstein, and Szymon Rusinkiewicz. "Illustration of
complex real-world objects using images with normals." Proceedings of the 5th
international symposium on Non-photorealistic animation and rendering (NPAR '07).
(2007): n. page. Web. 26 Jan. 2012. <http://dl.acm.org/citation.cfm?
id=1274871.1274889&coll=DL&dl=ACM>.

[9] Xiao, Jianxiong, Tian Fang, et al. "Image-based façade modelling." ACM
Transactions on Graphics (TOG) - Proceedings of ACM SIGGRAPH Asia 2008. 27.5
(2008): n. page. Web. 26 Jan. 2012. <http://dl.acm.org/citation.cfm?
id=1457515.1409114&coll=DL&dl=ACM>.

6

