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Abstract 

 

The Computer Science and Software Engineering department at the University of 

Wisconsin – Platteville has offered a course entitled Real-Time Embedded Systems 

Programming since 1999.  The focus of the course is on software development for real-

time embedded systems and provides considerable hands-on experience.  The course 

covers different-sized platforms and both high-level and low–level aspects of real-time 

embedded systems programming. 

 

The course has evolved over the years.  In 2007, we added closed-loop Proportional-

Integral-Derivative control to the course.  In 2009, we started using a real motor for the 

lab instead of a simulated device.  The topics of PID control, three-phase motors and 

commutation, Hall sensors, pulse-width modulation, and the Micrium real-time operating 

system are covered from a programmer‘s point of view.  This paper describes the course 

in general and the specifics about the three-phase motor control coverage and project. 
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1. Background 
 

“Most computers exist not on the desktop, but embedded in other devices.  The 

computers in embedded systems can vary from tiny microcontrollers with a small amount 

of programming, as found in “low-end” toasters, to big computers running millions of 

lines of code, as found in large switching systems. As such, the issues in development of 

software for embedded systems vary greatly.  Computer scientists, computer engineers, 

electrical engineers, and software engineers all have a somewhat different view as to what 

constitutes a course in real-time embedded systems.  Such courses in electrical and 

computer engineering departments usually emphasize the hardware aspects of embedded 

systems.  Software development is at best a secondary concern and usually done in 

assembly language.  On the other hand, computer science departments that offer such a 

course tend to focus on the real-time theoretical aspects, in many cases to the exclusion of 

hardware.” [4] 

 

 

1.1 Real-Time Embedded Systems Programming Course 
 

The Computer Science and Software Engineering department at the University of 

Wisconsin – Platteville has offered a course entitled Real-Time Embedded Systems 

Programming since 1999.  The name is meant to convey the fact that the emphasis is on 

software development, not on hardware development; however, the name is somewhat 

deceiving since much more than just "programming" is covered.  The course is taught at 

the senior-level with the following pre-requisites:   

 

• CS 2630 - Object-Oriented Programming and Data Structures II, 

• SE 3430 - Object-Oriented Analysis and Design, and either  

• CS 3230 - Computer Architecture and Operating Systems, or  

• EE 3780 - Introduction to Microprocessors 

 

These courses in turn have pre-requisites, so students will have completed several 

Software Engineering and Computer Science courses prior to taking this course.  

 

The students are exposed to a wide range of topics associated with real-time embedded 

software development.  There is a significant hands-on laboratory experience.  The 

students are expected to use the analysis, design, implementation, and testing techniques 

learned in previous courses.  Students work in small groups for three or four of the 

projects.  For those projects, students are required to use version control and log their 

time.   
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1.2 Platforms 
 

One aspect of the course that distinguishes it from other such courses is the "evolution" 

approach to the platforms on which the students are expected to develop.  There are five 

or six laboratory projects and a final project.  Students start by using a very small PIC 

microcontroller (1K flash, 64 bytes RAM).  They program it in assembly language.  Then 

they are given a C compiler, a bigger PIC (8K flash, 368 bytes RAM) and significantly 

more challenging programs to develop.  The students spend about six or seven weeks 

with the PIC, doing four laboratory projects.  After that, they switch to a more 

“sophisticated” microprocessor:  faster, more RAM, more flash, more peripherals.  From 

1999 – 2009, an 8051-based derivative was used.  For the past two years, a Freescale 

microcontroller has been used.  In all cases, they are required to do a large-sized multi-

tasking program using a small Real-Time Operating System (RTOS).  

 

In 2007, at the suggestion of members of our Advisory Board, we added closed-loop 

Proportional-Integral-Derivative (PID) control to the course.  The students were assigned 

a project involving an 8051-derivative microprocessor, Keil C, and Keil’s RTX 51 Tiny 

real-time operating system.  The project involved multiple tasks, but the main thrust was 

control of a simulated analog device.  The students were given about a month to complete 

the design, test specification and implementation of this lab. 

 

In 2009, we started using a real motor for the lab instead of a simulated device.  We 

switched to a Freescale MC56F8037 digital signal controller, the Micrium uC/OS-II real-

time operating system (RTOS), and Freescale’s CodeWarrior.  For the motor, we chose 

the Freescale 56F8000 Motor Control Board.  It has a Maxon EC-200187 brushless three-

phase motor and Hall-Effect sensors.  It has a daughter card connector to the 

MC56F8037EVM Evaluation Board. 

 

From 1999 – 2003, the students used 80386 boards for the final project.  From 2004 – 

2010, the students used an XScale processor with touch screen running the Windows CE 

operating system and the .NET Compact Framework.  The students were required to do a 

real-time UML design using Rational Rose and develop in C# using Microsoft Visual 

Studio .NET.  Some sample final projects include an ATM, RFID cash register, milking 

parlor control system, sign language interpreter, automatic bowling score keeping system, 

and sales and inventory tracking system.  There were multiple delivery dates for the last 

laboratory project and the final project, and these dates were interspersed over the last 

eight weeks of the semester.  

 

In 2011, the final project was changed to require more applied science, specifically 

physics.  This change came about due to ABET (formerly known as the Accreditation 

Board for Engineering and Technology) assessment of the Software Engineering program 

and the need to show that students can apply basic science to the design of software.  The 

microprocessor used was a PIC.  The student’s application of physics didn’t go quite as 

well as anticipated, so at the time this paper is being written, it isn’t clear what form the 
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final project will take this spring.  However, this paper focuses on the Freescale-based 

motor controller projects that are laboratory projects five and six. 

 

 

1.3 Topics Covered 
 

There is a wide range of topics covered in the course.  The topics roughly fall into three 

categories: Overview, Practical, and Theoretical. [4] 

 

The “overview” topics are those that generally include a listing of instances, brief 

discussions, comparisons and contrasts.  The students get laboratory experience only in a 

small number of the instances of a given topic.  For example, the students will only use 

two or three different microprocessors. The course gives an overview of 

 

• Processors and  systems 

• Development languages 

• Development environments 

• Platforms and platform standards 

• Real-time operating systems and tasking shells 

 

The “practical” topics are those for which an overview is also given; however, the 

students get more comprehensive laboratory experience.  The practical topics generally 

include hands-on experience and considerable experience with the hardware.  It should be 

noted that this is not done at an electrical or computer engineering level.  The practical 

topics include: 

 

• Simulators, emulators, target debuggers 

• RAM, flash, EEPROM 

• Timers, counters, interrupts, watchdogs 

• Digtial I/O 

• UARTs, SPIs, PPIs 

• Hall sensors 

• Pulse-Width Modulation (PWM) 

• Interfacing and communications 

 

Theoretical topics are those that are primarily software in nature and are generally 

hardware-independent.  These topics allow traditional computer science material to be 

applied to the unique problems of development of software for real-time systems.  Except 

for the last one, such topics as these that can be found in a text like [3].  The theoretical 

topics include: 

 

• Reliability, fault tolerance, exception handling 

• Concurrent programming, tasks, threads 

• Synchronization and communication 
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• Resource control: semaphores, monitors 

• Process and resource scheduling 

• Device and inter-processor communications 

• Real-time UML and object-oriented design of embedded systems 

 

In addition to lecture topics, each student is required to give a concise 15-minute 

presentation on a topic related to real-time embedded systems programming.  The 

students are allowed to choose from a list of over 25 topics or choose a pre-approved 

topic of their own.  The list includes topics such as ARINC, Bluetooth, CAN, CRCs, 

embedded internet, FAA standards, fixed-point arithmetic, GPS, specific RTOS’s, and 

safety engineering. 

 

 

2. Three-phase Motor Control 
 

From an electrical and hardware engineering perspective, motor control theory is typically 

covered in a semester-long course requiring several electrical engineering courses as 

prerequisites.  For us to take such an approach is clearly infeasible.  Therefore, we 

distilled down the essentials needed from a programming point-of-view to: 

 

• Software closed-loop control via Proportional-Integral-Derivative (PID) control 

• Speed and position sensing via Hall sensors 

• Three-phase motor commutation 

• Pulse-width modulation 

 

These topics in addition to the Micrium RTOS are covered from a programmer‘s point of 

view in less than two weeks. 

 

 

2.1 Proportional-Integral-Derivative Control 
 

A PID controller has a measured value and a desired value as inputs.  The algorithm 

calculates the instantaneous error, which is the difference between the desired value and 

the measured value.  For example, if the desired speed is 8000 revolutions per minute 

(RPM) and the measured speed is 8500 RPM, the instantaneous error is -500 RPM.  The 

algorithm then uses the instantaneous error as well as the sum and differences of errors to 

calculate a control output value.  The output could be a value that is directly used to 

control a device, or could be a correction value to apply.  For example, the output could 

be the actual Pulse-Width Modulation (PWM) value to apply to run a motor at a desired 

speed, or it could be the amount to change the current PWM value. 

 

The PID software algorithm generally runs at a constant rate to simplify the time 

component of the calculations and allow them to be wrapped up in the PID constants.  

The output typically uses one or more of the following calculations: 
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• Proportional – constant times instantaneous error 

• Integral – constant times sum of instantaneous errors 

• Derivative – constant times the change in error 

 

The proportional term is the simplest of the PID terms and attempts to fix the error using 

the difference in the desired value and actual value.  If only a proportional term is used, a 

small constant results in a long delay in achieving the desired value.  On the other hand, if 

a large constant is chosen, there is a tendency to overshoot the desired value.  A strong 

overshoot that continues to travel back and forth is known as ringing.  [6] 

 

The integration term can be thought of as the “history” of the error and is used to smooth 

out the error over time.  The integration term grows larger the longer the actual value 

stays on one side of the desired value.  It starts to decrease once the actual value goes to 

the other side of the desired value and helps diminish the proportional ringing effect 

mentioned above.   One problem with this term is that in some cases, it can grow quite 

large, even unbounded.  Therefore, this term is typically restricted to an appropriate range 

based on the properties of the item being controlled. 

 

The derivative term gives the instantaneous rate of change of error.  It can be thought of 

as a “prediction” of future error since it is the “slope” of the error function.  As the actual 

value gets closer to the desired value from the same side, the proportional and integral 

terms will have the same sign.  However, the derivative term will have the opposite sign 

since the instantaneous errors will be getting smaller.  For example, if the previous error 

was 10 and the current error is 5, the derivative term would be a constant times -5 

whereas the proportional and integral terms would both be positive.  It should be noted 

that since the derivative term is a rate of change, it should have a denominator of a delta 

time.  If we assume the PID loop running at a constant rate, then the delta time is constant 

and can be wrapped up in the derivative term constant. 

 

Assuming that the PID loop is executed at a constant rate, the PID control algorithm is 

surprisingly simple: 

 

 currentError = desiredValue – currentValue 

 pTerm = Kp * currentError 

 iSum = iSum + currentError 

 if  iSum > iSumMax then 

        iSum = iSumMax 

 elsif  iSum < iSumMin then 

        iSum = iSumMin 

 iTerm = Ki * iSum 

 dTerm = Kd * (currentError – previousError) 

       previousError = currentError 

 controlOutput = pTerm + iTerm + dTerm 
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The developer is responsible for choosing the three PID constants Kp, Ki, and Kd, and 

the integration limiters iSumMax and iSumMin.   

 

Coming up with the constants is referred to as “Tuning the PID loop”.   “The nice thing 

about tuning a PID controller is that you don't need to have a good understanding of 

formal control theory to do a fairly good job of it.  About 90% of the closed-loop 

controller applications in the world do very well indeed with a controller that is only 

tuned fairly well.”  [6] 

 

 

2.2 Three-phase Motor Commutation 
 

The study of motor control encompasses a broad and deep set of knowledge, with varying 

amounts of formal education required in areas such as Physics (E&M), Electrical 

Engineering, and Mechanical Engineering.  We obviously cannot go into any significant 

theoretical depth in our course.  Instead, a high-level view of the required theory is given, 

and the emphasis is on the practical details required for motor control.  Furthermore, we 

restrict the coverage to brushless three-phase direct current (DC) motor control with Hall 

sensors. 

 

A brushless three-phase motor consists of 3M coils and 2N magnetic poles.  The left side 

of Figure 1 shows a motor with three coils (M = 1) and two poles (N = 1).  The coils are 

usually referred to a U, V, and W or A, B, and C, depending on which documentation you 

read.  The magnetic poles refer to the north-south poles of a magnet.  An M and/or N 

greater than one allows control of the motor in smaller steps.  For example, a motor with 

three coils and two pole pairs (four poles), as shown in the right side of Figure 1, requires 

two complete “electrical” revolutions to achieve one mechanical revolution.  Figure 2 

shows other combinations of coils and poles.  Brushless refers to the fact that the coils are 

fixed and the magnets rotate, eliminating the problem in a conventional DC motor of 

connecting current to moving coils.  To say it another way, the magnets versus the coils 

are part of the rotor.  For purposes of the coverage in class, these details are mentioned 

briefly but the primary focus is on the high-level theory of a motor with three coils and 

one pole pair.   

 

 

 

Figure 1 - Three Phase, Three Coil Brushless DC Motor (Figure taken from [1]) 
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Figure 2 – Different Type Three-Phase Motors:  a) 6 coils, 4 poles,  b) 9 coils, 8 

poles, and c) 12 coils, 8 poles  (Figure taken from [2]) 

 

For each rotor position in a motor with three coils and one pole pair, movement of the 

rotor in either a clockwise or a counter-clockwise direction requires that one coil be 

connected to negative voltage, one to positive voltage, and the third be unconnected 

(allowed to float).  This forces the rotor to move in the desired direction.  The direction of 

the current through the coils determines the generated magnetic field orientation.  The 

magnetic field either attracts or repels the rotor magnets.  Therefore, by changing this at 

the right time and in the right sequence, the motor rotates.  Motor commutation refers to 

the sequence and timing of applying the voltages to move the motor in the desired 

direction.  There are only six different possibilities for energizing the coils to achieve 

rotation in a given direction, as explained below. 

 

The current position of the rotor can be determined by placing three Hall sensors at a 120- 

electrical-degree separation.  Hall sensors are analog devices, varying their output voltage 

with the magnetic field.  They are based on the Hall Effect, which states that a magnetic 

field perpendicular to a current through a conductor will produce a voltage differential 

transverse to the current.  For applications such as motor control, extra circuitry is 

typically added to turn them into discrete devices, with output of zero or one.   

 

For motor control, discrete Hall sensors can be used to detect the polarity of the last 

magnetic pole that was nearby.  They are available with different characteristics.  For this 

paper, it is assumed that when a south magnetic pole is near the Hall sensor, the Hall 

sensor outputs a one.  When a north magnetic pole is near the Hall sensor, it outputs a 

zero.  The output stays the same until the rotor approaches with polarity opposite of the 

last sensed state. 

 

Many sources explain how Hall sensors can be used to drive commutation, for example, 

[1,2,5]. Unfortunately, they vary considerably due to sensor placement and polarity.  

Furthermore, they often do not specify how the sensors are placed.  Figure 3 provides one 

conceptual way to visualize what is required to commute the motor.  The coils U, V, and 

W depicted in Figure 1 above are referred to as A, B, and C in Figure 3.  Note that the 

coils are shown “strung out” (an electrical schematic) versus wrapped as in Figure 1.  The 

rotor is shown as a magnet, with the black half being the south magnetic pole and the 

white half being north.  The diagram also shows the Hall sensor output for various sectors 

of the “electrical circle”.  The source for this diagram does not specify how the sensors 
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are placed.  However, by studying it and comparing it with other sources, one can deduce 

that Hall sensor A is placed by coil C, Hall sensor B is placed by coil A, and Hall sensor 

C is placed by coil B.  Also, note that the magnet is portrayed as “long and skinny” 

whereas it would typically look more like that in Figures 1 and 2. 

 

 

 

Figure 3 – Hall Sensors and Six-Step Control (Figure taken from [5]) 

 

In Figure 3, the south magnetic pole is in the sextant that contains coil C.  To derive the 

Hall sensor value, note that the south pole is near the sensor at coil C, so it would read a 

one, and the north pole is near the sensors at A and B, so they would read zero.  Then 

recall that Hall sensor A is at coil C, so the Hall sensor output bit pattern is [ABC] = 100.  

As another example, suppose the rotor moved forward into the next sextant.  Then the 

south pole is near coils A and C, so they will read one and the north pole is still near coil 

B, so it will read zero.  Therefore, the sensor that changes is the one at coil A, which is 

sensor B.  The output bit pattern changes to 110. 

 

Given the rotor position in Figure 3, to make the motor move in a clockwise direction, a 

positive voltage must be applied to coil A and a negative voltage applied to coil B.  The 

positive voltage at A will repel the north pole and the negative voltage at B will attract the 

north pole, thus forcing the magnet to move in a clockwise direction.  Coil C is left 

floating.  When the rotor reaches the next position (110), coil A is kept positive to attract 

the south pole, a negative voltage is applied to coil C to repel the south pole, and B is 

allowed to float.  

 

Assuming the Hall sensors are placed at the coils, all possible commutation tables are 

obtained by permutations of the sensor placement and sensor polarity.  There are only six 

allowable bit patterns.  Table 1 shows the commutation sequence for the sensor 
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placement in Figure 3.  Viewing the Hall sensor output bit patterns as integers, the 

sequence for clockwise commutation is (4, 6, 2, 3, 1, 5) or any cyclic permutation of this.  

The sequence for counter-clockwise commutation is (4, 5, 1, 3, 2, 6).  It should be noted 

that any rearrangement of the Hall sensors or change in polarity always results in one of 

these two cycle patterns.  For example, flipping the A and B sensors in Figure 3 (100 -> 

010, 110 -> 110, etc.) results in the sequence (2, 6, 4, 5, 1, 3) which is a cyclic 

permutation of the counter-clockwise commutation sequence.  An easy way to show that 

these are the only two possible sequences is to start with the sensor pattern 010.  Then 

one sequence is generated by applying (flip bit 0, flip bit 1, flip bit 2) cyclically and the 

other by applying (flip bit 2, flip bit 1, flip bit 0) cyclically.  Any permutation of the 

sensors applied to one of these two cyclic patterns will result in one of these two patterns.   

Thus, by applying one of these two sequences, the motor will always turn either 

clockwise or counter-clockwise.  

 

Sensor A 

Positioned 

at Coil C 

Sensor B 

Positioned 

at Coil A 

Sensor C 

Positioned 

at Coil B 

Coil A 

Phase 

Coil B 

Phase 

Coil C 

Phase 

1 0 0 +V -V Float 

1 0 1 Float -V +V 

0 0 1 -V Float +V 

0 1 1 -V +V Float 

0 1 0 Float +V -V 

1 1 0 +V Float -V 

Table 1 - Clockwise Commutation Sequence Corresponding to Figure 3 

 

 

2.3 Speed Control  
 

Motor speed can be controlled using Hall sensors, Pulse Width Modulation (PWM), and a 

PID loop. 
 

Under no load, the motor speed will vary proportionally with the voltage applied.  PWM 

is a technique to produce variable voltage on a discrete output pin.  The pin is switched 

on and off at a very fast rate.   The duty cycle is the percentage of “on time”.  For 

example, suppose a discrete pin outputs five volts when it is on and zero volts when it is 

off.  If the pin is switched on and off at a fast rate such that it is on half the time and off 

half the time, the duty cycle is 50% and the voltage would be 2.5.  If it is on all the time, 

the duty cycle is 100%.  If it is off all the time, the duty cycle is 0%. 

 

The estimation of the current speed is obtained from the Hall sensors.  By measuring the 

rate at which the Hall sensors change and knowing the electrical-to-mechanical ratio, a 

simple calculation gives the motor speed.  For example, suppose a motor has four pole 

pairs.  It takes four electrical revolutions to achieve one mechanical revolution.  Associate 
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a timer and interrupt with one of the Hall sensors. Assume the interrupt is configured to 

trigger on both the rising and falling edge, so it will trigger each time there is a pole 

change for the selected Hall sensor.  There are two pole changes per electrical revolution 

and therefore, the interrupt will trigger eight times per mechanical revolution.   The 

interrupt handler measures timer “ticks” since the last interrupt.  Suppose that there are X 

timer ticks since the last interrupt.  Then an estimation of the current motor speed is given 

by:  Timer_Tick_Frequency / (X ticks per 1/8 mechanical revolution).  If the timer runs at 

500 kHz, the speed is given by: 

(500000 ticks per sec) / (X ticks per 1/8 rev) = (62500 / X) revs per second 

Note that in this case, a 16-bit unsigned integer division could be used, truncating to the 

nearest integer. 

 

Given the desired speed and the estimate of the current speed, a PID loop is used to 

determine the PWM value to apply.  Two approaches can be taken.  One is to choose the 

PID constants such that the output of the PID loop is the PWM duty cycle to apply to the 

coils.  In this case, there must always be at least some error, otherwise the PID output, 

and hence the PWM duty cycle, would be zero and therefore the PWM voltage would be 

zero.  The other is to treat the PID output as a delta (change) to the current PWM duty 

cycle.  In this case, the PID output specifies how much to increase or decrease the current 

PWM duty cycle to achieve the desired speed. 

 

 

3. Project Description 
 

The motor control assignment is given as two laboratory assignments.  The first 

laboratory assignment is given to familiarize the students with the MC56F8037 processor, 

Freescale Code Warrior, and the Micrium uC/OS-II RTOS.  The second laboratory 

assignment is speed control of a three-phase brushless DC motor. 

 

 

3.1 Introductory Assignment 
 

This lab introduces the students to the environment they will be using for the motor 

control project.  It covers ADC, DAC, GPIO, PWM, and interrupts on the MC56F8037.  

It covers the Freescale CodeWarrior IDE and the use of its Components Library.  In 

addition, it covers tasks and mailboxes in Micrium uC/OS-II.  It is a “quick and dirty” 

lab.  The students are given a week to complete the laboratory and are not required to 

document their code beyond what they want for their own reference. 

 

The program has three tasks, two interrupts, and two mailboxes.  The interrupts are 

associated with two buttons, which when pressed, place “increment” and “decrement” 

messages in the first mailbox.  One of the tasks removes the messages and modifies the 

PWM and DAC accordingly.  The PWM output drives an LED whose brightness varies 

with the PWM duty cycle.  The DAC is connected to an ADC.  One task periodically 
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reads the ADC and places the result in the second mailbox.  The third task gets the results 

from that mailbox and displays the high-order bits on LEDs. 

  

 

3.2 Motor Control Assignment 
 

The lab is given in the second half of the semester and the students are given about a 

month to complete the design and implementation.  However, that month spans over 

spring break, so they actually only have about three weeks.  Although the programming 

language used is C, the students are required to do a UML design, and it is expected that 

OO-type concepts will be used to produce quality code.  The lab is structured to require 

the students to use most of the topics covered in the course.  

 

The students work in groups of two or three.  Each group has a Freescale 

MC56F8037EVM Evaluation Board and a 56F8000 Motor Control daughter board.  

Students are required to use version control and log time spent on the project (using a 

homegrown departmental tool) with specifics about what they accomplished during each 

working session. 

 

The following is an overview of the details given for the program: 

 

1. RTOS – Use uC/OS-II and set the timer tick to one millisecond. 

2. Reading Hall Sensors – The Hall sensors for the motor are on GPIOB pins 2, 4, and 

5, with Hall sensor A connected to pin 4, B to pin 5 and C to pin 2. 

3. PWM - The PWM outputs are set up in complimentary pairs, with one output to one 

end of the coil and the other to the other end.  For example, PWM0 is connected to 

one end of coil A and PWM1 is connected to the other end.  By selecting 

complimentary pairs, when one end of the pair is high, the other is low and vice versa.  

When the commutation cycle specifies that coil A should be positive, it means PWM0 

should be “on” (high) and PWM1 should be “off” (low).  Of course, unless it is 100% 

duty cycle, it will not be that way for the full period.  For some of the period, it will 

be the other way around.  If the duty cycle is 50%, then for half the time, PWM0 is 

high, PWM1 is low, and for the other half of the time, it is the other way around, 

which means the rotor will not move.  Therefore, to get movement corresponding to a 

positive voltage on coil A, the duty cycle for PWM0 needs to be greater than 50%.  

For our motor, there is 9V to coil A when the PWM0 duty cycle is 100%.  To 

determine the voltage to coil A for other PWM values, take 9V * (duty cycle PWM0 – 

duty cycle PWM1).  Since these are complimentary pairs, the duty cycle of PWM1 is 

100% - duty cycle of PWM0. Therefore, the voltage is 9V * (2 * PWM0 duty cycle – 

100%).  Thus, if PWM0 duty cycle is 75%, the voltage to coil A is 9V * (150% - 

100%) = 4.5 V.    
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Set the PWM frequency to 128 kHz.  Center-aligned PWM will yield half that value, 

namely 64 kHz.  You could get by with smaller, but this processor is fast enough to 

handle it. 

4. Commutation - To move the motor, follow the pattern for setting the coil voltages as 

specified in class.  To do this, use the CodeWarrior generated SwapAndMask 

function.  Mask refers to which channels are on and which are off.  There will always 

be two pairs on and one pair off.  Swap refers to whether the coils are connected to 

positive or negative.  No swap corresponds to positive.  Swap corresponds to negative 

and the two PWM outputs of the complementary pair are physically swapped.  Thus, 

the duty cycle does not need to change to move through a rotation.  The parameters 

for the SwapAndMask function are of type TChannelPairs and TChannels.  These are 

defined as structs with one-bit fields.  As an example, by looking at the commutation 

table, if the Hall sensor reading is [100], phase coil A should be positive, phase coil B 

should be negative, and phase coil C should float.  For the Swap setting, pair 0 should 

not be swapped (set it to 0), pair1 should be swapped (set it to 1), and it does not 

matter for pair 2 since it will be masked.  For the Mask setting, channels 0 – 3 should 

be set to 0 (not masked) and channels 5, 6 should be set to 1 (masked, which means 

the PWM output is disconnected, and coil C will float).   

  

Create a Commute Motor task.  It should be higher priority than the other tasks.  For 

its tasking loop, have it wait on a synchronization semaphore that tells it to do a 

commutation.  It reads the Hall sensors to get the Hall state and then calls 

SwapAndMask to energize the coils.  The semaphore will be signaled by the Hall 

sensor interrupts (described below).  Have a timeout of about 10 milliseconds for the 

wait.  That way, if the sensors do not trigger for whatever reason, a commutation can 

still occur if needed. 

5. Hall Sensors – Set up edge-triggered interrupts for Hall sensor changes.  The 

interrupts must trigger on both falling and rising edges.  In the interrupt handlers, post 

the commutation semaphore referred to in the Commutation section. 

6. Speed Calculation: To calculate speed, use a 16-bit timer in one of the Hall sensor 

interrupts and proceed as discussed in class. 

7. PID Loop Control – Under no load, the speed is proportional to the PWM voltage.  

Since 128 KHz was chosen for the PWM, this implies that the Counter Modulo 

register is 250.  This specifies the number of PWM “ticks” per cycle and the duty 

cycle is the number of ticks that the PWM is “high”.  Therefore, a PWM value of 0 

means that for 0 out of 250 ticks it is high, and for 250 it is low.  A PWM value of 

250 means it is high for all 250 ticks.  However, since the PWMs are set up in 

complementary pairs, a PWM of 50%, which is a value of 125, means the motor is 

stopped.  Thus, values greater than 125 and less than or equal to 250 are needed to 

move the motor.  Your goal is to control the number of motor revolutions per second.  

Assume a maximum speed of 200 revolutions per second.  Scale so a PWM duty of 

125 corresponds to a speed of 0 and a PWM of 250 corresponds to the maximum 

motor speed.  That means the motor speed under no load is given by: 
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  Motor speed under no load = (PWM_Value – 125) * MaxSpeed / 125 

Note that for PWM values less than 125, the motor spins the other way, so this is 

actually a motor velocity.  To achieve a desired speed under no load, solve to yield: 

 

PWM_Value = 125 + No_Load_Motor_Speed * 125 / MaxSpeed 

 

However, it is often the case that there will be a load, so you cannot simply apply the 

formula.  You need to determine how to use the PID output to set the PWM.   The 

PID loop manipulates error (desired minus actual) to produce an output, which can be 

the amount to change the PWM value to achieve the desired speed.  The “gain” for 

the Proportional term, Kp, will be related to the factor above:  125 / MaxSpeed.   To 

tune the loop, take an approach suggested in Wescott, T., “PID Without a PhD”: Start 

with some reasonable values and adjust until you get a desirable result.  When testing 

with a “load”, gently put your fingers on the turning motor and squeeze, but don’t 

squeeze so hard you stop it or cause an over-current.  You are not implementing 

torque or current control!  Create a PID Loop task based on the pseudo-code for the 

PID loop given in class.  It should be lower priority than the Commutation task but 

higher than the Serial Output task.  Run the task at about 10 milliseconds.   

 

8. Setting Desired Speed –   Use the third pushbutton (S3, pin GPIOB3) to change the 

desired speed.  Start it at 0, then as the button is pressed, cycle the desired speed 

through 40, 80, 120, 80, 40, 0, etc.  If the desired speed is 0, disable the PWM; 

otherwise, the PID will drive it back and forth around 0.  This could be bad, since you 

are not implementing code to determine the motor direction (i.e., velocity versus 

speed), so the PID loop could cause the motor to jump around wildly. 

9. Serial Output of Speed:  Set up a serial port output using 19.2K, 8, N, 1.  Create  a 

task that runs about every 25 milliseconds and transmits the current value of the 

motor speed out the serial port.   

 

 

3.3 Sample Commutation Code  
 

Below is sample code that can be used to commute the motor.  

 
typedef struct _CommuteType 

{ 

  TChannelPairs pairs; 

  TChannels chans; 

} CommuteType; 

 

const CommuteType COMMUTE[] = 

{ 

  // 1=Swap      1=Mask(Not connected)     Hall   Coil 

  // A  B  C     A+ A- B+ B- C+ C-         ABC   A  B  C 
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  { {0, 0, 0}, { 1, 1, 1, 1, 1, 1 } },  // 000  Invalid 

  { {1, 0, 0}, { 0, 0, 1, 1, 0, 0 } },  // 001  -V NC +V 

  { {0, 0, 1}, { 1, 1, 0, 0, 0, 0 } },  // 010  NC +V -V 

  { {1, 0, 0}, { 0, 0, 0, 0, 1, 1 } },  // 011  -V +V NC 

  { {0, 1, 0}, { 0, 0, 0, 0, 1, 1 } },  // 100  +V -V NC 

  { {0, 1, 0}, { 1, 1, 0, 0, 0, 0 } },  // 101  NC -V +V 

  { {0, 0, 1}, { 0, 0, 1, 1, 0, 0 } },  // 110  +V NC -V 

  { {0, 0, 0}, { 1, 1, 1, 1, 1, 1 } }   // 111  Invalid 

}; 

 

To commute the motor each time a Hall sensor interrupt occurs: 

 
byte val = GetHallReading(); 
PWMC1_SwapAndMask( COMMUTE[val].pairs, COMMUTE[val].chans ); 

 

 

4. Conclusion  
 

The laboratory project described above is a good way to introduce the students to a 

variety of topics typical in real-time embedded systems programming projects, including 

closed-loop control.  It has been an evolution of similar projects with the latest change 

being the use of a real motor instead of a simulated device.  The next logical step would 

be to incorporate current and torque control into the project.  After that, the next step 

would be to create a “real-world” project that uses the motor control concepts. 
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