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Abstract

Evolutionary Computation (EC) is a field of Computer Science that utilizes the
basic principles of biological evolution to create a system that can be used to find an
acceptable solutions to problems, which are called individuals. A specific kind of EC
system, called a cellular Evolutionary Computation (cEA), models space and distance
to limit interaction interaction within the system in an attempt to maintain diversity in
the population and increase the chances of discovering an optimal solution. In this pa-
per, we compare two kinds of cEA systems, one that models space in two dimensions,
and one that models space in three dimensions. We compare the performance of 2D
and 3D worlds on several 3SAT problems and the ONESMAX problem, and find that
at least in our experiments 2D worlds tended to outperform 3D worlds and that the
optimal parameter settings for 3D worlds were sometimes significantly different than
those for 2D worlds.

1 Introduction

Evolutionary Computation (EC) is a field of Computer Science that utilizes the basic princi-
ples of biological evolution to create a system that can be used to find acceptable solutions
to problems. In biological systems, organisms better suited for their environment gener-
ally yield more descendants than those animals that aren’t as suited to their environment.
Over time this leads to successive populations being generally more suited for the present
environment than the earlier generations. In EC, instead of organisms, we have potential
solutions to a problem, which we call individuals. These individuals are rated on how
successfully they solve the given problem, or how close they get to solving the problem.
This rating is called their fitness. Successive generations are simulated one after another,
which would be similar to time passing in a biological system. The more fit individuals are



selected to generate the next generation of individuals by using various systems that mimic
sexual reproduction, genetic mutation, and the theory of the survival of the fittest.

EC systems can be used to solve a variety of practical problems and have the added benefit
of not requiring much human effort since after the initial set up all of the computation is
done by a computer. The only restrictions on what kind of problem an EC system can solve
are that a computer has to be able to generate potential solutions as well as evaluate the
fitness of potential solutions. EC systems generally do well solving symbolic regression
problems, combinatorial optimization problems, such as SAT [3], as well as more practical
problems such as soft sensors in chemical plants, and radio antennae for NASA [5].

Cellular Evolutionary Algorithms (cEAs) are EC systems that separate the population into
cells which are connected in certain ways, like 2D grids, 3D grids, or other graphs [1].
These cells are also called locations. Individuals in a cell interact only with individuals in
their own cell or individuals in their neighborhood. The primary method in which cross-cell
interaction occurs is by migration in which an individual moves from one cell to another
neighboring cell. The key advantage of implementing a cEA instead of a regular EA is to
help maintain diversity, or the number of different kinds of solutions that are present in the
system [1]. Having a diverse population has a number of beneficial effects on the system
that often lead to acceptable solutions being found more consistently as well as faster.

This paper will explore the differences between cEA systems that are based on both 2D
and 3D cuboids. A description of how the populations are first initialized, as well as how
subsequent populations are generated will be given in Section 2.1, followed by a more in
depth description of 2D and 3D worlds in Section 2.2, and a description of the problems
that are used in the experiments in Section 3. Then we will present the results of our
experiments in Section 5 and a discussion of those results, as well as other possible research
topics suggested by our results will be in Section 6.

2 LandscapeEC

In this section we will describe the LandscapeEC [4] [2], system, which we used to explore
the impact of different shapes of worlds. The system also supports a variety of parameters
that can be changed to adjust the behavior of the system in various ways. How the world is
set up differs depending on the shape of world, or whether or not the world is 3D or 2D. But
once the world is formed, the processing of generations, as described in Algorithm 1 is the
same. This section will be devoted to exploring the details of how this LandscapeEC system
works. First, how the initial and subsequent populations are generated will be described in
section 2.1. Then, the specifics of 2D and 3D worlds will be presented in section 2.2.



Algorithm 1 Pseudocode for the main run loop of LandscapeEC
runGenerations()

Initialize Starting Population and World

while Best Fitness < 1.0 AND Function Evaluations Limit Not Reached do
Perform Migration
Perform Elitism
Perform Reproduction

end while

2.1 Running a Generation

One of the major aspects of an EA system is how it deals with generating a population. The
first step in our EA system is the generation of the initial population. In LandscapeEC our
individuals are always bitstrings of a length determined by the problem we are addressing.
A number of cells are selected, determined by the starting locations parameter, and those
locations are filled to capacity with a number of individuals, the capacity being determined
by the carrying capacity parameter. These individuals are generated randomly; each bit of
each individual is selected uniformly from the set O,1.

After the initial population of the world, Algorithm 1 is run until one of the two termination
parameters is met. One of the termination conditions is that an individual has been found
that can solve the problem successfully. The other one is that the number of evaluations
has reached its limit, as set by the maximum number of evaluations parameter [3].

The first step of Algorithm 1 is to migrate individuals. Each location has a list of locations
that it is connected to called its neighborhood. The probability of an individual migrating
is determined by the migration probability parameter, which is a value from O to 1, which
determines the probability of an individual migrating, with 0 meaning that no migration
occurs, and 1 meaning that an individual will always migrate. If the individual has been
selected to migrate, a location in its neighborhood is randomly selected, and the individual
will be moved to that location for the next generation.

The next step in the system is performing elitism. Elitism copies a certain number of the
best individuals at any given location over to the next generation. This is to stop key indi-
viduals from dying out or the system from moving backwards. The number of individuals
to copy is determined by the elite proportion parameter.

The final step is reproduction, or the generation of new individuals. The first step of this is
to determine how many new individuals need to be generated. The parameter reproduction
rate determines the maximum number of individuals that can be generated. The number
of individuals in the cell is multiplied by the reproduction rate, that value is the number of
individuals that will be generated unless that number would cause the location to have more
individuals than the carrying capacity. Then, only enough individuals to fill a location are
generated.

Once the number of individuals to be generated is determined, the actual production of indi-



Algorithm 2 Pseudocode finding the neighborhood list in a 3D world. x, y, and z are the
3D coordinates of the location in the world.
get3DNeighborhood(x, y, z
for max(z — 1,0) < i < min(z + 1, width — 1) do
for max(y — 1,0) < j < min(y + 1, depth — 1) do
for max(z — 1,0) < k < min(z + 1, height — 1) do
addToNeighbors(i, 7, k)
end for
end for
end for

viduals is done. The first process in generating an individual is called tournament selection.
We select two pairs of two individuals randomly, and the better of each pair is selected to
be a newly generated individual’s parent. Once the parents are selected, crossover occurs
using the two parents. Each bit of the new individual is chosen by selecting one of its
parents randomly and using the bit they have in the given position for their children. This
process is repeated for every bit the individual has.

Once crossover is finished, the individual is mutated. Each bit of the individual has a chance
to be flipped. This chance is determined by the average mutations parameter, divided by
the number of bits in an individual. Therefore, on average, an individual will have as many
bits flipped as the value of the average mutations parameter. Once mutation occurs, the
individual is evaluated for its fitness against the problem that is trying to be solved. If the
individual solves the problem, the run ends in success. If the number of individuals evalu-
ated reaches the value of the maximum number of evaluations parameter without finding a
solution, the run ends in failure.

2.2 Shaping the World

The second major part of our LandscapeEC system is the shape of the worlds and how they
are set up. In these experiments, there are two kinds of worlds: 2-dimensional (2D) and
3-dimensional (3D) worlds. 2D worlds are described by giving its size along its two di-
mensions. Then, the world is generated from those dimensions, shaped like a lattice where
each intersection is a location. The neighborhood of a location are the immediately sur-
rounding locations, i.e. the points next to a given point and the points diagonally adjacent
to the point, see Figure 1. Therefore, the maximum number of neighbors a given location
can have would be eight, although locations on the edge of the world would have less. In
some systems neighborhoods can be expanded to include more distant cells, but that option
isn’t explored in this paper.

A 3D world is defined by the size along its three dimensions. Each location has a number
of neighbors, which are all of the locations immediately surrounding it as illustrated in
Algorithm 2. Therefore, a location can have up to 26 neighboring locations, but locations
on the edge of the world may have fewer.



Figure 1: An illustration of a 2D Neighborhood. Note, if a location is on the edge of the
world, it will have less than eight neighbors.

In addition to neighborhoods, another difference between 2D and 3D worlds is starting lo-
cations. The starting location is a parameter that determines where individuals are initially
generated. The two options are origins and corners. The origin in a 2D world is the upper
left corner, while in a 3D world, it is the upper left corner of the top layer of the world. The
second option for starting location is corners. In 2D world, the corners are the four corners
of the lattice, while in a 3D world it is the eight corners of the cuboid.

3 Test Problems

The experiment described here use two problems: 3SAT and ONESMAX. Solutions to
these problems are naturally expressed as bitstrings, and they span a broad range of difficul-
ties. ONESMAX is trivial to solve, and 3SAT problems range from easy to extraordinarily
difficult. The specifics of their properties, as well as their implementation in our system are
described below.



3.1 The 3SAT Boolean Satisfiability Problem

The Boolean Satisfiability Problem, or SAT is an NP-Complete problem where the goal
is to find an assignment of values to boolean variables that satisfy each clause in a set of
clauses. In 3SAT each clause consists of 3 terms each of which is a variable or a negated
variable. A clause is said to be satisfied if at least on of its terms is true. A potential solution
consists of an assignment of either true or false to each of the variables. A solution that
solves the problem, will be one that satisfies every clause.

For example, consider SAT problem E, which has four variables, x, x5, 3, x4 and the the
two conjoined clauses (1 VxoVx3) A(—x1 Va3V —xy). For this problem to be solved, both
clauses must be satisfied. For a clause to be satisfied, at least one of its terms must be true.
So, for example, say we have a potential solution A, which consists of the variable settings
r1 = true, ro = false, x3 = false, and x4, = false. The first clause would be satisfied
because it contains x, which is true. The second clause would also be satisfied, because
x4 1s false, but the variable in the clause is negated, so —x, returns true, which satisfies the
clause. As both clauses are satisfied, this assignment solves the problem.

Here individuals are represented by bitstrings whose length is equal to the number of vari-
ables in the SAT problem [3]. Each bit represents whether or not a given variable is assigned
true or false. The fitness of a potential solution is determined by dividing the number of
clauses satisfied by the number of total clauses. Therefore, fitness is always in the range
[0,1], representing the proportion of clauses solved. It is important to note that two indi-
viduals may have the same fitness but satisfy different clauses.

In this paper we use three different 3SAT problems as described in Section 4.

3.2 ONESMAX Problem

The ONESMAX problem is a simple problem where the goal is to maximize the number
of ones in a bitstring [1]. Different ONESMAX problems consist of different lengths of
bitstrings. The fitness is simply the number of 1s in the bitstring divided by the length of
the bitstring. In this paper, the only ONESMAX problem is one of size 100.

4 Experimental Setup

This section will explain the specifics of the various configurations that were used for this
research. For our runs, we used two different kinds of worlds, 2D worlds and 3D worlds.
We also had two kinds of problems, the SAT problem, and the ONESMAX problem. This
means that there were essentially four main groups of runs, as both kinds of worlds were
run with both kinds of problems.

We tested three different kinds of SAT problems, see Table 1, and the length 100 ONES-
MAX problem. The SAT problems were selected from various databases and the difficulty



File Name # Variables # Clauses Difficulty

uf50-0456.cnf 50 218 Easy
uf75-015.cnf 75 325 Medium
uf100-0193.cnf 100 430 Medium

Table 1: The 3SAT problems we ran. The difficulties are as reported in [2].

2D World Size # of locations 3D World Size # of locations

10 by 10 100 Aby5by 5 100
15by 15 225 6 by 6 by 6 216
24 by 24 576 8 by 8 by 9 576
27 by 27 729 9 by 9 by 9 729

Table 2: The various world sizes we tested.

assigned to them is taken from [2].

We selected three different world sizes for both the 2D and 3D worlds. We used world
sizes that were squares or near cubes while also picking sizes that had similar numbers of
total locations. The world sizes, as well as how many locations each had are described in

Table 2.

Sometimes a specific set of parameters works very well for a certain problem and world
type, but works poorly for another. So we explored a variety of parameters for both worlds
in an attempt to reduce parameter bias. We selected a number of parameters to vary from
run to run so that we could compare “good setups” to other “good setups”. The parameters
we chose to vary and how we varied them are explained in the Table 3 and were chosen
based on our experience with previous experiments with LandscapeEC.

There were 512 different problem and parameter settings. Each run with a specific set of
parameters was run 30 times which means there was a total of 15360 runs.

Parameters
Average Mutations | 1,2
Carrying Capacity | 15, 30
Reproduction Rate | 1,3
Starting Population | Origin, Corners

Table 3: On the left are the various parameters we varied and to their right are the different
values we assigned them.



3SAT ONESMAX

2D 3D 2D 3D
World Size 24x24,27x27 | 8x8x9, 9x9x9 | * 4x4x5
Starting Locations | Corners Corners Origin | *
Carrying Capacity | * * * 15
Reproduction Rate | * * 1 *
Average Mutations | * * 1 *
Success Rate 69% * 64% 100% | 100%
Median # of Evals || 3,958,000 4,709,000 49,890 | 42,950

Table 4: This table diagrams the best configurations and their success rates and median
number of evaluations.

5 Results

Table 3 lists the most successful parameter values of those we explored , as well as the suc-
cess rates and median evaluations used for those parameters. Asterisks indicate parameter
settings whose values didn’t make a statistically significant difference for that configu-
ration. Figure 2 shows the distribution of completed evaluations for the best parameter
values.

On the 3SAT problems 2D worlds did significantly better than 3D worlds; they succeeded
more times and faster. A Kruskal-Wallis test confirms that the difference is significant with
a p-value of 2.327e-8. Interestingly for both 2D worlds and 3D worlds large world sizes
and starting in the corners were important parameters, while the other three parameters
were negligible in effect.

In an unexpected twist, 3D worlds did solved the ONESMAX problem faster than 2D
worlds, although they both had the same success rate of 100%. Also, where before the
important parameters were the same when solving 3SAT. The difference in speed was con-
firmed to be statistically significant with a p-value of 2.2e-16. 2D and 3D worlds have
completely different parameters that are important in ONESMAX. 2D worlds found repro-
duction rate, starting locations, and average mutations to be important, while 3D worlds
only found world size and carrying capacity to be important.

6 Conclusions

We suspect that the reason why 2D worlds do better than 3D worlds when solving 3SAT is
a matter of distance and diversity. 3SAT problems tend to to have a large number of local
optima that EC systems can fall into. Because of this, maintaining diversity is key. This
may suggest why corners are so important, there needs to be more than one starting popu-
lation because there’s a strong chance that each population is very different from another.
However, diversity isn’t maintained in 3D systems due to the distance between starting
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Figure 2: A box-and-whisker plot of the number of completed evaluations for each
version. Note the log-scale on the y-axis.

locations. In the largest 3D world, the distance between a starting location and another
starting location was as small as nine locations. Meanwhile, in a 2D world, the distance
between starting locations was a factor of three larger, with the the largest world being 27
across. What is happening is a local optima is found, which can spread much more quickly
in a 3D world than in a 2D world due to the smaller distances between any two locations in
the 3D worlds. This compromises diversity and caused 2D worlds to perform better in our
runs.

Meanwhile, the ONESMAX problems are completely different. They have no local optima
to fall for, so the system has a different approach to solving them. In 3D worlds, smaller
potential populations are better because you want the number of new individuals to be
minimized, to a point. The problem will often be solved so quickly that new individuals
don’t have time to “mature” and contribute to solving the problem.

In 2D worlds, world size doesn’t matter as much, because the world almost never fills
before the problem is solved. Origin is important because the problem is solved so fast that
corners never have time to spread out fast enough to interact meaningfully, so starting in
one spot saves evaluations.

Overall, although 3D worlds didn’t solve 3SAT faster, it illustrated the importance of dis-
tance in cEA systems. Having a large distance between starting locations is good for main-
taining diversity, while if maintaining diversity isn’t an issue, then more starting locations
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are better. A potential route of future research is to decrease the number of connections
between locations and try to spread them more thinly. This is essentially trying to do the
opposite of what 3D worlds do, where there is an increased number of connections as well
as shorter distances between locations.
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