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Abstract 

 

The World Wide Web Instructional Committee (WWWIC) at North Dakota State 

University has been developing a high definition, stereoscopic animation depicting a 

Native American village in 1776.  As this animation is in development, portions of the 

animation are rendered multiple times as changes occur. 

Throughout repeated renderings of the animation, patterns began to emerge in relation to 

performance of specific machines used to render, and the time required to render 

complicated sections.  With these observations, a new job dispatching method was 

developed to take these attributes into account, thus reducing the time required to render 

the animation. 
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1 Introduction 

A distributed system can solve many real-world problems, but can also create new issues 

in terms of management and optimization, especially when the distributed system is built 

from heterogeneous hardware over a period of years. 

This paper focuses on an optimization solution useful within the scope of animation 

projects our group works with, based on knowledge of previous rendering jobs and 

benchmarked information from the available nodes.  This information allows us to 

allocate a specific number of frames to each available node, reducing inefficiencies that 

existed in our original system. 

2 Background 

The World Wide Web Instructional Committee (WWWIC) at North Dakota State 

University (NDSU) is an ad hoc committee of faculty, staff, and students working to 

advance education through the use of Immersive Virtual Environments (IVE; Slator et al. 

2006). 

One of WWWIC’s current projects involves the creation of a twelve minute, stereoscopic 

animation of a Native American village.  This village is called On-A-Slant, and existed 

near where the Heart River joins the Missouri River.  We use Maya 3D modeling 

software to create and edit the models used in the animation, and in total, the complete 

animation will consist of over 36,000 frames.   

For our purposes, the full animation is seldom rendered in its entirety.  Changes are made 

to the animation, those portions of interest in the animation are rendered into individual 

frames, encoded into a video, sent out among the interested parties, improvements are 

suggested to the modelers, and more changes are made.  This process continues, and we 

see portions of the animation rendered repeatedly with small changes occurring. 

The scope of the project and the complexity of the models guarantee that a render job 

could not be completed in a reasonable amount of time on a single workstation.    If a 

change is made to the animation, it is unrealistic to wait a week (or longer) to render the 

change and receive feedback.  Thus a system was built to distribute the task of rendering 

the frames to many different machines.  At the moment, WWWIC has a collection of 

older, decommissioned machines configured in a Beowulf cluster.  In addition to this, 

various departmental machines are used, and when available we utilize CCAST:  

NDSU’s Center for Computationally Assisted Science and Technology, who operate a 

number of high performance computing clusters. 

To coordinate all of these resources, a central head node was created, along with a series 

of scripts to organize the machines to render the portions of the animation. 
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This original system consisted of a queue with a database backend maintaining the state 

of the machines.  The head node has a list of frames that need to be rendered, and queried 

the database to see which machines were available.  A frame is assigned to each machine, 

the machine renders the frame, and when complete, updates the central database stating 

that the frame is ready for retrieval and the node is ready to receive another frame. 

In general, this system works fairly well.  Machines continued to receive frames to render 

until the batch is complete.  It is not a complicated set up, but there are numerous 

inefficiencies in the system.  Also, complete logs of each rendered frame were kept, and 

patterns began to emerge that helped show a better method could be used to render the 

frames. 

2.1 Queue Inefficiencies 

Allocating one frame at a time introduces much inefficiency.  Maya allows the user to 

specify a range of frames to render.  When implementing the queuing system, that range 

is one frame.  Thus, for every frame rendered, Maya is needed to load the necessary 

binaries, models, textures, and other resources it needs for every frame rendered.  

Loading can take between 20 to 30 seconds.  So, using the original queuing system, at 

least 20 seconds would be used for every single frame rendered.  Assuming one of the 

nodes would render 400 frames in one batch; this single inefficiency can add over two 

hours to the overall render time.  Instead, if Maya was specified the range of frames to 

render at runtime, the inefficiency resulting from the necessary resources being loaded 

would only occur once.   

In addition to issues caused by Maya, other inefficiencies occur within the system.  The 

head node needs to contact a machine for every frame rendered; this connection may take 

a second or two per frame.  The worker node is configured to confirm that it received the 

message to render correctly.  Post processing occurs, taking care of some error checking 

and log file parsing to be loaded into the head node’s database, a node may wait in a 

queue for seconds while the head node is contacting a different node to work, or sleeping 

before checking to see if any more nodes are ready to render; all these small 

communication connections between the head node and worker node add up to more 

inefficient uses of time, amplified as these occur for every frame rendered.  Instead, if 

Maya is focusing on a range of frames to render, these could be taken care of elsewhere 

or in parallel while Maya is rendering the next frame.   Such measures will be able to 

further reduce the time required to render a batch of frames. 

2.2 Frame Complexity 

Through repeated rendering jobs of the animation, we have noticed a distinct pattern 

emerge in regards to the time that is required to render certain frames compared to others.  

A particular frame that consists of a wide expanse, with many different surfaces and 
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textures in view takes a greater amount of time to render than another frame with few 

textures and surfaces in view of the camera, while keeping the hardware identical.   

For example, Figure 1 shows three different types of frames, and the associated time it 

takes for the frames to render. 

 

Frame 00001:  This is a medium 

complexity frame.  Many of the 

polygons are far in the distance.  

This frame takes 285 seconds to 

render on an Intel Core 2 Quad 

machine. 

 

Frame 03000:  This is a higher 

complexity frame.  The large 

number of polygons associated 

with each plant in the garden 

adds up to create a complicated 

frame to render, in addition to the 

wide expanse in view.  This 

frame takes 420 seconds to 

render on an Intel Core 2 Quad 

machine. 

 

Frame 04200:  This is considered 

a simple frame.  The polygons 

simply consist of the ground and 

sky, and not many polygons are 

in view in the distance, as 

compared to frame 03000 and 

frame 00001 as mentioned 

before.  This frame takes 53 

seconds to render on an Intel 

Core 2 Quad machine. 

Figure 1:  three frames from different sections of the movie show the contrast between 

simple, medium, and higher image complexity. 



5 

 

In the context of an animation, we generally don’t see large changes in frame complexity 

between consecutive frames.  Since one second of video is 30 frames, any sort of 

dramatic shifts in the scene would not be visually appealing in our animation.  Such 

dramatic shifts could occur with very rapid changes in camera path or angle; these cases 

do not occur in our current project. 

 

 

Figure 2:  A scatterplot of rendering times for individual frames shows the variable 

difficulty of frames throughout the movie.  The first 1700 frames are a traversal up a 

river, with relatively low render times. After 1700 frames the camera turns inland over 

more complicated terrain and animated figures that add significantly to the complexity of 

each frame. 

To emphasize these observations, Figure 2 shows the relationship between the time 

required to render a frame and that frame’s position within the greater scope of the 

animation, holding the capability of the machine on which these frames are rendered 

constant. 

For calculating the frame complexity, we simply render the frames on hardware with 

similar processing ability.  If similar hardware was not used, we would have two different 

variables in play:  frame complexity and node ability.  However, rendering all 5000 

frames of the part of the animation that we are interested in on one machine would take 

approximately 13 days of render time.  Fortunately, we have twelve machines available 

with identical hardware specifications (Intel Core 2 Quad processor with 2.66 GHz 

processor clockspeed and 4GB of memory).  In addition, since the changes between 
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consecutive frames are gradual, we do not benchmark every single frame.  Instead, to 

achieve our frame complexity calculation, we render every fourth frame, and interpolate 

the frame complexity.  Using multiple machines with similar hardware and interpolation 

of frame complexity allows us to reduce the time to benchmark the frames to about seven 

hours.  

2.3 Node Ability 

In addition to a pattern emerging between different frames of the animation, we can also 

show that a machine performs consistently when given a frame to render.  This should 

come as no surprise.  It has also led to the observation that two machines, with 

completely different hardware, consistently perform the same, in relation to each other, 

no matter which frame each node is working on. 

To show these results, we will compare two machines, an Intel i7 2.67GHz with 6GB of 

memory with an Intel Pentium 4 1.90GHz with 512MB of memory against different 

frames. 

Frame 

Number 

Intel i7 

Average Time 

(seconds) 

Intel i7 Time 

Standard 

Deviation 

Pentium 

4 Time 

(seconds) 

Pentium 4 

Time Standard 

Deviation 

Intel i7 Time 

/ Pentium 4 

Time 

50 179.8475 0.8988 3325.625 17.8601 0.054079 

1800 34.0065 1.9754 749.8718 13.0171 0.04535 

2577 287.0317 0.4594 5914.571 28.1357 0.04853 

3577 177.7619 0.5046 3567.256 14.2554 0.049832 

4000 26.9397 1.1102 591.8056 14.2806 0.045521 

4469 108.0282 0.3946 2188.4 15.2635 0.049364 

Table 1:  a comparison of render times on two platforms each with significantly different 

processing power. 

Obviously the Pentium 4 machine requires more time to render a frame compared to an 

Intel i7 machine.  The important piece, though, is that the ratio comparing the Intel i7 to 

the Intel Pentium 4 stays fairly consistent.  Thus, regardless of which frame each machine 

is working on, assuming the frames have similar complexity, the nodes will perform 

comparably (and predictably) similar to each other. 
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3 Implementation 

Foertsch et. al. 2011 described an idea on how to completely eliminate the queuing 

system.  As noted, we wish to avoid allocating one frame to one node at a time.  The head 

node would estimate an optimal dispatch, which can be built from knowledge gathered 

from previous rendering of those frames, in addition to benchmarked information about 

each node available.  Each node is allocated a group of consecutive frames such that the 

sum of the computed work for that group of frames is compatible with the amount of 

work that node can accomplished in the calculated amount of time.  Machines that have 

superior hardware will be allocated more render units (not necessarily frames) than 

machines with inferior hardware. 

The following is an exercise allocating six frames between two nodes.  For the sake of 

simplicity, we define one render unit as one minute of CPU time for one of the Intel Core 

2 Quad machines we used to benchmark the frames.  For example, the first frame of the 

animation requires 262 seconds to render, resulting in a frame complexity of 4.38 render 

units. 

Once we know the total number of render units in the current batch, we can calculate how 

many render units of work each node will render, based on the node performance 

numbers calculated earlier.   This tells us exactly what portion of the total amount of 

render units must be allocated to each node. Equation 1 shows the generic case. 

 

Equation 1:  the general formula used to calculate the amount of rendering units each 

node will be allocated, along with the total time required for rendering those frames. 
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Host Seconds per RU 

Intel Core 2 Quad 60 

Intel Pentium 4 180 

 

Frame Number 1 2 3 4 5 6 

Render Units 2 3 3 4 2 1 

Table 2:  a simple example, using five frames and two render nodes. 

The calculations work out as the following.  We first calculate the sum of the combined 

render units of each frame, and solve for the time required to render. 

 

Equation 2: the specific formula used in the current demonstration. 

We find t to be 675 seconds, meaning that with an optimal distribution of frames, 

rendering should complete in 675 seconds.  Now we calculate the work of each 

individual unit (time * seconds per RU), and we find the Intel Core 2 Quad will render 

11.25 RU and the Intel Pentium 4 will render 3.75 RU.  However, this is an imperfect 

measurement; a frame is a discrete unit that we cannot split into portions of a frame to 

render.  For the sake of simplicity, we find it best to allocate one frame over the allotted 

amount of render units.  Rendering one less than the allotted amount of render units 

would leave frames unrendered near the end of the animation, which is unacceptable. 

Frame Number 1 2 3 4 5 6 

Render Units 2 3 3 4 2 1 

Host Intel Core 2 Quad Intel Pentium 4 

Cumulative RU 

per Host 

2 5 8 12 2 3 

Table 3:  allocating a consecutive set of frames to each node one frame at a time. 

Thus the Intel Core 2 Quad will be dispatched to render frames one through four, and the 

Intel Pentium 4 will render frames 5 though 6. 
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4 Experiment 

For the optimized dispatch to function, we run the exact same set of calculations as in the 

example above.   For this paper, we are focusing on frames 1-4998, which comes out to 

being approximately 15015.35 render units.  We will distribute these 4998 frames among 

the nodes using the benchmarked performance figures determined earlier. 

In general, the metric we are interested in is the time it takes for the system to render the 

necessary frames, comparing our original method for dispatching frames (one frame at a 

time) vs. allocating a block of frames to render per node at the beginning of the dispatch 

job.   

An experiment was conducted using the original dispatching method.  The time required 

to render 4998 frames dispatching the frames one at a time was 19 hours, 35 minutes, and 

24 seconds.  This will serve as our control measure for the following experiment. 

The following table shows the results of our intelligent dispatch, depicting the hostname, 

the lower and upper bounds for the frames to render, and the time required to render 

those frames. 

Host Starting 

Frame 

Ending 

Frame 

Total Render Time 

lab19.cs.ndsu.nodak.edu 1 226 15h 19m 5s 

lab18.cs.ndsu.nodak.edu 227 595 15h 4m 29s 

lab17.cs.ndsu.nodak.edu 596 1026 15h 7m 9s  

lab16.cs.ndsu.nodak.edu 1027 1500 15h 3m 11s  

lab15.cs.ndsu.nodak.edu 1501 2113 11h 37m 1s  

lab13.cs.ndsu.nodak.edu 2114 2377 15h 12m 21s  

lab12.cs.ndsu.nodak.edu 2378 2574 15h 19m 33s  

lab11.cs.ndsu.nodak.edu 2575 2715 15h 24m 51s  

lab10.cs.ndsu.nodak.edu 2716 2861 15h 26m 57s  

lab09.cs.ndsu.nodak.edu 2862 3005 15h 20m 11s  

lab08.cs.ndsu.nodak.edu 3006 3143 15h 14m 57s  

lab03.cs.ndsu.nodak.edu 3144 3335 Process died after frame 3190 
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lab01.cs.ndsu.nodak.edu 3336 3567 14h 59m 41s  

lab00.cs.ndsu.nodak.edu 3568 4433 14h 57m 58s  

Serenity 4434 4494 18h 19m 30s  

192.168.1.8 4495 4520 14h 38m 26s  

192.168.1.7 4521 4556 15h 32m 37s  

192.168.1.5 4557 4594 15h 17m 55s  

192.168.1.26 4595 4621 15h 15m 13s  

192.168.1.25 4622 4653 15h 24m 7s  

192.168.1.22 4654 4705 16h 5m 10s  

192.168.1.21 4706 4739 16h 4m 3s  

192.168.1.2 4740 4862 16h 4m 51s  

192.168.1.19 4863 4944 15h 16m 1s  

192.168.1.18 4945 4998 8h 55m 41s  

Table 4:  twenty-five machines of varying capacities are assigned sequences of frames to 

render according to their complexities with aggregate running times recorded. 

As can be seen, every machine finished in less time than the queuing method, with the 

worst performing machine (Serenity) finishing one hour and 16 minutes sooner. 

It should be noted that in this experiment, lab03.cs.ndsu.nodak.edu’s Maya process died 

partway through the rendering process.  This can happen no matter which rendering 

method was being used.  A second process could be started on the worker nodes to detect 

whether a process died before completion, and restart the process with a command to 

being where it left off.  This would add the time required to load Maya, and any time lost 

while working on the frame it crashed on (in this case, 3191). 
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5 Remarks 

5.1 Experiment Summary 

Experiment Name Method Time (Worst Case) 

Control Queue – Dispatch one 

frame at a time 

19h 35m 24s 

Experiment 2 Intelligent Dispatch 18h 19m 30s 

Table 5: comparison of the two rendering methods. 

In general, the results are promising.  This experiment shows that by reducing 

inefficiencies through allocating frames in consecutive groups to each instance of Maya, 

we can decrease rendering times. 

At this point in the project, one could look at the individual results for each node, and 

slightly alter the benchmarked value up or down, as needed.  For example, in the 

experiment shown in Table 4, the Beowulf nodes were still rendering while all of the lab 

machines have completed, with some Beowulf nodes rendering a full hour after others 

have completed.  It may be worthwhile to tweak the benchmarked values for the Beowulf 

nodes, adding seconds to the amount of time required for those machines to process one 

render unit. 

192.168.1.18 was allocated fewer frames than its optimum amount of render units.  

However, this is to be expected.  As mentioned earlier, each node is allocated slightly 

more than the optimal render unit amount, as we do not wish to have unrendered frames 

at the end of a batch.  Thus one machine is expected to be underutilized, which is 

acceptable. 

Lab15.cs.ndsu.nodak.edu finished in 11 hours and 37 minutes, which was quicker than 

the other lab machines (lab08 though lab19 all share identical hardware).  This is 

inefficient, as it remained idle and unused while other nodes continued to render for 

many hours.  A quick investigation revealed that when our node benchmark was ran, 

lab15 was experiencing hardware problems, and had its CPU speed downclocked for 

stability.  When we conducted the experiment, the CPU speed had been increased to its 

original value.  Once this machine is benchmarked again, we should see the overall 

render time of the intelligent dispatch reduced further. 

Should more nodes become available, we would simply need to benchmark those 

machines to determine the amount of time required to process one render unit.  Once that 

value is known, they can be added to the head node’s optimal frame dispatch calculation. 
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5.2 Caveats 

There are a couple caveats to the optimal dispatch method.  First, information needs to be 

known about the frame complexity.  At the beginning of an animation project, that 

information is not available.  Another situation would be where we allow another group 

to use our rendering farm for their project.  In these cases, a few batches would need to be 

rendered using the queuing method to generate the data required to make frame 

complexity assumptions. 

Another issue is that this method is effective as long as the frame complexity remains 

similar between batches.  In general, this is true.  Many of the changes between different 

revisions of the animation may be as simple as moving the position of a tree from one 

point to another, or positions of modeled people, etc.  Though these changes are useful in 

regards to the animation, they do not result in substantial changes in the frame 

complexity values of each frame.  However, if we wished to speed up the camera path in 

a certain portion of the animation, this would result in different scenes being in view at 

different times, which could have drastic effects on the calculated frame complexity 

values.  In this case, it may be worthwhile to render using the queuing method for at least 

one revision to rectify such changes.  Analyzing the difference in times between nodes 

could be a simple indicator whether drastic changes to the frame complexity have 

occurred. 

6 Conclusion 

As we see, the main purpose is to show that within a rendering environment, information 

can be gathered about jobs and nodes to find the allocation of frames that utilize the 

available resources effectively.  This general idea could be applied to other environments 

where information can be gathered about the complexity of jobs and the ability of each 

node. 
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