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Abstract 
 

Professional mariners rely on accurate knowledge of ocean conditions to perform their 

jobs and prevent accidents. Events occurring in coastal waters can potentially impact not 

only the local economies of coastal communities but have consequences to the national 

economy as well. Ocean currents are monitored with coastal radar stations and buoys that 

have wireless communication links with each other. These may occasionally malfunction 

during harsh weather conditions however, or even due to normally-occurring atmospheric 

conditions. As continuous monitoring of ocean conditions allows naval workers to plan 

efficiently and reduce opportunities for any negative impact, a suggested approach to 

maintaining continuous ocean current readings under uncertain conditions is the artificial 

neural network computational model.  

 

Neural network models allow for missing data to be approximated by internalizing past 

patterns that have been observed in the data record. The model is inspired by biological 

networks of neurons and consists of interconnected computational units, forwarding 

intermediate results from one unit to the next. Weights associated with the connections 

between these computational units can dynamically adapt as new patterns and data are 

observed by the system.  

 

Internally, the model initializes all weights randomly between the neurons. The model is 

fitted, or trained, by introducing a set of data with known output to the model and each 

weight adjusts accordingly in small increments. After evaluating training data, the model 

is validated by executing over a separate set of data with known outputs to which the 

model has not been exposed. The average error of these results is compared to a desired 

level of tolerance. Alternation between the training and validation processes continues 

until the model’s error reaches an acceptable range.  

 



 

 

One difficulty that this model has to overcome in the proposed application is due to the 

region from which the data was collected and the tendencies of the current in that area. 

Naturally, currents in the Gulf of Maine display sinusoidal behavior; however, in some 

sub-regions, currents can rapidly change and present extremely high velocities. To 

overcome this difficulty, a model initially trained on overall data was subsequently 

retrained on smaller sub-regions, allowing for improved results in those areas.  

 

Approximations resulting from the neural model appear to reliably outperform common 

predictive techniques such as auto-regressive functions, areal averaging and the 

persistence model. As most linear extrapolation models perform poorly for this 

application due to the sinusoidal patterns exhibited in tidal signals as well as the 

difficulties presented by wireless communication links, the Neural Network appears to be 

a promising approach for modeling and approximating missing readings for these natural 

phenomena. 
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1.  Introduction 

With the continuing development of Wireless Sensor Networks (WSN) to enable us to 

monitor our environment, increasingly innovative techniques are required to process the 

volumes of data collected, as well as approximate missing data readings should the 

sensors in question fail.  Natural forces have ever presented a challenge to man-made 

constructions with floods, tornadoes and other natural disasters periodically causing 

problems of varying severity world-wide. As technology and our understanding of the 

world grows, we are better able to prepare and predict such events to help prevent losses. 

But setting catastrophes aside, simply monitoring the real-time data of the prosaic events 

taking place within nature on a daily basis can be intriguing for the researchers that spend 

much of their time studying and working in the field. 

 

Like a weather report for the general public, information gleaned from monitoring ocean 

currents has benefits for all mariners in a monitored coastal region. Tidal forces change 

on a daily basis with varying degrees of magnitude and particular areas may have 

potentially hazardous currents. Providing real time readings of the current allows 

mariners to plan their route efficiently, adjust their course should problems occur and 

avoid endangerment. Fishermen may also be able to use the results to follow a 

particularly abundant source of food, while freighters may plan their routes around 

routine current changes to maximize their efficiency. The Coast Guard could warn those 

on the seas of pending dangers or localize lost cargo that has drifted out to sea. Marine 

Biologists, oceanographers and other marine scientists may benefit as well by being 

better able to perform their studies by relying on the results produced by ocean current 

monitoring [2, 8]. Regardless of the task at hand, accurate real-time measurements of 

currents can be a crucial aspect to many professions. 

 

Nor are the benefits of monitoring coastal waters localized only to those most directly 

involved. Coastal communities are economically impacted by the fishing, transportation 

and leisure activities that operate in their region due to their close proximity to the sea 

and its resources. Beyond that, a significant portion of the United States’ economy is 

reliant upon ship-borne imports and exports, whose follow-on economic effects are then 

felt throughout the country. For all of these reasons, the coastal ocean is an important 

environment in which to have reliable real-time monitoring systems embedded. 

 

Limitations exist, however, on what our present sensor technology is capable of. 

Currently, coastal radar stations may obtain accurate surface ocean current readings only 

when their signal coverage overlaps. Another method of data collection are buoys that 

transmit the data via radio frequencies. But either method has various benefits and 

downsides depending on the particular circumstances. 

 

The coastal radar stations’ reliance on overlapping signals presents potential difficulties 

as geographical distance in combination with inclement weather circumstances may 

cause interference with the radar signal. Similarly, buoys are expensive to produce and 

maintain simply due to their often-remote locations, as well as being embedded in a 

corrosive salt water environment that is not conducive to the long-term survival of the 
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electronic components they carry. It is for these reasons that data retrieved from these 

systems may often be incomplete or unsatisfactory for display.  

 

Different mathematical models can be used to approximate the missing data as it occurs 

in order to accurately display the data. Linear models may be used to forward-extrapolate 

for missing data in a time-series at a buoy-location, for example; however natural signals 

are infrequently linear, nor are they stationary, complicating the modeling effort.  Having 

a long series of past data for a location can often enable an accurate fit of a sinusoidal 

signal to observed readings, so long as power, memory and computational resources are 

not limited.  However, sensor nodes embedded in situ in remote, natural environments do 

not usually benefit from a reliable, constant power source, but must instead make do with 

stored power in the form of batteries.  The Artificial Neural Network (ANN) is 

particularly promising in this context, as it is a highly adaptable mathematical model used 

for interpolation and extrapolation and has proven to be successful in the face of both of 

these difficulties -- nonlinear approximation and limited input data sets [1, 5].  It has 

further been found to be resistant to the nonstationarity common to natural data readings 

[9] and is thus an intriguing approach to investigate regarding its capacities in providing 

accurate approximations of surface tidal currents.  Since such models can be pretrained in 

the laboratory and electronically delivered to the sensor station in situ, the expense of 

regular service-visits to each marine sensor platform can be avoided.  As the models are 

pretrained, no extensive computations need to be made on the fly in order to fit data to a 

nonlinear function whenever the model needs to provide a result, thus reducing some 

battery usage.  And finally, since an ANN is adaptive, models once delivered to their 

disparate platforms may each continue to self-modify and evolve into accurate 

approximators for their particular regions, as opposed to a static model whose 

performance may degrade more quickly with the changing of the seasons, for example. 
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2. METHODOLOGY 
 

 

2.1 Ocean Surface Current Measurements 
 

The Gulf of Maine, on the northeastern coast of the United States, extends from the 

northern tip of Cape Cod, MA in the southeast to the southern tip of Cape Sable, Nova 

Scotia in the northeast. It encompasses nearly 58000 km
2
 of ocean, and is known to have 

some of the highest tidal variations on earth. The data used in this study were drawn from 

the Gulf of Maine Ocean Observation System (GoMOOS) repository currently 

maintained by the School of Marine Sciences at the University of Maine. The collection 

system consists of an array of buoy-mounted sensors, as well as coastal radar (CODAR) 

stations located to provide maximal coverage of the sea-surface of the Gulf of Maine [8]. 

Data was collected in June 2005 from the CODAR system of 4.3-5.4 MHz SeaSonde HF 

radar stations deployed along the perimeter of the Gulf of Maine. Each radar station 

periodically transmits radar signals in a 360º pattern, directed out towards the surface of 

the ocean. Reflected signals undergo a Doppler frequency-shift, from which one radial 

component of the surface current velocity vector may be determined. Combining the 

radial surface readings of all CODAR stations from a single point in time enables the 

synthesis of a field of 2-D surface current velocity vectors, each assigned a location in a 

regular square grid with cells measuring roughly 20 x 20 km, running parallel to the coast 

of Maine. We refer to the two components of these velocity vectors as u and v. Fields of 

surface currents are thus determined once per hour, and are used as a proxy for a notional 

network of wireless sensor nodes embedded upon the ocean surface. Further information 

regarding CODAR array operation can be found in [8]. 

 

 

2.2 The Artificial Neural Network Model 
 

The Artificial Neural Network is a computational model which recognizes patterns 

inductively by mapping relationships between particular inputs and the corresponding 

outputs. The general model is based on an abstract representation of biological neurons 

(computational nodes) and synapses (links) which interconnect the nodes with a weighted 

value. Many variations exist on the base model, generally categorized as either 

regression- or classification-type models.  

 

The functionality of the nodes and links is almost trivial and provides the basis for the 

function of the entire model. Every node has a set of input links that provide a value.  The 

receiving node then sums all incoming values and evaluates the sum through an 

activation function. This value is then fed forward via outgoing weighted links to 

subsequent nodes where the process is repeated. 
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Figure 1 : Computational Node within an ANN 

 

Figure 1 illustrates a particular node within the neural network. The incoming x values 

generated by other nodes are passed through the left links which scale the x value by the 

weight wi associated with the link. The node then sums all inputs and applies the 

activation function Φ. The result then gets sent out as the y values (i.e. the output of the 

node multiplied by the link's weight wi) which become the x values for subsequent nodes.  

 

The model organizes the nodes into three or more ordered layers which determines where 

synapses are formed. In the standard feed-forward ANN model, there are no recurrent 

connections (i.e. links between nodes within the same layer) thus any one node in a 

particular layer receives its inputs from nodes in the preceding layer, and outputs its 

results to nodes in the subsequent one. 

 

The first layer to a typical neural network model is termed the input layer, which contains 

only output synapses. The input layer links to the first of n hidden layers. The hidden 

layers are one or more layers containing an arbitrary number of neurons. The last of these 

hidden layers then connects to the output layer, which contains nodes that only have input 

synapses and the values contained within the nodes is the model’s outputs. 
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Figure 2 : An illustration of the ANN model. 

 

In Figure 2, each circle represents a node and the links represent the synapses that 

connect the neurons. The arbitrary model depicted here has three input nodes, two output 

nodes and four nodes in each hidden layer. Note that the amount of neurons in any given 

layer is wholly design-dependent, based on the particular circumstances of the models 

application.  

 

The ANN model initializes all of its weights to small random values which will change as 

the model is trained. Training is the act of passing known inputs values through the 

model, comparing the model's output results to desired values, and then adjusting the 

weights of the synapses through an algorithm known as backpropagation [1, 7]. The 

backpropagation algorithm iteratively passes through all the links, working backwards, 

adjusting weights so that the results of output nodes are within an arbitrary acceptable 

error of desired model output values.  

 

 (1) 

 (2) 

 (3) 

  (4) 
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Backpropagation works by finding the difference between model outputs and the desired 

target values (Equation 1), and propagating these backwards to obtain deltas for the 

weights of each link (Eqs. 1, 2). This delta value is multiplied to the node's activation 

function to obtain the gradient of the error contributed by each weight . Once each 

gradient is obtained, an arbitrary ratio known as the learning rate, often denoted η, is 

used to modify the weight in the opposite direction of the gradient (Eq. 3). Each time this 

process is performed, model weights are adjusted (Eq. 4) to produce a more accurate 

approximation of the desired output. 

 

The choice of a learning rate that properly adjusts the weights is crucial for back 

propagation to work correctly. If the learning rate η is too large then the change in weight 

for the synapses will be too large as well, potentially leading to model divergence and 

failure. Therefore a relatively small η is necessary, however; choosing a too-small η will 

result in unnecessarily slow convergence to a solution. In our implementation, η was 

initialized to 0.1 

 

After the entire set of training data has been trained with the back-propagation algorithm, 

a different data set with known outputs is processed by the model to generate validation 

results. This validation data is used to get a general idea of the error-level of the model on 

data it has never previously seen, and thus the accuracy we can expect of it once 

deployed in the field.  Should this error value meet the application's accuracy 

requirements, it is ready for deployment.  Otherwise the backpropagation process is 

continued.  

 

 

2.3 The Temporal Persistence Model 
 

The persistence model is among the most simplest approaches for populating missing 

data. A temporal version of the more well-known spatial nearest-neighbor approach, this 

technique uses the last known value at that location as the value of the missing data. 

While this method might seem too primitive to give any reliable results, it does perform 

surprisingly well considering that tides typically do not shift magnitude or direction too 

rapidly under normal circumstances, and assuming the substituted value is not too old. 

 

Due to the simplicity of this model, it was used in the preliminary stages when making 

comparisons with artificial neural network. While the persistence model was quickly beat 

once the ANN. took shape, initially the model offered a time-efficient comparison to 

judge the effectiveness of the ANN. 

  

To conceptualize this, consider the set of known readings at a particular point, 

. The persistence model, , is simply defined as:  

 

  (5) 

  

 

2.4 The Linear Approximation Model 
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The linear model generates a best fit line from the three prior readings then uses that line 

to predict (or extrapolate) the missing datum. Though relatively easy to implement and 

straight-forward, the model’s linear nature makes it considerably inaccurate whenever the 

(sinusoidal) tides begin to change, and provides no ways to compensate for this which 

ultimately accounts for the model's high error. 

 

To generate the linear model with a given set of readings at a particular point which will 

be denoted as  where the  is the first reading in the set, 

first the slope, , was computed with: 

 

  (6a) 

 

and then the intercept, denoted , was found with: 

 

   (6b) 

 

The resulting linear equation is . Evaluating  will generate the 

predicted value for the next hour. 

 

 

2.5 The Areal Averaging Model 
 

The areal averaging model uses the surround area to a missing reading and averages those 

values to obtain an approximation to what should be in the center of those readings. The 

downside of this model is that it is reliant upon the immediate surrounding data and thus 

if that data is also missing then the model is inapplicable or less accurate. 

 

Given a missing point at the center of a 3x3 matrix, the available surrounding values are 

averaged, weighted equally, to generate the missing center value.
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3. Experimental Results and Discussion 
 

 

3.1 ANN Implementation 

 

Our ANN model's primary purpose is extrapolation and interpolation by means of 

function approximation, and is thus a regression-type model. A separate model was 

dedicated to each vector component (i.e. u or v) and therefore two separate models were 

trained to obtain final current-vector approximations. After numerous configurations of 

the model underwent trials, the present configuration was determined to offer optimal 

accuracy. 

 

To allow verification of the model’s accuracy, all available input vectors with known 

outputs were place into one of two sets. The first, denoted the training set, was used by 

the model’s backpropagation algorithm to train the weights of the synapses to provide 

accurate results. The second set, known as the validation set, was initially withheld from 

the model during the training process but subsequently used to obtain all reported results. 

The data was collected from a week long period of hourly readings measured by coastal 

radar stations and sensory buoys covering the Gulf of Maine [8]. Only five-thousand 

valid input vectors, in our case three consecutive readings, were obtained to constitute the 

two data sets. Roughly two-thirds of the data were used for training while the remaining 

third were dedicated to validation. 

 

The model consisted of three layers, namely: an input layer, one layer of hidden nodes, 

and an output layer. The input layer consists of four nodes which use the three prior 

values at the particular point which is being extrapolated and the forth node is a bias node 

with a constant input of one. Through experimentation, it was observed that eight hidden 

nodes produce the lowest average error in the models. The sigmoid activation function 

used within the nodes was the hyperbolic tangent which is a standard choice and works 

well for most applications of the ANN model. 

 

The learning rate utilized was determined through experimentation and is dynamic as the 

backpropagation algorithm proceeds. Initially, the learning rate is relatively large and 

decreases as the training progresses. This allows the model to quickly become accurate at 

the beginning and adjust in greater precision further into training. The final learning rate 

function consists of a six-step step-function with each step comprising of nine iterations 

of the backpropagation algorithm. 

 

During initialization the weights of every synapses are randomly generated in the interval 

of [-1, 1]. After fifty iterations of the back propagation algorithm were performed on the 

training data set, the weights reverted to produce the lowest average error for the model. 

 

 

3.2 Model Comparisons 

 

The linear model is intuitive and easy to implement. Although the linear model does not 
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necessarily provide an accurate representation of a nonlinear function, it provides a good 

baseline for comparison against more sophisticated models. 

 

The persistence model is another model that is easily implemented and provides 

relatively accurate approximations. In most cases the persistence model is capable of 

outperforming the linear model assuming a suitably small temporal resolution. Consider 

Figure x which clearly shows the persistence approximation is closer than the linear one 

in a particular instance. 

 
Figure 3 : Linear & Persistence Model Extrapolation 

 

Each surface ocean current reading consists of two component vectors, u and v. These 

component vectors are summed to obtain the actual current-vector. Approximations are 

similarly generated as component vectors that produce our predicted current-vector. To 

obtain the error vector, the vector difference between the actual current-vector and the 

predicted current-vector is taken. The magnitude of this error vector is taken. The root 

mean square of the magnitudes of each model’s error vectors is represented in the 

following figure. 
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Figure 4 : R.M.S.E. Model Comparison 

  

As the figure 4 demonstrates, the areal model clearly exhibits the worst performance 

among the chosen approaches. Despite the magnitude of the error, it is important to keep 

in mind that this result would often be considered an acceptable approximation for the 

missing data point. In comparison, the linear model can be seen to exceed the areal 

performance, to the point of approaching the effectiveness of the persistence model. 

 

It is interesting to note that partitioned ANN model does not seem to have any additional 

improvement over the global ANN model. It does stand to reason that a nonlinear model 

should have surpassed linear models performance; its reassuring however to observe that 

the ANN has also outperformed the persistence model, as the latter's relatively simple 

approach tends to deliver impressive performance (on paper, at least), however ultimately 

unsatisfactory from a practical standpoint. 



11 

 

4. Conclusion 

 

There are many ways to populate missing observations from a set of data. Some methods 

use intuitive approaches (such as averaging the surrounding area's data or using a prior 

value) but for nonlinear phenomena these methods tend to have relatively high error due 

to an insufficient number of degrees of freedom, or simply not being a good fit for the 

function being modeled. The Artificial Neural Network allows for accurate data 

extrapolation when compared to other models and is low cost once the model has been 

trained. The adaptive pattern recognition that the neural network performs allows the 

model to account for the sinusoidal motion that tidal currents exhibit over the course of 

time. Many models cannot account for this behavior due to their linear nature, and 

nonlinear models are often too resource intensive for devices to perform remotely. 

 

There are significant drawbacks to using an Artificial Neural Network.  A major issue 

\with the model is that it is considered a black box [4] as it is difficult to determine the 

actual inner operations of a trained model, and thus prove its validity compared to 

alternate approaches. The ANN relies on an extensive and representative initial data set to 

train the model, and results cannot be generated until there are enough readings. 

 Additionally, the number of nodes and resulting links results in a large amount of 

multiplication operations as input nodes and particularly as hidden nodes are added. 

 Though these add additional degrees of freedom to the ANN’s operation, too many lead 

to over-fitting, yet little research exists to suggest how many nodes are enough or too 

many [5].  

 

Overall, the results produced by the Artificial Neural Network were capable of 

outperforming other initial approaches to the problem. While other extrapolation models 

exist and may outperform the Artificial Neural Network, the nature of the Wireless 

Sensor Network problem requires that the approximations be accomplished with minimal 

energy expenditure, be it via transmission or computational. A well trained model may be 

sent to such devices and reduce the computational effort required, whereas alternate 

similarly-complex models would require the device to perform either extensive 

computation or receive/transmit data from neighboring sensor platforms, either of which 

would place an unacceptable drain on limited power reserves. Additionally, the devices 

may further refine the model by continuing training with data collected in situ, which 

allows computational model to self-modify, whereas static models would need to be 

periodically redistributed to sensor platforms. 
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5. Future Work 

 

 There are several interesting research avenues that remain unpursued due to time 

constraints. The model used was designed and built from the ground up and because of 

this a good portion of development time was dedicated to ensure that our model was 

correctly implemented and performing as expected. Having dedicated more time or 

resources might possibly have offered more accurate models or more conclusive results. 

 

During the development phase, time was taken to modularize the model and allow 

for varying levels of complexity. An aspect that was left unimplemented was support for 

having multiple hidden layers and implementing such a model could possibly increase the 

accuracy of the model. Additional hidden layers can allow the model to recognize more 

complex patterns by having more weighted links to adjust during the back propagation.  

 

An aspect of the model that was implemented allowed support for varying 

amounts of input nodes however all models created had only three input nodes due to the 

interface with the database. Increasing the number of inputs would allow for the model to 

recognize patterns over larger spans of time and adds the possibility of incorporating a 

greater variety of inputs such as geographical coordinates or derivative values. 

Correlations may be recognized by the model between the coordinates, time of day or 

other inputs that could potentially enhance the overall accuracy of the model [6]. A 

further reason an ANN model may be a particularly adept choice for multiple-predictor 

problems is that whereas a normal polynomial function's parameters grow exponentially 

with the number of predictors p, an ANN's parameters grow merely linearly with p [4]. 

 Again, the time constraints of our research did not allow us to implement and form 

conclusive results with other inputs. 

 

In addition to increasing the input nodes, increasing the number of output nodes 

could reduce the number of models by combining the u-components and v-components 

into a single model. Besides reducing the number of models, this may also enhance 

accuracy by modeling a relationship between the u and v components which is likely to 

exist. 

 

The data set utilized for this project was collected over the span of a single week 

with hourly readings. This produced a data set with about twenty thousand entries but 

considering the magnitude of the region and time frame the data was collected in, the 

usable data was spread relatively thin. Testing our model on alternate data sets from 

regions other than the Gulf of Maine [2] for performance comparisons would provide 

more conclusive results in demonstrating the power and versatility of the model. 
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