

A Qualitative Analysis of 3D Display Technology

Nicholas Blackhawk, Shane Nelson, and Mary Scaramuzza

Computer Science

St. Olaf College

1500 St. Olaf Ave Northfield, MN 55057

scaramum@stolaf.edu

Abstract

We employ the perceptually based error metric developed by Ramasubramanian et al. to

guide the construction of a realistic 3D environment with the aid of a 3D display. The model

we used was generated from a large data set of left and right image pairs of the real world

and was then exported to the Irrlicht animation engine, preserving as much of the original

lighting data as possible. We rendered the final model on both the Sony 3D TV and the

dual projectors. The engine allows the creation of scene cameras controlled by the user,

which allowed us to create two perspective cameras and display the frames using side by

side split screens. The final analysis of the model is based on the realism of the model and

the 3D effect generated by the display.

mailto:scaramum@stolaf.edu

1

1. Introduction

The human visual system is imprecise. Thus any model that is photo-realistic only needs
to be as precise as the visual system itself. To that end we employ the perceptually
based error metric developed by Ramasubramanian et al. to guide the display of a 3D
environment. With the aid of two 3D displays, we created a 3D environment using the
open source graphics engine, Irrlicht. The engine allows the creation of scene cameras
controlled by the user. Since the dual projectors, one of our 3D displays, are connected
to a single computer through VGA cables, which are converted to use a single graphics
card with two DVI outputs, we are able to extend the desktop and overlay one image on
top of the other. The slight displacement of the left image from the right image was
achieved by placing two cameras in Irrlicht and applying the split screen capabilities of
the engine. For our other 3D display, a Sony 3D TV, we used a single HDMI cable
powered by a laptop with a dedicated graphics card. Using the split screen input with
the displaced cameras, we displayed one half of the input at the full resolution per
frame, switching the half that was displayed.

The same software was used on both the TV and the dual projectors. There were
settings on the TV to modify displacement, but we found them to be too coarse for our
model. The TV has three different 3D display modes: simulated, side-by-side, and over-
and-under. The simulated mode allowed the viewer to input a single display, which is
not split screened, and allowed the TV to project the image at twice the normal
frequency, shifting ever other frame slightly. This created a simulated 3D effect. The
side-by-side and over-and-under modes are similar in the respect that they must have
two images placed, as described by their name, either side-by-side or over-and-under in
a single frame.

The model we used was generated from a large data set of left and right image pairs.
These images were processed, and then transformed into a 3D model using Blender.
The model is then exported in the Collada file format to the Irrlicht animation engine,
preserving as much of the original lighting data as possible. Using OpenGL, we rendered
the final model on both the described displays.

The final analysis of the model is based on the realism of the model and the 3D effect
generated by the display. A perception based error metric was implemented to assist in
the analysis. Through this error metric, the realism of an image can be calculated based
on luminance and contrast. The 3D effect of a model is based on the depth represented
in an image, the plane of focus, and the lack of ghosting. Ghosting occurs when the
image that is meant to be sent to only the left or right eye can be seen by the opposite
eye.

2

2. Framework

2.1 Irrlicht

Irrlicht is an open source 3D graphics engine which provides a robust framework for
displaying scenes. The model was based on images captured by our camera team with a
stereo-camera set-up and transformed into scenes by our modeling team. The
generated models were then imported into Irrlicht using the open source image format
Collada. The scene lighting and texture information was included in the Collada file
generated by the modeling team. In order to create a photo-realistic model, with
respect to lighting and shadows, we would need to constantly update the model’s
shadows using a global illumination algorithm. However, our hardware was not capable
of running this solution in real time. Instead we used standard ambient lighting, which
was set low enough to allow the lighting in the Collada files to handle shadows, which
became static. In addition, the buffer system of Irrlicht could only handle 65,000
vertices per mesh, so we had to use a dynamic buffer system included in the Irrlicht
library and then cut the model into pieces in order to display so many polygons. In
previous model tests a mesh cache system was used to retrieve all of the needed object
nodes from other file formats, but these were found to lose information at high polygon
counts. The standard OpenGL renderer was used without modification. This is another
area which could be improved by modifying the way we render the separate cameras
and applying the resulting work from the threshold mapping that is done in 3.2.

2.2 Thresholding

Using threshold calculations we were able to analyze the luminance and contrast in a
scene. With this analysis, we are able to determine how far off a static image of our
model can be from an image taken of the real world. Our implementation used
perceptually based thresholds for comparing luminance, which were calculated for each
test image from a series of algorithms developed in Ramasubramanian et al.

The first threshold map determined the amount of luminance that could be changed in
the scene. This was done by calculating the result of the Threshold vs. Intensity
function, or TVI. The TVI function required every pixel’s luminance value, which was
calculated using a luminance function, which used differing scalars for the red, green,
and blue channels. Once the pixels’ luminance values were calculated, the TVI function
used a weighted bounding box to determine adaptation luminance of a given pixel. To
determine the dimensions of the bounding box, we used a formula based on the full
view angle for the width and height of the image. The full view angle came from the
camera’s specific sensor dimensions and its focal length. Then, we averaged all

3

luminance values within the box to determine the center pixel’s particular adaptation
luminance. With this information, we used a piecewise approximation to determine
what the overall luminance change can be at that particular pixel before it is detectable
to the human eye.

We then moved on to calculating the change in contrast, also known as the contrast
threshold, at some number of associated peak spatial frequencies. This is accomplished
by the using a Gaussian pyramid, which is layers of images that have had a low-pass
filter applied a number of times to form new, smaller images and thus forming the
various levels of the pyramid. The low-pass’s mask is generated from a five by five box
of pixels with weighted values. Once the mask has been applied to each pixel, the value
generated by the mask is set as the new Gaussian’s level’s corresponding pixel. This is
then repeated for each Gaussian level. We generated a total of seven levels.

The Gaussian pyramid was then used to create a Laplacian pyramid. The Laplacian
pyramid is made of layers of images formed from this formula:

such that represents a particular level, represent Laplacian pyramid, represents
Gaussian pyramid, and expand represents the expand function. The expand function
uses the higher Gaussian level and expands it to be the same size as the lower level.
This requires an application of the mask.

Once we had the Laplacian pyramid, we moved onto constructing a Contrast pyramid.
The Contrast pyramid is made up of layers of images formed from the quotient between
the relevant levels of the Laplacian and Gaussian pyramids based on the formula:

where represents the Contrast pyramid.

These pyramids, the Laplacian and the Contrast, were then used to calculate what the
peak frequencies and amount of contrast represented at those frequencies. Specifically,
each layer of the Laplacian pyramid is associated with a given spatial frequency. To
calculate this, we had to run each layer’s background luminance, or average luminance
of every pixel, with a slowly incrementing frequency through a contrast sensitivity
function:

 √

such that is contrast sensitivity, is frequency, is luminance,
 , and . As f rises will also rise, until it hits a plateau,
at which point it will descend. Once this plateau is reached, the associated is the peak
spatial frequency for that particular Laplacian level. These peak spatial frequencies are

4

then combined with the Contrast pyramid’s levels in order to determine what the
spatial frequency is for a certain part of an image.

3. Methods

Through the use of a 3D device, we focus on generating a realistic 3D model. The
analysis of the model can be separated into two metrics: realism and 3D effect. The
combination of realism in the model and the amount of 3D effect generates the most
realistic displays. When considering the amount of separation, we need to consider the
effect that is the result of too much separation, which is called ghosting. Ghosting
occurs when the left image can be seen by the right eye and the right image by the left
eye. Even slight ghosting can cause the user to immediately reject the realism of the
model; however, it is not the only effect that can affect the realism of the model.

To implicitly define realism, we will use the slightly vague definition of just how realistic
the model looks. Specifically, we consider what the effect of the lighting, contrast,
resolution of the display, and perceived realism of objects would be on the realism of
the model. Using the image of the object and an image of the screen displaying that
same image, we are able to measure any distorting effects of the display. Since the
distortion was so great, we did not need to check the differences between the two
images, as there were visually distinct was within the thresholds we generated. For the
data we collected on the 3D TV, we observed a distinct increase in the overall amount of
blue in the images. This method is not without its flaws; careful consideration must be
given to the ambient lighting in the room the display is located in. We believe the
distinct color change was due to lack of or improper ambient light.

Determining the 3D effect of an image can be more complicated than determining
realism, since we have to deal with two images that are combined using the brain and
the visual system, which are both slightly different for every person. Over all there are
properties of the displayed model that will make it appear better than another. The first
part of analyzing the 3D is based on whether or not it is possible to perceive any depth
in the scene. Consider a scene with only a wall at a constant depth. Since there are no
other objects in the scene, the viewer will not be able to perceive any depth in the
scene beyond the depth of the screen. If there are other objects in the scene and the
separation between the cameras is correct, the user will be able perceive a depth that is
not the depth of the screen, but the depth between the objects.

This perceived depth is associated with the separation between the cameras, which
creates a focal plane at some distance from the camera. Everything that is located along
that plane in an image will appear to the viewer to be in focus. Also objects that are
located near to the plane will also appear in focus to some users as a result of their eye’s
ability to change the focal length of its lens. All other objects will appear blurred to the

5

user. Considering the normal vision of the user, this is exactly what we would expect.
The location of this blurriness in an image can be calculated using the threshold method
described in section 3.2.

Detectable ghosting can be subtle or very noticeable to the user. To measure the
amount of ghosting, we need to take the left (or right) image and another image with
the polarized screen or left side of the shutter glasses. This would give us what the left
eye should see and what the left eye actually sees. The difference between these
images would give us the amount of ghosting that is seen by the user. Considering our
thresholds again, we can say that if this ghosting is under the threshold map, it is not
perceivable by users.

The 3D effect of a display is more complex than the realism of an image. When looking
at a 3D display, the amount of 3D that is perceived, the 3D effect, is dependent on the
user’s visual system to generate a single image from the two displayed images. The
quantitative measure of such a system would require testing displays with a variety of
users. A qualitative measure of this can be explained using much simpler methods.

4. Conclusion

Our project focused on both the rendering and analysis of realistic 3D models. In order
to render the 3D models, the graphics engine Irrlicht was used to render in real time.
The two types of 3D displays used to display the image were the Sony 3D TV, and the
dual projectors. In order to analyze the 3D displayed image, thresholds for both the
luminance and contrast were calculated. These were then combined with a qualitative
description of the 3D effect of the display to determine the amount of both blurring and
ghosting happening in a 3D display, which gave us an accurate measure of how 3D
something was. We were successfully able to display the 3D model using both display
devices. Qualitatively, we fell short on exactly how accurate the model is to the real
world.

References

1. Ramasubramanian, Maehesh, Sumanta N. Pattanaik, and Donald P. Greenberg. “A

Perceptually Based Physical Error Metric for Realistic Image Synthesis.” MS thesis
Cornell University, 1999. Web.

2. Peter J. Burt and Edward H. Adelson. The Laplacian Pyramid as a Compact Image

Code. IEEE Transactions on Communications, 31(4):532–540, April 1983.

3. 3. Wenderoth, Peter. “The Contrast Sensitivity Function.” Web. Jan 28, 2012.

