
Erciyas 1

 Ahmet Shapiro-Erciyas

 Chess AI, MICS

 April/14/2012

The focus of this paper will be geared towards artificial intelligence and chess, and it is for the

computer science undergrad that has a familiarity with chess, a novice understanding of computer chess and

of general AI gaming algorithms. This paper will serve the purpose of providing the reader with a general

view of the essential algorithms for chess engines, their detrimental weaknesses and how today’s chess

players should try to take advantage of these weaknesses. The research is based on series of tests on a

popular chess engine and is geared towards explaining what a chess programs and a human’s strengths and

weaknesses are. Certain positions from famous human vs. machine matches are analyzed in order to

identify a cause and effect relationship between the unique position and chess algorithm. The main

algorithms that will be analyzed in this paper will include the Minimax Algorithm, Quiescence Search and

Alpha-Beta Pruning. I present these algorithms in relationship to the well-known phenomenon known as

the horizon effect and its impact on gaming in general and how alpha beta pruning alleviates some of this

effect.

With that in mind let’s investigate the essence of the horizon effect. In artificial intelligence, the

horizon effect refers to the phenomena in games where the number of possible positions that can be reached

becomes so immense, so dramatic that computers can feasibly only search a limited portion of the game

tree (typically only a few moves ahead). One of the hopes of this paper is to bring forth to the reader that

the general algorithms that are used in solving chess games are not as mysteriously complicated as one may

think, but rather they are quite intuitive as most algorithms are. When thinking about them in an abstract

perspective, the fundamental workings of these algorithms resembles the journey of a mountain ranger

through a series of mountains. As the ranger plans his travel through the mountains, he must figure out

exactly where the next valley is where he can cool down for a rest. During a chess game, the chess

computer does just that, it looks for as many moves ahead, enough so that at the end of the combination, it

will be able to stop calculating(rest) in that particular position due to the lack of dynamicity in the position.

By dynamicity, I merely mean the number of plausible looking moves that are available. In technical terms

these positions are also referred to as “quiet” positions. Calculating these resting positions is one of the

ways to deal with the horizon effect and is related to the quiescence algorithm. In order to gain a better idea

of the above let’s build on our knowledge by investigating the Minimax and Alpha-Beta Algorithms.

For a game like chess, the minimax algorithm is such a strategy, which uses the fact that the two

players are working towards opposite goals to make predictions about which future states will be reached

as the game progresses, and then proceeds accordingly to optimize its chance of victory. The theory behind

minimax is that the computers opponent will be trying to minimize whatever value the human is trying to

maximize (thus, "minimax"). Hence, the computer should make the move which leaves its opponent

capable of doing the least damage on the chess board. In the ideal case where the computer has infinite time

and infinite storage capacity, the computer will investigate every game outcome possible from the game's

current state. For zero-sum game (win-lose-draw game) like chess, there are only three possible values; 1, -

1, and 0 respectively. Then, starting from the bottom of the game tree, the computer evaluates which

possible outcome is best for the computer's opponent. The algorithm then assumes that, if that game stage is

reached, its opponent will make the move which leads to the outcome best for the opponent (and worse for

the computer). Thus, the algorithm can predict what its opponent will do, and have a tangible idea of what

the final game state will be if that second-to-last position is actually reached. Then, the computer can treat

that second-to-last position as a terminal node of that value, even though it is not actually a terminal value.

This process can then be repeated at higher levels. Eventually, each option that the computer currently has

available can be assigned a value, as if it were a terminal state such that the algorithm simply picks the

highest value and takes that action. A relatively straight-forward pseudo code implementation is shown

below:

// returns an action

Erciyas 2

//returns a utility value

// returns a utility value

The above algorithm will return the action that corresponds to the best possible move (with the

best utility). Note again that, this is under the assumption that the opponent player plays to maximize his

utility (win-loss evaluator). The functions MAX-VALUE and MIN-VALUE go through the whole game

tree, all the way down to the leaves, to determine the backed-up value of a state.

On the other hand Alpha-beta pruning can through as an improvement over the minimax

algorithm. As the reader may have noticed the problem with minimax is that the number of game states it

has to examine has an unfavorable exponential growth. While alpha-beta doesn’t eliminate the exponential

growth factor completely, it does cut it in half. The idea is that it is possible to not have to look at every

possible game state in order to come up with the correct minimax decision. This idea is also known as

pruning, or eliminating possibilities from consideration without having to examine them, where the

algorithm allows us to discard large parts of the tree from consideration. When applied to a standard

minimax tree, it returns the same move as minimax would, but in the process prunes away branches that

cannot possibly influence the final decision. Alpha-Beta pruning gets its name from the following

parameters; a, the value of the best choice found so far at any choice point along the path for MAX, and ß,

the value of the best choice found so far at any choice point along the path for MIN Below is the pseudo

code:

-

__

// returns the pruned game tree

__

As mentioned earlier, a chess program must also emulate the planning that the ranger does while

planning a trip through the mountains (resting spots in valleys). The conventional algorithm that is used for

this is called quiescence search and it is a very important part of any chess program. This is because the

algorithm identifies the debt for which to calculate. It does this by identifying states that are “quiet” versus

Erciyas 3

“interesting”. States that are interesting are ones which have a lot of activity in the position; this

characteristic can be defined using different kind of evaluation functions (or heuristics). Ultimately the aim

of this algorithm is to make sure that a state at a certain debt is safe enough for the computer to stop

evaluating at that debt. It wants to make sure that it doesn’t, say, leave its queen in jeopardy. A simple

implementation of the algorithm is below:

At this point the reader should have a general understanding of how the chess computer comes up

with its decisions. We are ready to talk about how to higher our chances against the computer. Before we do

this lets introduce a description of the strengths and weakness of computers and humans. First, compared to

the chess computer, as humans we can understand the position; we can learn more about the game even as

we are playing where as computers merely repeat what their algorithms return, and they can only calculate

as far as their processor allows them. On the other hand humans can rely on their intuition. Intuition is that

gut feeling that one has, and to the novice, it may sound immature to talk about intuition in a game like

chess. Though as the greater players such as Kasparov and Carlson (Mozart of chess) will tell you, it is an

essential part of the game. There are example games such as Kasparov vs. Topolov (1999 Hoogovens Wjik

aan Zee Tournament) where Kasparov had commented about how he made decisions based partly on his

instincts, about how he felt about the position. In the book “How Life Imitates Chess” Garry Kasparov talks

about he describes it in a verity of contexts on of which highlights the statement “flexing your intuition

leads to better decision making”. The source of this gut feeling is gained commonly by experience (and

some have it naturally, hence the prodigy). The underlying idea is that great chess players attach stigma to

certain kinds of states of the game; these are real feelings that they have towards how a position looks, and

this evaluation is completely different than their calculation, but purely based on their intuition. This is

different than simply recalling a game from memory and matching the current game state with some other

state, but rather it is an unconscious articulation about what the right continuation from the current state is;

it is an abstraction of ideas. For the tournament chess player the term that would be used in describing

intuition on the chess board would be “strategical play”, strategizing toward long term advantages through

identifying possible piece formations that allow themselves to be utilized for relatively long portions of the

game. The ability to understand this kind of strategy is something that is still unique to us as human beings

and serves as the boundary which separates human-style-chess from computers since this characteristic

relies on and can only be formed through intuition and experience, not through any brute force calculation.

This carries us to our next point that as humans, our performance can be greatly influenced if we

are not emotionally stable. Thus for a chess match a big factor among many is intimidation, which distracts

us away from our ability to use our intuition. The computer on the other hand doesn’t have this problem.

There is interesting proof of this being a real factor in human vs. machine chess matches. In a match

between Kramnik vs. Leko (World Championship Match 2004) Kramnik and his team had prepared a

queen sacrifice against Leko (with mainly using computer advice), and Leko was able to refute the move

over the board! Even through Leko was playing a “human” it was nevertheless a prepared move by

computers, therefore he had refuted a computer but only because he had thought he was playing a human.

On a different endeavor in 2006, it was the game Kramnik vs. Deep Fritz where Kramnik lost a game in a

mate-in-one (a simple checkmate) which by some was seen as an offensive characteristic for a professional

world championship contender to lose so easily. The couple of examples above come to show the

detrimental effect of intimidation on human players. In order to further exhaust the realness of this effect, I

performed a series of tests. I went on a popular chess website called ICC (Internet Chess Club) and did the

Erciyas 4

following with a popular chess engine called Fritz 11. I had Fritz play against players of a variety of

strengths, for a total of 71 games (10 –min time control). All games were against human players of the site,

36 were against humans who knew that they were playing against a chess engine and 35 were against

humans who did not know they were playing against a computer. I adjusted the strength of Fritz for each

ICC opponent, and recorded the result of each match up. Players were picked as randomly as possible with

a variety of playing strengths and the statistics are as follows. From the 36 games there were played, the

ICC player won 14, drew 7 and lost 15 whereas from the 35 games, the ICC player won 18 drew 4 and lost

12. These results implies a winning ratio of 17.5/18.5 (0.9495) for the ICC player with the knowledge of

playing a computer, and 20/14 (1.42) for the ICC player who did not know that they were playing against

the computer. Therefore, since the rating system (strength evaluator) of the ICC server is shared by all of

the players on ICC site, and that the Fritz computer strength was adjusted for each player, these statistics

implies that the human player tends to play better against the computer when they don’t know that they are

in fact playing a computer.

Additionally to the point about intimidation above (which is don’t be intimidated just because you

are playing a computer), one of the most intrusive ways to tackle chess engines is through exploiting their

quiescence search. Recalling back to the rangers journey through the mountains, one can exploit quiescence

search by finding a calculation sequence that has seemingly quiet moves but that the computer will blunder

on. The idea is that if the ranger is the computer program, its equivalent to saying that the ranger

miscalculates his next resting spot, and in reality the valley happens to be still ways away. A famous game

between Ponomariov vs. Fritz (Bilbao 2006) exemplifies this point (see below).

Fritz moves 39) … Bc2, seemingly winning a piece after Ponomariov plays 40) Qxh4 gxh4, 41) Rc1 Rxb3,

42) Nxb3 Bxb3, 43) a5 Nc5

Erciyas 5

This is the point that registers as “quiet” for quiescence search, but in fact it is not, since after the forced

combination 44) b5 Ba4, 45) ba6 Bc6, 46) a7 Kg7, 47) a6 Ba8, 48) Bb1 black will have to give up both of

its pieces in order to stop the two passed on the a-file after 49) Rb8, blacks king is too far away to help.

Example of strategical advantage: The first match of Kasparov’s 1996 game series against Deep Blue (see

below after Kasparov with the white pieces plays 33. Qh5).

Erciyas 6

A long term advantage here is present for white due to white’s powerful bishop in the center of the board

which occupies a lot of space (relative to black’s poor bishop who occupies only 3 square). An additional

advantage is white’s passed pawn on the h-file (versus black’s doubled pawns on the f-file). As it is too late

to undo these positional mistakes, soon Kasparov will be able to utilize the misplaced pieces in black’s

structure to force Deep Blue to make a mistake. The key point here is that the computer’s lack the ability to

understand the implications of these piece structures, and so as humans that is our strong point.

Conclusively, throughout this paper I have analyzed the essential algorithms used for computer chess. We

have concluded that there still may exist room for human players in the competition against chess

computers. The research was based on series of tests on a popular chess engine and its performance against

players on a popular chess engine. There was also analysis of famous human vs. computer chess matches

that were exemplified to explain the effects of essential chess algorithms. Towards the end I discussed what

humans and computers strengths and weaknesses were. Through the research I have concluded that there

will always be room for development in computers ability to mimic the positional understanding that

humans have on the chess board. Additionally I’ve found that intuition is what still separates humans from

computers in chess and in artificial intelligence. What I also found was that intimidation plays a

considerably important role in how chess games are played, especially against computers. Further research

questions may include; “Can today’s computers can beat by the top humans today when humans are not in

an intimidated state?”, “How much of a role does intimidation have in human versus human chess?”, and

“What does it take to reach this potent state of confidence by a human?”.

Works Sited

Russell, Stuart, and Peter Norvig. Artificial Intelligence: A Modern Approach. 3rd. 2009. Print.

Kasparov, Garry, and Mig Greengard. How Life Imitates Chess. 1st. New York: Bloomsbury,

2007. 120-130. Print.

. N.p., n.d. Web. 2 March 2012. <www.chessgames.com>.

"Artificial Intelligence." Elsevier. 43.1 (2012): 85-98. Print.

Erciyas 7

