
Experiences with a UML Diagram Critique Tool

Robert W. Hasker, Andrew Rosene, and James Reid
Computer Science and Software Engineering

University of Wisconsin-Platteville
Platteville, WI 53818

Abstract

We evaluate UMLint, an automated tool for detecting defectsin UML diagrams. This tool
is designed to improve object-oriented models developed bystudents. Standard diagram-
ming tools provide little feedback to the user on diagram quality. UMLint addresses this for
an academic environment by identifying common mistakes made by students. We present
experiences by students in using UMLint in a variety of upperlevel courses. This expe-
rience will be used to improve the tool and to hopefully provide useful information for
integrating UMLint into other curricula.



1 Introduction

Since code is an expensive way to capture and evaluate systemdesigns, most students are
at least introduced to diagraming systems in some way. However, teaching students dia-
graming skills is difficult. In our experience, students resist learning new notation, misun-
derstand the more subtle aspects, and often fail to appreciate the fundamental relationships
between the notation and implementations. A related issue is that the tools we use to teach
diagramming are often the same ones used by practitioners inindustry. These tools are
powerful, but they must encompass a wide variety of processes. The result is that they
provide less direct feedback than might be helpful to students, introducing more challenges
into the process of learning to diagram systems. Instructors can certainly provide the miss-
ing feedback, but grading diagrams is complex and takes time.

We have developed a tool, UMLint, which attempts to provide direct feedback on diagram
quality to students. The tool focuses on use case and class diagrams using the Unified
Modeling Language (UML) [1]. For both, it addresses issues ranging from failing to follow
naming conventions to identifying missing elements. It currently supports only diagrams
drawn by Rational Rose, but support for alternative diagramming tools is in development.
Students draw diagrams and submit them to UMLint through a web interface. The result is
that students can get more timely feedback for certain diagramming issues.

The tool has two goals. The obvious one is to help students avoid frequent errors. Many of
these issues are stylistic, but there are a number of structural issues that can be identified.
Of course, rules have exceptions, and so ultimately it is up to the instructor to determine
which errors are truly significant. There are also many errors that cannot be detected me-
chanically. However, UMLint allows students to correct therelatively simple errors before
a final submission. This leads to a second, less obvious goal.By directing the students
to fix relatively simple issues, it is hoped that they will be encouraged to examine their
diagrams closely to find deeper errors.

The curriculum at UW-Platteville presents the major UML diagrams: use case, class, se-
quence, collaboration, and state diagrams. Use case and class diagrams are introduced at
the freshman/sophomore level, and other diagrams introduced in subsequent courses. Later
courses also introduce additional detail. In the first course, use case and class diagrams
contain only simple associations and major attributes and operations. Later courses discuss
alternative types of associations and other details. In a junior-level course, students gener-
ate full, compilable interfaces from models. In all cases, diagrams are used to analyze and
design the system in preparation for implementation, as opposed to documenting systems
after the fact.

UMLint has been used at UW-Platteville for over a year. This report discusses the tool from
the student’s point of view: what has worked, where the limitations are, and how the tool
might be improved. It is hoped that these experiences will help other instructors determine
whether UMLint would be applicable to their curricula.

1



1.1 UMLint Checks

UMLint currently critiques two types of diagrams: use case and class diagrams. For use
case diagrams, the tool identifies issues such as directed associations between actors and
use cases, using the wrong type of association for extends and includes, and attempting
to name a use case with a single word. For example, the diagramin Figure 1 includes a

Figure 1: Use case model with defects.

number of issues:

• Using a directed association between Pet and Dispense Food.

• Documenting an association between Pet and Owner that should be in a class model
instead.

• Having a reversed<<extend>> dependency.

• Using a regular association (as opposed to a dashed line) foran<<include>> de-
pendency between Refill Food Reservoir and Check Reservoir.

Use case diagrams are relatively simple, so the number of potential errors is small. There is
also a legitimate question about the usefulness of use case diagrams [5, p. 104]. However,
these diagrams do provide a good opportunity to teach basic diagramming concepts to
students.

Figure 2 illustrates some of the class model defects identified by UMLint:

Figure 2: Class model with defects.

2



• Public attributes such asname in classStudent.

• Additional operations added to standard class libraries:add student and
drop student are not standard JavaList operations.

• Complex attributes such asschool in classClassList. A common convention
is that only attributes with simple types such as numbers, strings, or dates are listed
as class members. Data members with complex types should be represented by an
association with a separate class, and there is no need to document that relationship
in two places.

• Index variables such asCourses::class index which indicate poor object-
oriented design. In this case, the index potentially hides an important association
betweenCourses andClassList.

Additional checks include potential misuses of multiple generalizations, nondescript names
such as “flag,” poor cohesion exhibited by ‘or’ or ‘and’ in class names, failing to follow
capitalization standards, classes having more than one owner, unassociated classes, and
failing to include multiplicities or documentation. See [16] and [8] for details about the
checks and the reasons for introducing those checks. It is well understood that standards for
diagrams are likely to vary by instructor, and UMLint allowsinstructors to define checklists
that are specific to their needs.

1.2 Related Work

Most of the existing tools to identify defects in UML models are designed for use by pro-
fessionals, [3, 4, 11, 14]. These influence UMLint, but practices that are errors for students
are often acceptable for professionals and vice versa. A number of student-specific tools do
exist such as MagicDraw [12], UModel [19], and Visual Paradigm for UML [20]. However,
these tools focus on defects that would lead to errors in codegenerated from diagrams. The
errors in UMLint are generally independent of code generation, and study would be needed
to determine whether additional checks from these tools would be relevant.

Another method, again geared towards professionals, is to use formal specification lan-
guages as a tool to validate UML models [6, 9, 10, 13]. It wouldbe interesting to deter-
mine the extent to which these identify errors commonly madeby students. In any case,
formal specifications often require a more rigorous framework than is practical for most
undergraduate students. Closely related to this is the large body of work on UML Model
checking [7, 15]. These are typically focused on identifying inconsistencies just within
behavioral models.

Existing work on defects in student models mainly focuses onerrors made by students
in introductory programming courses [17, 18]. In our curriculum, CS1 is a prerequisite
for all classes discussing UML, and CS2 is a prerequisite forclasses in which students

3



create detailed models. In contrast, the ClassCompass [2] system provides support for
more advanced students. It includes automated checks, but the checks are limited. A more
important feature of ClassCompass is support for reviews byother students and instructors.
The intent is that these reviews would provide the primary feedback to the modeler.

2 Experiences

Two of the authors of this report used the tool as students in junior and senior level classes.
We will examine three of these projects.

The first is an assignment given in a capstone project course in the software engineering
major. The prerequisites for this course include data structures, Intermediate Software
Engineering, and Object-oriented Analysis and Design. Thegoal of the assignment was
to determine the extent to which students had retained theirskills on drawing use case
and class diagrams. In this assignment, students were askedto model a somewhat fanciful
system in which self-guide automobiles were designed to deliver rescue supplies to victims
in sparsely-populated, arid areas. The victim calls for help, and the operator plans a route
for the vehicle to drive to the victim’s location. The vehicle would have a limited ability to
drive around obstacles such as trees and animals blocking the route.

The student’s initial diagram is given in Figure 3. This diagram contains a number of issues
identified by UMLint:

• Directed associations between use cases and actors such as Operator/chooseRoute
and messageOperator/Operator.

• Regular classes such asRescueCar, Camera, andRoute that should not appear
on a use case diagram.

• Regular associations instead of<<extend>> and<<include>> dependencies be-
tween use cases.

• Appending ’()’ to use case names.

The student was able to use the issues to relearn basic use case diagram notation. The
repaired diagram is given in Figure 4. The extraneous classes were removed, the associa-
tions between actors and use cases were repaired, and dependencies were introduced. An
obvious remaining issue is that the diagram contains flowchart elements. UMLint has since
been improved to warn of use cases which are only remotely associated with an actor, and
running the tool on this diagram now results in the message

Use case(s) isLeftClear, isRightClear more than 3 links from an actor

4



Figure 3: Initial rescue use case model.

5



Figure 4: Final rescue use case model.

6



Repeating the experiment in a future semester will help determine if this is sufficient to
guide students towards eliminating flowchart features fromuse case diagrams.

The second example is from a larger design project done in thesame course. The project
was to construct a phone app for ordering food from on-campusrestaurants. Foods are
grouped into categories, with each food item having optional condiments as well as optional
components such as extra cheese. One group developed the diagram shown in Figure 5.
This diagram is complex enough that it may be a challenge to find the inconsistencies:

Figure 5: Food app class diagram.

• Multiplicities are missing betweenDisplay andAppManager.

• Most attributes use “camel case,” in which capital letters are used to separate words.
However, the attributes in classLogin use underscores.

On a large project, such inconsistencies can slow down development.

7



The last two examples were developed by a different group in the same course. The first,
in Figure 6, is an alternative model to support ordering food. In addition to a number of

Figure 6: Initial classes to support an alternative food ordering system.

missing multiplicities, the issues identified by UMLint are

• Attributeitems in classCart appears to not be simple - replace by an association
with the class.

• ClassItem has two owners:Cart andFoodMenu.

• Unrecognized words in identifiers:addional, prev, quanity.

These issues are a bit more subtle than those in Figure 5. The first reflects a common
standard that only simple attributes be listed in classes. Complex objects are to be shown
by association only. In this case, UMLint notes a problem because an attribute (items)
contains a class name. Clearly this heuristic could result in false positives; it is up to the user
to decide when this is a true error. The composition relationships betweenItem and both
FoodMenu andCart indicate each item is “owned” by both; this is clearly inconsistent.
Finally, the misspelled words in theTopping attributes add unnecessary complexity to
development.

8



Figure 7: Final classes for the alternative food ordering system.

The final version of this diagram is given in Figure 7. Fixing the association between
FoodMenu andItem and adding multiplicities resulted in a many-to-one association be-
tweenFoodMenu andItem. Since this was intended to be a detailed diagram, UMLint
was configured to note that in this is a case of “Failing to use acontainer class where one
is needed.” This and other, similar fixes lead to introducingList classes in a number of
places. In the process, the group re-examined and revised the placement of methods in
classes.

A second diagram from the same project illustrates further additions. Figure 8 gives the
initial version of this server. In addition to requiring multiplicities, students were asked to

Figure 8: Original server for food ordering app.

add documentation to each class. UMLint can be configured to list classes (and option-
ally, attributes and methods) which have no documentation.In the process of adding this
documentation, the group was motivated to add a number of methods to the classes. The
resulting diagram is in Figure 9.

9



Figure 9: Original server for food ordering app.

3 Discussion

In the introduction, two goals were given for UMLint: helping students avoid frequent
errors and encourage them to examine their diagrams more closely. A full evaluation of
the success at achieving these goals would require more study. This report represents an
more informal evaluation based on the authors’ direct experiences with using the tool in
individual and group projects.

We have presented both the first and last diagrams submitted to UMLint for a number of
similar problems. Diagrams created for other courses were also examined in developing
this report. Ideally we would find cases in which new domain-level classes were identified,
significant changes were made to association relationships, or additional uses of general-
ization were found. No such cases were identified. Generally, these types of issues were
identified by the groups before submitting the initial version to UMLint.

However, while there was no evidence of gross structural changes, a large number of
smaller issues were identified. These ranged from failing tofollow naming conventions
to incorrect associations, missing multiplicities, and missing container classes. The tool
did help correct a significant number of details that may havebeen difficult to identify oth-
erwise. We also found that the existence of the tool helped clarify discussions. Often group
members would point out that certain choices would be flaggedby UMLint. In these cases
at least, the tool helped groups maintain a consistent level.

The tool also proved helpful on individual assignments. Theindividual assignment in this

10



report—delivering an autonomous vehicle to a victim—was designed to exercise students
in drawing diagrams rather than identifying classes. More open problems would provide
more opportunities for the tool to help students identify structural issues. But the students
did find the tool useful in reminding users about how to use thenotation. As stated by one
of the authors, “Basic stuff, but it’s that basic stuff you forget.”

This analysis revealed some additional features of UMLint that may need revisiting:

• While UMLint does check that every object has documentation, that check is very
simplistic. Currently it allows a simple space to satisfy this check. A spot-check by
the instructor should reveal cases in which such tricks havebeen used, but a better
solution would be to introduce more stringent checks for appropriate documenta-
tion. A simple solution would be to use a natural language parser and require that
documentation contain at least one sentence.

• Rational Rose allows model elements to be deleted from a diagram but left in the
underlying model. Such hidden elements can cause problems with code generation
because they are difficult to inspect and maintain. UMLint flags hidden elements
for deletion by the user. However, little direction is givenon where to find these
elements. More information needs to be given to the user to find them.

• A command line version of UMLint would be useful to groups because it would often
be easier to use than the web interface. It is possible that the web interface could be
improved to simplify re-checking diagrams after the initial check. It may be possible
to provide a command-line version of the tool for student use, but as further analyses
are integrated (especially those performed by external tools such as natural language
processors) the installation will become more complex.

It is hoped that additional use by instructors from other institutions will result in further
improvements.

References

[1] BOOCH, G., RUMBAUGH , J., AND JACOBSON, I. The Unified Modeling Language
User Guide. Addison-Wesley, 1999.

[2] COELHO, W., AND MURPHY, G. ClassCompass: A software design mentoring sys-
tem. ACM Journal on Educational Resources in Computing 7, 1 (Mar. 2007), Article
2.

[3] DE SOUZA, C. R. B., OLIVEIRA , H. L. R., DA ROCHA, C. R. P., GONÇALVES,
K. M., AND REDMILES, D. F. Using critiquing systems for inconsistency detection
in software engineering models. InSEKE(2003), pp. 196–203.

11



[4] EGYED, A. UML/Analyzer: A tool for the instant consistency checking of UML
models. InProceedings of the 29th International Conference on Software Engineering
(2007), IEEE Computer Society, pp. 793–796.

[5] FOWLER, M. UML Distilled: A Brief Guide to the Standard Object ModelingLan-
guage, 3rd ed. Addison-Wesley, 2004.

[6] FRANCE, R. A problem-oriented analysis of basic UML static requirements modeling
concepts. InProceedings of the 14th ACM SIGPLAN Conference on Object-oriented
Programming, Systems, Languages, and Applications(1999), ACM Press, pp. 57–69.

[7] GAGNON, P., MOKHATI , F., AND BADRI , M. Applying model checking to concur-
rent UML models.Journal of Object Technology 7, 1 (Jan. 2008), 59–84.

[8] HASKER, R. W., AND ROWE, M. UMLint: Identifying defects in UML diagrams. In
118th ASEE Annual Conference & Exposition(Vancouver, BC, Canada, June 2011).

[9] K ANEIWA , K., AND SOTAH, K. Consistency checking algorithms for restricted UML
class diagrams. InLecture Notes in Computer Science, vol. 3861. Springer-Verlag,
2006, pp. 219–239.

[10] KONRAD, S., AND CHENG, B. H. C. Automated analysis of natural language prop-
erties for UML models. InLecture Notes in Computer Science, vol. 3844. Springer-
Verlag, 2006, pp. 48–57.

[11] LANGE, C. F. J. Improving the quality of UML models in practice. InProceedings
of the 28th International Conference on Software Engineering (2006), ACM Press,
pp. 993–996.

[12] MagicDraw. Available at http://www.magicdraw.com/.Accessed Jan., 2011.

[13] MASSONI, T., GHEYI , R., AND BORBA, P. A UML class diagram analyzer. In3rd
International Workshop on Critical Systems Development with UML (2004), pp. 143–
153.

[14] PAP, Z., MAJZIK , I., PATARICZA , A., AND SZEGI, A. Completeness and consis-
tency analysis of UML statechart specifications. InProceedings IEEE Design and
Diagnostics of Electronic Circuits and Systems Workshop(2001), pp. 83–90.

[15] PILSKALNS , O., ANDREWS, A., GHOSH, S., AND FRANCE, R. Rigorous testing
by merging structural and behavioral UML representations.In Proceedings of the 6th
International Conference on the Unified Modeling Language(2003), pp. 234–248.

[16] ROWE, M., AND HASKER, R. W. The characterization and identification of object-
oriented model defects. In41st Midwest Instruction and Computing Symposium(La
Crosse, Wisconsin, 2008), pp. 178–192.

[17] SANDERS, K., AND THOMAS, L. Checklists for grading object-oriented CS1 pro-
grams: Concepts and misconceptions. InITiCSE ’07(Dundee, Scotland, June 2007),
ACM Press, pp. 166–170.

12



[18] THOMASSON, B., RATCLIFFE, M., AND THOMAS, L. Identifying novice difficulties
in object oriented design. InITiCSE ’06(Bologna, Italy, June 2006), pp. 28–32.

[19] UModel. Available at http://www.altova.com/umodel.html. Accessed Jan., 2011.

[20] Visual Paradigm for UML. Available at http://www.visual-
paradigm.com/product/vpuml/. Accessed Jan., 2011.

13


