Experiences with a UML Diagram Critique Tool

Robert W. Hasker, Andrew Rosene, and James Reid
Computer Science and Software Engineering
University of Wisconsin-Platteville
Platteville, W1 53818

Abstract

We evaluate UMLint, an automated tool for detecting defectdML diagrams. This tool
is designed to improve object-oriented models developestigents. Standard diagram-
ming tools provide little feedback to the user on diagramiguaJMLint addresses this for
an academic environment by identifying common mistakesengdstudents. We present
experiences by students in using UMLInt in a variety of upegel courses. This expe-
rience will be used to improve the tool and to hopefully pdevuseful information for
integrating UMLint into other curricula.

1 Introduction

Since code is an expensive way to capture and evaluate sgst&igns, most students are
at least introduced to diagraming systems in some way. Hekvévaching students dia-
graming skills is difficult. In our experience, studentssekarning new notation, misun-

derstand the more subtle aspects, and often fail to appedbia fundamental relationships
between the notation and implementations. A related isstheat the tools we use to teach
diagramming are often the same ones used by practitionerglirstry. These tools are

powerful, but they must encompass a wide variety of proges3ée result is that they

provide less direct feedback than might be helpful to sttgj@émtroducing more challenges
into the process of learning to diagram systems. Instractan certainly provide the miss-
ing feedback, but grading diagrams is complex and takes time

We have developed a tool, UMLInt, which attempts to providea feedback on diagram
guality to students. The tool focuses on use case and clagsadis using the Unified
Modeling Language (UML) [1]. For both, it addresses issa@gmg from failing to follow
naming conventions to identifying missing elements. Irently supports only diagrams
drawn by Rational Rose, but support for alternative diagnamg tools is in development.
Students draw diagrams and submit them to UMLint throughlaiweerface. The result is
that students can get more timely feedback for certain dragring issues.

The tool has two goals. The obvious one is to help studenig &nemuent errors. Many of
these issues are stylistic, but there are a number of staléssues that can be identified.
Of course, rules have exceptions, and so ultimately it isoughé instructor to determine
which errors are truly significant. There are also many srtbat cannot be detected me-
chanically. However, UMLInt allows students to correct tekatively simple errors before
a final submission. This leads to a second, less obvious gadirecting the students
to fix relatively simple issues, it is hoped that they will beceuraged to examine their
diagrams closely to find deeper errors.

The curriculum at UW-Platteville presents the major UMLgl@mns: use case, class, se-
guence, collaboration, and state diagrams. Use case asglditegrams are introduced at

the freshman/sophomore level, and other diagrams intemtiincsubsequent courses. Later
courses also introduce additional detail. In the first ceutse case and class diagrams
contain only simple associations and major attributes gedations. Later courses discuss
alternative types of associations and other details. Im@jtevel course, students gener-

ate full, compilable interfaces from models. In all caseagthms are used to analyze and
design the system in preparation for implementation, a®sggh to documenting systems

after the fact.

UMLint has been used at UW-Platteville for over a year. Thart discusses the tool from
the student’s point of view: what has worked, where the ktnins are, and how the tool
might be improved. It is hoped that these experiences wiill bther instructors determine
whether UMLint would be applicable to their curricula.

1.1 UMLint Checks

UMLint currently critiques two types of diagrams: use cagsd alass diagrams. For use
case diagrams, the tool identifies issues such as direcsediasons between actors and
use cases, using the wrong type of association for exterdisnatudes, and attempting
to name a use case with a single word. For example, the diagr&igure 1 includes a

<<extend==
Pet Dispense Food Block Excessive Eating
<:<:inc|ude>:§“"~._‘__
/_ _\ Q <<include>> S /_ }_\

Refill Food Reservoir Check Reserair

Cuwner YWarning Lamp

Figure 1: Use case model with defects.

number of issues:

Using a directed association between Pet and Dispense Food.

Documenting an association between Pet and Owner thatdheuh a class model
instead.

Having a reversed<ext end>> dependency.

Using a regular association (as opposed to a dashed linanfoti ncl ude>> de-
pendency between Refill Food Reservoir and Check Reservoir.

Use case diagrams are relatively simple, so the number ehpat errors is small. There is
also a legitimate question about the usefulness of use ¢ageahs [5, p. 104]. However,
these diagrams do provide a good opportunity to teach basgrainming concepts to
students.

Figure 2 illustrates some of the class model defects idedtby UMLint:

Student - -
oname List=Student= Courses | CIassLl;t — School
. - - Ec asses | String
Esidentifier N 1 ‘add_studento 1] @class_lndex & school 1 1 Ename
Senroll) Sdrop_student()

Figure 2: Class model with defects.

e Public attributes such asane in classSt udent .

e Additional operations added to standard class librariesdd st udent and
dr op_st udent are not standard Java st operations.

e Complex attributes such axhool in classCl assLi st. A common convention
is that only attributes with simple types such as numbersigs, or dates are listed
as class members. Data members with complex types shoukpbesented by an
association with a separate class, and there is no need tionént that relationship
in two places.

e Index variables such aSour ses: : cl ass_i ndex which indicate poor object-
oriented design. In this case, the index potentially hidesngportant association
betweerCour ses andCl assLi st.

Additional checks include potential misuses of multiplegelizations, nondescript names
such as “flag,” poor cohesion exhibited by ‘or’ or ‘and’ in séanames, failing to follow
capitalization standards, classes having more than onerpwnassociated classes, and
failing to include multiplicities or documentation. Sees[land [8] for details about the
checks and the reasons for introducing those checks. Itlismaerstood that standards for
diagrams are likely to vary by instructor, and UML.int alloimstructors to define checklists
that are specific to their needs.

1.2 Related Work

Most of the existing tools to identify defects in UML modelge alesigned for use by pro-
fessionals, [3, 4, 11, 14]. These influence UMLint, but paest that are errors for students
are often acceptable for professionals and vice versa. Aweupf student-specific tools do
exist such as MagicDraw [12], UModel [19], and Visual Pagaalfor UML [20]. However,
these tools focus on defects that would lead to errors in gederated from diagrams. The
errors in UMLint are generally independent of code genenatand study would be needed
to determine whether additional checks from these tooldavoe relevant.

Another method, again geared towards professionals, iseofarmal specification lan-
guages as a tool to validate UML models [6, 9, 10, 13]. It wcaadinteresting to deter-
mine the extent to which these identify errors commonly miagistudents. In any case,
formal specifications often require a more rigorous franréviban is practical for most
undergraduate students. Closely related to this is the laogly of work on UML Model
checking [7, 15]. These are typically focused on identifyinconsistencies just within
behavioral models.

Existing work on defects in student models mainly focusewoors made by students
in introductory programming courses [17, 18]. In our curlicn, CS1 is a prerequisite
for all classes discussing UML, and CS2 is a prerequisiteclasses in which students

create detailed models. In contrast, the ClassCompass/$ma provides support for
more advanced students. It includes automated checkdyduahecks are limited. A more
important feature of ClassCompass is support for reviewsthgr students and instructors.
The intent is that these reviews would provide the primaeghfack to the modeler.

2 Experiences

Two of the authors of this report used the tool as studentsiiof and senior level classes.
We will examine three of these projects.

The first is an assignment given in a capstone project coartigei software engineering
major. The prerequisites for this course include data 8iras, Intermediate Software
Engineering, and Object-oriented Analysis and Design. Jte of the assignment was
to determine the extent to which students had retained #hdis on drawing use case
and class diagrams. In this assignment, students were tskeodel a somewhat fanciful
system in which self-guide automobiles were designed toetalescue supplies to victims
in sparsely-populated, arid areas. The victim calls fophahd the operator plans a route
for the vehicle to drive to the victim’s location. The vel@elould have a limited ability to
drive around obstacles such as trees and animals bloclengtite.

The student’s initial diagram is given in Figure 3. This d&g contains a number of issues
identified by UMLInt:

e Directed associations between use cases and actors sugteestddchooseRoute
and messageOperator/Operator.

e Regular classes such RescueCar, Caner a, andRout e that should not appear
on a use case diagram.

e Regular associations instead<ofext end>> and<<i ncl ude>> dependencies be-
tween use cases.

e Appending ’()’ to use case names.

The student was able to use the issues to relearn basic usaieggam notation. The
repaired diagram is given in Figure 4. The extraneous ctassee removed, the associa-
tions between actors and use cases were repaired, and depesiwere introduced. An
obvious remaining issue is that the diagram contains floweh@ments. UMLInt has since
been improved to warn of use cases which are only remotetceded with an actor, and
running the tool on this diagram now results in the message

Use case(s) isLeftClear, isRightClear more than 3 linksifem actor

4

-

chooseRaouted

==includes»

et
O ==mtend==

- true

Y canReturnToRoute m

Route
(from Logical “ew)

false

X

goTaolLeftd)

goToRightd

frue

true

-,

O tiperator honkHarng
messagedperatord
+zendimages
false
isLeftCleard
JT\ false
Camera

(from Logical “ew)

-

isRightClear)

Tfalse
=zgxtend==

D

detectOhstacles(

::includebb\A‘Q

)

v ==include==

canBypassh

true

operateRescueCard

=

followRauted

Tfalse

true

stopd

enteringMarkedwaterBody(

RescueCar
(from Logical \dew)*‘{—@

Trezeinclude==

=zgxtend==

senseTerraing

signalClosestCar(latitude,
longitude)

RescueFacility
ifrom Logical Wiew)

Figure 3: Initial rescue use case model.

OO

O receivelmages\\\ receiveSignal
chooseRoute / \

. <<extend=> O Operator ©

honkHorn

ressageOperatar

Ay

, | false false | <<includes>

true
<<extendﬂ:ﬁ, <<extend=»

ro goTolLeft isLeftClear

E ~<gextend>> false h=<includes»
' canReturnToRoute "UE

. Z<axtend=>

gaTaRight isRightClear
i

' . falze | <<extend=>

detectObstacles canBypass

reincludes» Mecincludes> Ftrue
. - <<includesz

<=:inc|ude:§:3,-»->:©(
uE
© followR oute

stop

Figure 4: Final rescue use case model.

Repeating the experiment in a future semester will helpraete if this is sufficient to
guide students towards eliminating flowchart features fus@ case diagrams.

The second example is from a larger design project done isahee course. The project
was to construct a phone app for ordering food from on-camesi®urants. Foods are
grouped into categories, with each food item having optiooadiments as well as optional
components such as extra cheese. One group developed ¢inendiahown in Figure 5.
This diagram is complex enough that it may be a challenge tbtffia inconsistencies:

Login
(fram [rata)
AppManager %Iugin_puﬂ
; [dap_ip_address
Dizpl —
ISpTay displayOrder() &pldap_port
dizplayFoodMenuf) | * 1
®sendOrder) &Pencrypt()
1 1 ﬁdecryptﬂl
““InginAttemptlj
1 COrder
* &tirme
Valueheal FoodCategory Q}cnmp.leted - Boolean
: 5 &filled ; Boolean
Sprice = &name R & customerNarme | String
* ®addFooditem
FaddvalueMeal()
—— gnglanndltem & clnmfudngst_ éﬂrﬁ_?nentﬁhmce
— , price selectedChoice| .| SpadditionalPrice
&sadditionalPrice = |&name « = |&type 1 = Sotype
Ditinkltem +drinkPrices

Map<size, price=

%size

* 1

Figure 5: Food app class diagram.

e Multiplicities are missing betweeldi spl ay andAppManager .

e Most attributes use “camel case,” in which capital letteeswssed to separate words.
However, the attributes in clag®gi n use underscores.

On a large project, such inconsistencies can slow down dprent.

7

The last two examples were developed by a different groupersame course. The first,
in Figure 6, is an alternative model to support ordering fobdaddition to a number of

FoodSericesfpp
Boprevsemarme © String
Q}Iucatinn
Food&pptrapper %setlocation()
(from Server) ““addTnCamj FoodMenu
®chooseltem()
SsubmitCart()
Sdeleteltemn)
Sedititern))
¥checkBlacklist()
$ ltern
Cart
. Euri Component
Qnems . P @chnpicea
Q}Iujc:atinn @ .
addTopping()
chaices()
Topping
Souanity
l%addinnalprice

Figure 6: Initial classes to support an alternative foodeardy system.

missing multiplicities, the issues identified by UMLIint are

e Attributei t ens in classCart appears to not be simple - replace by an association
with the class.

e Classl t emhas two ownersCart andFoodMenu.

e Unrecognized words in identifieraddi onal , pr ev, quani ty.

These issues are a bit more subtle than those in Figure 5. Ehedilects a common
standard that only simple attributes be listed in classesn@ex objects are to be shown
by association only. In this case, UMLIint notes a problemalige an attributd ¢ ens)
contains a class name. Clearly this heuristic could restéiise positives; itis up to the user
to decide when this is a true error. The composition relatiges betweeht emand both
FoodMenu andCar t indicate each item is “owned” by both; this is clearly incistsnt.

Finally, the misspelled words in thBoppi ng attributes add unnecessary complexity to
development.

FoodServicesipp
&prevUsemname : String
lQ)Iocation
®setlocation()
FoodAppWrapper ®addToCart() Foodhdany
(from Serven :chooseltemo
submitCart() ®
SretrieveMenul) ®checkBlacklist() 1 - ‘addltemo
1 +| & o . . editltemn()
SplaceCrder) outputDiningLocationSelection() deleteltem()
isUserlnBlacklist]) displayitermModOptions()
SdisplayPossibleAddons() 1
SdisplayCart])
SprormptLoging 1
SdisplayMenu() List<ltem>
‘edltltemo (from UserFoodSerdseProgram)
1
1
1
Cart i c
List<ltern= Itern List<Componentz orponent
’addtuCartO ifrom UserFood iceProgram) Q)price %(ﬂomUselFoodSer\riceProgram)%%name
®oditToCant() 1 1 1 L N
‘deleteltemlnCanO 1 add()
1 Topping
- - guantity
List<Topping= Gname
1 *
Fadd))

Figure 7: Final classes for the alternative food orderirgjewy.

The final version of this diagram is given in Figure 7. Fixirge tassociation between
FoodMenu andl t emand adding multiplicities resulted in a many-to-one assomn be-
tweenFoodMenu andl t em Since this was intended to be a detailed diagram, UMLint
was configured to note that in this is a case of “Failing to userdainer class where one
is needed.” This and other, similar fixes lead to introdudingt classes in a number of
places. In the process, the group re-examined and revigepléisement of methods in
classes.

A second diagram from the same project illustrates furtldeliteons. Figure 8 gives the
initial version of this server. In addition to requiring ntiplicities, students were asked to

FoodAppWrapper

"

BlacklistDatabase AdminFoodWrapper FoodDatahase

//

UserFoodWrapper

Figure 8: Original server for food ordering app.

add documentation to each class. UMLint can be configuretstalhsses (and option-
ally, attributes and methods) which have no documentationhe process of adding this
documentation, the group was motivated to add a number diodstto the classes. The
resulting diagram is in Figure 9.

FoodAppWrapper

BretrisveMenul)
SplaceOrder)
%isUserinBlacklist(|_ 1

AdrminFoodWrapper

SretrieveBlacklistedUsers() 1
1 :retrieveMenuo

; updateBlacklistReasoni)
BlacklistTable SremoveFromBlacklist()
1 1| ®additern()
Sodititern()
Sdeleteltern)
YaddToBlacklist()
Pupdataltern()

1 | FoodTable

—

—_

UserFoodWrapper | 1

SretrieveOrders()
ScompleteOrder()
SrancelOrder)

Figure 9: Original server for food ordering app.

3 Discussion

In the introduction, two goals were given for UMLInt: helpirstudents avoid frequent
errors and encourage them to examine their diagrams moselgloA full evaluation of
the success at achieving these goals would require morg. stlnis report represents an
more informal evaluation based on the authors’ direct egpees with using the tool in
individual and group projects.

We have presented both the first and last diagrams submittgdiLint for a number of
similar problems. Diagrams created for other courses wiseexamined in developing
this report. Ideally we would find cases in which new domaivel classes were identified,
significant changes were made to association relationsbipsdditional uses of general-
ization were found. No such cases were identified. Genetalge types of issues were
identified by the groups before submitting the initial versto UML.int.

However, while there was no evidence of gross structurahges, a large number of
smaller issues were identified. These ranged from failinfpiow naming conventions
to incorrect associations, missing multiplicities, andsimg container classes. The tool
did help correct a significant number of details that may Hmeen difficult to identify oth-
erwise. We also found that the existence of the tool helpardfgidiscussions. Often group
members would point out that certain choices would be flagpyedMLint. In these cases
at least, the tool helped groups maintain a consistent.level

The tool also proved helpful on individual assignments. iAagvidual assignment in this

10

report—delivering an autonomous vehicle to a victim—wasigieed to exercise students
in drawing diagrams rather than identifying classes. Mgreroproblems would provide
more opportunities for the tool to help students identifystural issues. But the students
did find the tool useful in reminding users about how to usentitation. As stated by one
of the authors, “Basic stuff, but it's that basic stuff youdet.”

This analysis revealed some additional features of UMLiat thay need revisiting:

e While UMLInt does check that every object has documentatibat check is very
simplistic. Currently it allows a simple space to satisfisttheck. A spot-check by
the instructor should reveal cases in which such tricks lh@en used, but a better
solution would be to introduce more stringent checks forrappate documenta-
tion. A simple solution would be to use a natural languagegraand require that
documentation contain at least one sentence.

e Rational Rose allows model elements to be deleted from aahagdut left in the
underlying model. Such hidden elements can cause problethsade generation
because they are difficult to inspect and maintain. UMLinggldidden elements
for deletion by the user. However, little direction is given where to find these
elements. More information needs to be given to the user ditifiem.

e A command line version of UMLint would be useful to groups déese it would often
be easier to use than the web interface. It is possible tbakéb interface could be
improved to simplify re-checking diagrams after the iditleck. It may be possible
to provide a command-line version of the tool for student bséas further analyses
are integrated (especially those performed by externdd saech as natural language
processors) the installation will become more complex.

It is hoped that additional use by instructors from othetiin8ons will result in further
improvements.

References

[1] BoocH, G., RUMBAUGH, J.,AND JACOBSON, |. The Unified Modeling Language
User Guide Addison-Wesley, 1999.

[2] COELHO, W., AND MURPHY, G. ClassCompass: A software design mentoring sys-
tem. ACM Journal on Educational Resources in Computing fMar. 2007), Article
2.

[3] DE SouzaA, C. R. B., QIVEIRA, H. L. R., DA ROCHA, C. R. P., ®NCALVES,
K. M., AND REDMILES, D. F. Using critiquing systems for inconsistency detattio
in software engineering models. 8EKE(2003), pp. 196-203.

11

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]
[13]

[14]

[15]

[16]

[17]

EGYED, A. UML/Analyzer: A tool for the instant consistency cheegiof UML
models. InProceedings of the 29th International Conference on Soé&agineering
(2007), IEEE Computer Society, pp. 793—-796.

FOwLER, M. UML Distilled: A Brief Guide to the Standard Object Modelihgn-
guage 3rd ed. Addison-Wesley, 2004.

FRANCE, R. A problem-oriented analysis of basic UML static reqoiemts modeling
concepts. IProceedings of the 14th ACM SIGPLAN Conference on Objeetymd
Programming, Systems, Languages, and Applicati®®89), ACM Press, pp. 57-69.

GAGNON, P., MOKHATI, F., AND BADRI, M. Applying model checking to concur-
rent UML models.Journal of Object Technology, 7 (Jan. 2008), 59-84.

HASKER, R. W.,AND ROWE, M. UMLint: Identifying defects in UML diagrams. In
118th ASEE Annual Conference & Expositi{Mancouver, BC, Canada, June 2011).

KANEIWA, K., AND SOTAH, K. Consistency checking algorithms for restricted UML
class diagrams. lhecture Notes in Computer Sciene®l. 3861. Springer-Verlag,
2006, pp. 219-239.

KONRAD, S.,AND CHENG, B. H. C. Automated analysis of natural language prop-
erties for UML models. In_ecture Notes in Computer Scieneel. 3844. Springer-
Verlag, 2006, pp. 48-57.

LANGE, C. F. J. Improving the quality of UML models in practice. Pnoceedings
of the 28th International Conference on Software Engimegp(2006), ACM Press,
pp. 993-996.

MagicDraw. Available at http://www.magicdraw.comi{ccessed Jan., 2011.

MASSONI, T., GHEYI, R., AND BORBA, P. A UML class diagram analyzer. Brd
International Workshop on Critical Systems Developmetit WML (2004), pp. 143—
153.

PAaP, Z., MAJZIK, |., PATARICZA, A., AND SZEGI, A. Completeness and consis-
tency analysis of UML statechart specifications. Aroceedings IEEE Design and
Diagnostics of Electronic Circuits and Systems Worksfa@®1), pp. 83—90.

PILSKALNS, O., ANDREWS, A., GHOSH, S., AND FRANCE, R. Rigorous testing
by merging structural and behavioral UML representatidm&roceedings of the 6th
International Conference on the Unified Modeling Languézfz03), pp. 234—-248.

RowE, M., AND HASKER, R. W. The characterization and identification of object-
oriented model defects. Milst Midwest Instruction and Computing Sympos(um
Crosse, Wisconsin, 2008), pp. 178-192.

SANDERS, K., AND THOMAS, L. Checklists for grading object-oriented CS1 pro-
grams: Concepts and misconceptionsITiCSE '07 (Dundee, Scotland, June 2007),
ACM Press, pp. 166-170.

12

[18] THOMASSON, B., RATCLIFFE, M., AND THOMAS, L. Identifying novice difficulties
in object oriented design. IITICSE '06(Bologna, Italy, June 2006), pp. 28—-32.

[19] UModel. Available at http://www.altova.com/umod#ml. Accessed Jan., 2011.

[20] Visual Paradigm for UML. Available at http://www.vislt
paradigm.com/product/vpuml/. Accessed Jan., 2011.

13

