
GENETIC ALGORITHMS IN COLLEGE AND UNIVERSITY
HOUSING

Chris Craven
Information Science and Technology Department

Doane College
1014 Boswell Avenue Suite 241

chris.craven@doane.edu

Abstract

Colleges and universities often use a survey process to determine roommate assignments
for first-year students. This process is usually done by hand and can take a residence life
organization weeks to complete. This project, named Harmony, provides an application
which incorporates a custom genetic algorithm to complete this task.

Using these results a residence life staff may be able to see which rooms may experience
conflict. Therefore, a residence life office can forecast problems and be prepared in
advance of a potential issue. Harmony is available for download on Sourceforge under
the GPLv3 license. This project was completed using the RADIS framework which is
used by Information Science and Technology students at Doane College to aid in the
development of successful projects. The specific phases of the RADIS framework
(recognize, analyze, implement and support) will be explained in the presentation of the
paper.

Preface

This paper is divided into five major sections marked Recognize, Analyze, Design,
Implement, and Support (RADIS). These five sections describe how the project
corresponds to the RADIS framework which is used in computer studies at Doane
College to aid students in developing successful projects. The sections below describes
this project's deliverables for each specific project phase.

Recognize

Many universities and colleges send a rooming survey to incoming students. On this
survey the student may indicate what residence hall they prefer or their habits. This
information is used to match up potential roommates which will create a stable room
environment. This environment will take several major factors into consideration which
are believed to create a good foundation for roommates to live together harmoniously.
The benefits for the student and potential roommate are clear, however the arrangement
also is beneficial for residence life staffs. By reducing the amount of potential conflicts
two roommates may have a residence life staff also reduces the amount of conflict
resolution and room changes throughout the academic year.

At many colleges and universities this matching of roommates is traditionally done by
hand. It often takes an entire residence life staff weeks to find good matches for an
incoming student body. There are software programs which can perform this task for the
staff as well as interface with the school's student information system, but more often
than not these programs are very expensive. This has led to some schools using a custom
made solution specific to their school. Neither of these solutions are acceptable for many
colleges and universities due to budget constraints or the amount of labor it takes to
create custom software.

1

Analyze

In order to understand how Doane determines if a roommate pairing is compatible Sean
Griffin, a Resident Director and Director of Residence Life, was interviewed. Doane
considers a roommate pairing compatible when their survey responses are either exactly
the same or close to one another. For instance, those who respond as tobacco users
should only be placed with others who responded as tobacco users. (Griffin)
In addition to the interview with Mr. Griffin, we researched the resources of the
Association of College and University Housing Officers and housing practices at other
institutions.

Arizona State University – College of Engineering and Applied Sciences

According to retention studies, the first six weeks for a new student are the most
important. Around 50% of the students who end up withdrawing do so during the first
six weeks of a new academic term. (Anderson) In the mid to late 1990s Arizona State
University began a retention improvement program to increase freshman retention from
68% to 78%. In accordance with this program the College of Engineering and Applied
Sciences, CEAS, decided to implement some new measures to increase department
retention from 54%. In order to achieve this CEAS specified a dormitory floor for only
engineering students. To further increase potential retention a survey was sent to those
who opted to live on the engineering floor. The survey, shown in Figure 1, queried the
student on items such as study habits, sleep patterns, music preference, etc. Along with
the survey came a disclaimer which declared a perfect roommate pairing was impossible
but all possible effort would be given to give a good pairing.

2

Figure 1: ASU College of Engineering and Applied Sciences Housing Survey

CEAS used a set of steps in deciding if roommates would be a good fit. First, staff would
place the students who had mutually requested each other as roommates together. Second,
due to an ASU policy, smokers would be placed with smokers and non-smokers with
non-smokers. The third step involved placing two students with the same majors together.
If a student couldn't be placed with another student of the same major he or she would be
placed in a room that was in close distance of a student with the same major. Third, the
rest of the student's attributes on the survey were matched as closely as possible. This was
a move to reduce the amount of potential conflict points as pair of students might have.
The dormitory of choice was assigned by the date a student sent back the survey.

The results of this initial effort was evident in the increase in retention. CEAS had
increased retention from 54% to 82.4%. (Anderson) This was determined from the
number of engineering students who had the same roommate from the fall semester
during the spring semester. This figure was backed up by remarks made by students in a

3

focus group. These comments included “It helped to have a roommate in the same major
as me.” and “I knew I had a better chance of getting a good roommate with the survey.”

University of Minnesota Study

A study conducted at the University of Minnesota looked into the possible implications a
roommate may have on education. Due to the number of roommates the study used only
one unit of measure to determine academic ability, a student's high school percentile rank
(HSR). The study eliminated all room pairings that had restrictive requests (smoker,
specific religious affiliation, etc) and then reduced the number of people in the study to a
multiple of eight. The multiple of eight was used in how roommates were assigned. All
students were placed in a certain category, categories used are shown in Figure 2.

Figure 2: Student Categories

Once placed into categories, students were placed in rank order of their HSR. Going
down the list every two students were designated as a matched pair. Students above the
median HSR were designated as “High” and those below as “Low”. From each matched
pair students were randomly selected to have a high roommate or a low roommate as a
roommate. There was some additional selections made so as to have 24 HH pairs, 48 HL
pairs, and 24 LL pairs.

Findings of the study conclude that birth order play a role in roommate relationships.
Students who are first-born are more likely to susceptible to be influenced by their
roommate. If two first-borns were placed together they benefited from having an
overlapping course. In addition, if a low and high student it benefited the pairing if the
high-achiever is older than the low-achiever. (Hall 317)

4

Fazio and Shook Study on Interracial Roommates

One study focused on benefits of interracial roommate relationships. According to a
previous study white first year roommates believed they were less compatible with
African-American roommates. This belief, while unfounded, has some truth in Ohio State
University archival records. 9% of same-race roommates will dissolve compared to 28%
of interracial room pairings. All roommates used in the study were randomly assigned.
Findings show African-Americans with higher standardized test scores who were
assigned a white roommate attained a higher GPA score as shown in Figure 3.

Based on the study, White students receive more of a benefit from the academic abilities
of their roommates. An interracial roommate pairing may also help an African-American
student acclimate to a predominately white college or university. The major finding of the
study is the academic success of an African-American student depends heavily on their
sense of belonging. The study did point out that regardless of the higher level of
roommate dissolutions among interracial pairings a majority of the pairings were still
intact spring semester.

White roommates increased symbolic racism among African-American roommates and
created unease among Latino roommates. This was also true for Asian American
roommates, whose roommates showed a higher level of symbolic racism. (Shook 430)

Figure 3: Fall GPA of White and African-American Roommates

5

Overall Findings

1. The best practice is to not place roommates randomly but to have a designed
placing process (Anderson 5)

2. While roommate pairings do have an effect on academics and race relations it is a
small effect (Hall 317, Shook 434)

3. Findings from successful rooming assignments from one institution should not be
generalized to another institution (McEwan 367)

Design

The type of problem that is posed by placing roommates can be solvable by a genetic
algorithm. There are multiple possible solutions but we are looking for a good and
acceptable solution. A genetic algorithm evolves a solution over time by simulating a
solution as genetic material. This genetic material experiences several simulations of
evolution such as mutation, crossover, and selection. The program will maintain a
population of x members where each member is a potential solution. A solution, for this
project, would be a campus and its attributes. For instance, it would be a campus, its
buildings, the levels or floors in a building, the rooms within level of a building, and
finally the occupants in those rooms.

There is one technique that has worked well for many colleges and universities, which is
matching for compatibility by offering several general questions for the student to answer
regarding personal habits to match as closely as possible with another person. This
appears to be one technique which has had acceptable success at multiple institutions.
The program will still be designed in such a way that a college may redesign the survey
to better fit the culture of a campus. The best way for the data to be collected would be
through a web form. The data could then be given to the residence life office in comma
separated format by the database administrator to be loaded into the program. The survey
that will be used is displayed in Table 1.

6

Question Data Type Expected
Name String
Preferred hall String
Tobacco user Boolean
Able to live with tobacco user Boolean
Early riser Boolean
Night owl Boolean
Amount of noise can live with
(Likert Scale 1-10
 1 being low noise, 10 being high noise)

Integer

Room cleanliness
(Likert Scale 1-10
 1 being not clean, 10 being extremely clean)

Integer

Table 1: Survey and expected data types

Loading in the campus attributes will be similar to the process above. The residence life
staff will create a comma separated file with all of the available buildings, levels, and
rooms in which a person could be placed. Ideally the residence life office will manually
place the exceptions before trying to use the genetic algorithm. These exceptions would
include those residents with disabilities, mutual roommate requests, or other potential
situations that could not be resolved through the survey.

The heart of a genetic algorithm, the fitness evaluation, will be accomplished using the
following method. If all of the roommates are either tobacco users or not tobacco users
then the fitness value increases. If one of the roommates is a tobacco user and the other
answered that they could live with a tobacco user, the fitness increases. Otherwise the
fitness value does not increase. Early riser and Night owl questions are evaluated the
same way, either the roommates are all early risers/night owls or they are not in order for
the fitness value to increase. Evaluating the two questions with the Likert scale responses
assumes that the closer the integer responses are the more compatible the roommates are.

7

Implement

The program was written in C# using Windows Presentation Foundation(WPF) to aid in
UI design. Using WPF can be quickly put together due to a markup code called XAML,
which is similar to coding an HTML web page. A solution is represented by classes for a
campus, building, level, room. The Campus class contains a list of the Building class, a
fitness value of the double data type, and a string name. The Building class contains a list
of the Level class, a string name, and a string building identifier. The building identifier
is what would be used on the web application that collects survey responses to identify
the preferred hall of the respondent. The Level class contains a list of the Room class and
an integer identifying what level number it is in a building. The Room class contains a
list of survey responses representing residents, a fitness value, an integer room number
and integer room capacity, and string gender. The gender attribute determines if the room
can hold male or female occupants. Figure 4 shows a UML diagram of the classes
described above.

Figure 4: Classes representing a solution or member in the population

When the user starts the program he or she must first create the campus. The initial
window that is shown in Figure 5. By selecting File → New Solution a dialog pops up
with a textbox for the campus name. Populating the campus with buildings and rooms is
also a simple process if you have a properly formatted comma separated file. The button

8

below campus creation in the dialog opens a file selection box. The user chooses the file
with their campus buildings and rooms in it and the program will create a campus
template for the genetic algorithm to use. Once the campus is completely loaded the user
must load survey responses. The process is similar to creating a campus. The user
selects File → Add Survey Data which pops up a dialog with a button. Pressing the
button opens a file dialog where the user selects the file with the survey responses. When
the survey responses are loaded a listbox displays the people that were loaded.

When the steps above are complete, the program is ready to run. The user can adjust the
values for x number of population members, the average fitness value required before the
run ends, and percent values for mutation and crossover. Pressing the run button will start
up the genetic algorithm. On the first run through the algorithm first checks to make sure
enough room capacity is available to hold both males and females. If there is not enough
capacity the algorithm stops. If the program can continue it generates the first generation
for the algorithm to process.

Figure 5: Program after initialization

Creating a member of the population requires creating a new campus by copying the
campus template created while loading in the campus file. Once copied, the program

9

iterates through the list of residents. For each resident it first tries to place them in a
random room that matches their gender in their preferred hall. If their preferred hall is
full it will pick another random hall and another random room. If the random room is
full, this process will continue until a suitable room is found.

Once the initial population is created the algorithm will repeat the steps that follow until
the required average fitness value is met or the user manually stops processing. The next
step that occurs is mutation. Determining if a mutation occurs is done by the use of a
random number generator. If the randomly generated number is equal to or less than the
percent value specified on the main program window, the mutation occurs. Otherwise, the
program will continue without mutating. Assuming a mutation occurs, the algorithm will
pick two rooms on the same level of the same building and swap a roommate with the
other room. A problem occurs if two rooms of the same gender can not be found on the
same level. If that is the case, the mutation method will run until it finds two suitable
rooms that are on the same level.

The next step in the program is crossover. Crossover is the simulated exchange of
genetic material between members of a population. Determining if a crossover happens is
similar to determining if a mutation happens. If crossover occurs, the algorithm
exchanges an entire building with two members of a population. A problem that arises
with this solution is that a person may be scheduled to be in more than one room at once.
To combat this the algorithm will detect if this condition exists and will poison the fitness
value of the individual. Poisoning an individual is simply the act of setting their fitness
value to a much lower value. This ensures that their genetic material will be passed on
but the individual will not be a viable solution.

After crossover, the program evaluates the individuals in the population. In C#, the
program uses a method which is called for every room in a solution. In this method the
attributes of the potential roommates are checked against one another. The maximum
fitness value for an individual is 1.0. Below is how each attribute is checked:

1. To determine if everyone in a room is a tobacco user or not, the program
compares the count of the people in the room with the count of those in the room
who either use or don't use. This is achieved by calling the list of room occupants
and using the count method. To make sure we are only count those who are/are
not we use a LINQ method name Count. For example, occupants.Count(m =>
m._smoke_chew == true) will return an integer specifying how many people in the

10

room are tobacco users. If all of the occupants are either tobacco users or not .3
will be added to the running fitness.

2. If not everyone in the room falls under the two conditions above, the program
checks to see if everyone in the room is alright with living with a tobacco user.
Using the count method again the program will check to see if everyone in the
room is ok living with a tobacco user. If the numbers are equal, .2 is added to the
running fitness. Otherwise -.1 is added to the fitness due to tobacco use being a
known issue for roommates.

3. Determining if everyone in the room is an early riser is also done by using the
count method. If everyone in the room is an early riser .15 is added to the running
fitness. Otherwise .05 is added, since waking time is not as important to warrant a
negative weight.

4. Determining if everyone in the room is a night owl is completed by using the
count method. If everyone in the room is a night owl .15 is added to the running
fitness. Otherwise .05 is added, since being a night owl is not as important to
warrant a negative weight.

5. Using Doane's method of compatibility, Likert scale responses need to be either
the same or close to warrant a successful match. In order to find out how close
responses are the program takes the maximum response value from the
roommates and subtracts the minimum response value. Using a series of elseif
statements, the following is determined. If the difference is less than or equal to
two, .2 is added to the running fitness. If the difference is less than or equal to
four, .1 is added to the fitness. If the difference is less than or equal to six .05 is
added. For a difference of 8, .05 is subtracted and is the difference is less than or
equal to 10 .2 is subtracted from the fitness. This method is used on both the
noise and cleanliness responses.

After evaluation a simulated selection takes place. The selection is set up tournament
style where two random individuals are chosen from the population and the one with the
highest fitness value is allowed to continue into the next generation. The loser is
removed from the population. This occurs until all members have been tested. After the
tournament selection is complete the program generates new members of the population
and then repeats these steps beginning at mutation.

Once the program meets the criteria to stop processing the program will be ready to
output the best solution. This is done using the PDFSharp library available at
http://www.pdfsharp.net under the MIT software license. This library creates a PDF by

11

http://www.pdfsharp.net/

iterating through the rooms and displaying the room occupants, their survey responses,
and the the individual room's fitness. The fitness value for each room will help residence
life staffs understand which rooms are at risk for turnover or conflict.

Support

This program, named Harmony, will be released under the GPLv3 license on
Sourceforge. There are several features which would make the program more usable for
institutions. Firstly, the ability to define how the fitness and survey are defined by using
external text files would greatly improve the number of users the program could help. At
this time, the fitness and survey can be modified only by changing the source code.
These files would be loaded similarly to the way the campus data and survey response
data are loaded.

Secondly, there is little support for suites or quads in the program. Theoretically there are
several ways that a suite could be defined currently. However, for the average user these
approaches will be confusing. Ideally the Room class will be turned into a super class
and there could be several room types (suite, double, single) extending the room class.
Using polymorphism little of the existing program would have to be modified.

Thirdly, while a desktop application works well in this case there are several benefits to
changing it to a web application. The results could be stored in a database which could
be updated over several runs during different times. Reporting could be done completely
in the browser. Data collection from the residents would be streamlined, allowing a quick
turn around time on roommate pairings. The genetic algorithm could run continuously in
the background while this data is collected. In addition, using a web browser would
necessitate generalizing the parts of the program mentioned in the paragraphs above,
making Harmony easier to modify for other institutions to use.

12

References

Anderson-Rowland, Mary. “Using A Roommate Preference Survey For Students Living
On An Engineering Dorm Floor”. 1998

Association of College and University Housing Organization. Web. <http://www.acuho-
i.org>

Griffin, Sean. Personal interview. 25 Mar. 2011

Hall, L. Robert and Ben Willerman. “The Educational Influence of Dormitory
Roommates.” Sociometry 26.3 (1963): 294-318

McEwan, J. Patrick and Kristen Soderberg. “Roommate Effects On Grades: Evidence
From First-Year Housing Assignments.” Research in Higher Education 47.3 (2006) 347-
370.

Shook, J. Natalie and Russell H. Fazio. “Roommate Relationships: A Comparison of
Interracial and Same-Race Living Situations.” Group Processes & Intergroup Relations
11.4 (2008) 425-437.

13

