
1

Configuring and Tuning a Distributed Computer System to

Support Complex Molecular Simulation: Phase I Collecting

Performance Metrics

Medina Sultanova

 St. Cloud State University

St. Cloud, MN 56301

suma0801@stcloudstate.edu

Jake Soenneker

 St. Cloud State University

St. Cloud, MN 56301

soja0704@stcloudstate.edu

Dennis Guster

 St. Cloud State University

St. Cloud, MN 56301

dcguster@stcloudstate.edu

Abstract

A more efficient method to collect data used in the analysis of molecular modeling

parallel simulation was needed. The prior method required some manual analysis and the

transferring of the TCPDUMP packet data from a specialized file to a package such as

EXCEL that required a comma delimited file. This was a cumbersome and time

consuming process so an automated operating level script file was written to stream line

the process. To gain an understanding of the nature of the data and difficulty in analyzing

it sample data from Guster, Sultanov, Nordby, & Slattery, 2007 is included as a model.

That data includes the following fields: CPU time in seconds, elapsed time in seconds,

number of packets in sample, mean inter-arrival time, mean throughput in bytes and

packet intensity in packets per second. It was apparent from the analysis to date that the

script would in fact speed up the data collection phase of the research project. Further, the

test runs of the script on the current cluster environment revealed that it is configured

more effectively and with more powerful resources than the environment utilized in the

2007 study and therefore better results are expected once the actual simulation trials are

actually run.

2

 Introduction

The sophistication of the algorithms available to conduct molecular simulation has made

it possible to conduct numerous complex analyses. However, because of these

complexities it is critical that the computing environment used be capable of producing

results in a timely manner. This is especially true if that environment uses a loosely

coupled architecture. Such configurations then are dependent on the network that binds

them together. One method to address performance optimization on the network software

level is to look at the overhead related to the data transfer logic (Riley, 1997). This

approach has merit in studying the efficiency of the network connectivity in a distributed

computer grid. There are several approaches that can be applied to optimizing

performance on the network protocol level such as optimizing the buffers, minimizing

management traffic and scheduling applications. In most cases the planning and

implementation of such methods can be improved by studying historical network traffic

data obtained on the system in question. Truong and Fahringer, 2003, are proponents of

such methodology and suggest that more research is needed that starts with the analysis

of experimental data. They further state that such research will require better planning in

regard to how to capture, store and analyze such data.

Therefore, this paper will collect workload performance data from a live network in

which parallel molecular modeling software will be used to generate the network

workload. A software package such as MOLDY (Refson, 2000) will be used to generate

the MPI requests. In this program the number of server machines can be programmed and

thereby the offered intensity can be varied. Tcpdump will be used to collect the

performance data. The number of servers will be varied so that performance scaling can

be evaluated. The following data will be reported for each test run: CPU time in seconds,

elapsed time in seconds, number of packets in sample, mean inter-arrival time, mean

throughput in bytes and packet intensity in packets per second. In this manner multiple

configurations can be tested and the most optimal utilized in solving the actual molecular

modeling problem.

 Review of Metrics in Distributed Processing

Because distributed processing is dependent on a network infrastructure the performance

of that infrastructure is critical to the effectiveness of any parallel simulation that tries to

take advantage of a distributed architecture. While there are several middleware solutions

that facilitate communication among the various computing nodes MPI (message passing

interface) is one of the most popular. The literature recognizes that adequate performance

on the network level is critical an offers guidelines such as the ns-3Project, 2011. The

work of Subramoni, Lai, Sur and Panda, 2010, addresses this issue and delineates the

importance of analyzing packet inter-arrival patterns when configuring/tuning a

distributed cluster.

3

Predicting packet inter-arrival patterns and their effect on network performance has long

been a challenging problem (Partridge, 1993). Computer systems represent huge and

complex queuing problems. An analysis of packet inter-arrival rates reveals a failure of

the packet distribution to mimic the theoretically expected Poisson distribution. There are

a number of studies that confirm the actual inter-arrival distribution of packets is not

exponential as would be expected in the classical model (Krzenski, 1998; Partridge,

1993; Vandolore, Babic & Jain, 1999; Guster, Robinson & Richardson 1999).

It should be noted that the data analyzed in these prior studies was taken from a general

purpose network that served a wide variety of applications. The traffic was then made up

of a large number of different protocols, each with their own workload dynamics. This

variation within protocols has been studied by (Guster, Safonov and Sundheim, 2005)

and they found the service used and its interaction with the protocol used tend to vary

significantly. For example, while HTTP and SSH both utilize TCP on the transport layer,

HTTP does a better job of maximizing payloads so it tends to generate fewer packets

with larger payloads. In the case of this study the pattern of MPI traffic would be the

primary concern as well as eliminating packet traffic from the other protocols unless

absolutely needed.

The cost effectiveness and high availability of PC based LANs as a parallel processing

environment has been recognized for many years (Vila-Sallent, Sole-Pareta, Jove, and

Torres, 1997). At first there was a concern that the LAN environment had inadequate

bandwidth to support inter-process communication (Fatoohi and Weeratunga, 1994).

However, higher speed solutions such as infinti band have lessened the concern of

providing adequate bandwidth (Subramoni, Lai, Sur and Panda, 2010). A number of

studies have shown that if PC based clusters are interconnected via a high speed LAN

they can provide an effective parallel processing environment (Luckenbach, Ruppelt and

Schulz, 1994; Fahringer and Prodan, 2002; Mengjou, Hsiehn, Du, Thomas and

MacDonald, 1994). Although the hardware available to support workstation based LANs

continues to improve many feel that relying on hardware alone may not ensure adequate

performance for the demanding applications of the future (Popescu, 1994; Courson,

Mink, Marcais, and Traverse, 2000). This scenario is still true in later work as depicted

by Takizawa, Endo and Matsuoka, 2008, who devised an inter-node communication

algorithm, optimizes a network by appropriate scheduling of nodes according to

application communication patterns. This logic is specifically adapted to utilizing

relatively high EPS local switch bandwidth to forward messages to nodes with optical

connections as a shortcut to maximize overall throughput.

Therefore, methods to address optimization on the network software level can still be

effective. This logic is related back to the work of Riley, 1997 which suggested the need

to evaluate the overhead in relation to the data transfer logic. This basic approach

continues to be useful when studying the efficiency of the network connectivity in a

distributed computer grid. There are certainly several approaches that can be applied

when optimizing performance on the network protocol level such as optimizing the

buffers, minimizing management traffic and scheduling applications. In most cases the

4

planning and implementation of such methods can be improved by studying historical

network traffic data obtained on the system in question. As stated earlier this was true in

the work of Takizawa, Endo and Matsuoka, 2008 who included appropriate scheduling of

nodes according to application communication patterns in their solution. Truong and

Fahringer, 2003 are proponents of such methodology and suggest a continuing pattern of

more research in the field that features the analysis of real experimental data. They

further state that such research will require better planning in regard to how to capture,

store and analyze such data. Further based on the work of Takizawa, Endo and Matsuoka,

2008 it is also important to link that work to the configuration of the physical network

architecture utilized.

Therefore, to illustrate the characteristics of the data this paper reviews workload

performance data from a live network in which parallel molecular modeling software was

used to generate the network workload. The MOLDY program (Refson, 2000) was used

to generate the MPI requests. This example was selected because the source code was

readily available and the output dealt with three dimensional graphics an area that the

authors are investigating to determine the possibility of using such parallel techniques in

financial forecasting. In this program the number of server machines can be programmed

and thereby the offered intensity can be varied. Tcpdump was be used to collect the

performance data. Further, to speed up the analysis a LINUX script was devised to

automate the data analysis. In future expected trials, the number of servers will be varied

so that performance scaling can be evaluated. The following data are critical in evaluating

the performance of the cluster environment: CPU time in seconds, elapsed time in

seconds, number of packets in sample, mean inter-arrival time, mean throughput in bytes

and packet intensity in packets per second.

 CHARACTERISTICS OF THE PROBLEM SOLVED

To provide a sense of the applications that require this level of performance analysis a

sample problem from Guster, Sultanov, Nordby, & Slattery, 2007 is described in brief.

Specifically, this work used a computer simulation methodology to determine the

characteristics of water using the first physical principals. The parallel algorithm used

each processor to store a complete set of dynamic variable arrays for all molecules. The

problem was selected to illustrate practical issues in parallel computing, and involves

molecular dynamic simulations used to study the statistical mechanics of condensed

phase matter composed of small molecules.

These simulations were carried out with water molecules using the 4-site model of

Jorgensen. Only the oxygen site interacts via the Lennard-Jones potential, and the charge

site is displaced 0.15 °A from the oxygen molecule. This simulation is particularly

appropriate for testing the MPI metrics because the applied algorithm generates intensive

communication among all parallel processors included in the system. It has proved a

challenging problem and can generate excellent baseline data in regard to the

performance of the MPI data across the network. The MOLDY code provides quite

5

intensive interaction between computers during the simulations. It is therefore expected

that investigation of this type of problem will add to the understanding of how different

types of algorithms impact the performance of parallel applications. This intensity can be

explained because the area in which the particles will collide is defined through a three

dimensional matrix. To achieve parallelization that space is broken into N subparts based

in the number of processors used. The inter-processor communication is required

whenever a particle collision occurs and a particle moves from the space associated with

one processor to the space area of another processor. Of course then, that movement

needs to be relayed via the MPI protocol using TCP packets. The state of the movement

among particles needs to be updated within the simulation every millisecond which

results in a high intensity of packet exchange between/among processors.

 NETWORK CONFIGURATION

The basic configuration of network follows. Two to twelve Intel virtual hosts are

proposed to run the experiment. Each host will be configured with two 3.2 GHz CPUs

that utilize symmetric multi-processing as supported by the Linux operating system. Each

unit will run its part of the MOLDY program as required. The master server that will run

the primary MPI process, will house the tcpdump program to collect packet traffic. Each

unit is connected via a virtual bridge at 1000Mbps. The Linux flavor that will be used is

CentOS 6, compiling with gcc.

 DATA COLLECTION STRATEGY

The goal is to be prepared to collect and format data quickly under a number of “what if”

scenarios. To illustrate that process data is being displayed below from Guster, Sultanov,

Nordby, & Slattery, 2007. This data depicted in Table 1 provides both the CPU and

network level metrics required to analyze the effectiveness of parallel molecular

modeling simulations. The parallel test-bed was programmed using the MOLDY

software. Tcpdump was run on the master server and therefore traffic for each unit was

collected at a central location. This eliminates the need to link decentralized files together

from each host at a later time and then sorting by time stamp. The time on each host was

synchronized via a time server to ensure continuity. This improvement eliminated a very

cumbersome process and illustrated that the prime purpose of the script described in this

paper was to automate this procedure. In the sample data below multiple trials were run,

but just the one in which the defined the number of steps to reach convergence was at

10,000 is reported herein.

6

2

concurrent

hosts

4

concurrent

hosts

6

concurrent

hosts

8

concurrent

hosts

10

concurrent

hosts

12

concurrent

hosts

CPU Time 141.84 91.06 67.06 59.58 50.70 50.22

Elapsed Time 245.99 200.4 227.58 263.91 259.14 264.85

Packets in Sample 201361 191377 470706 469598 602578 603034

Inter-arrival time .00122 .00104 .000483 .000562 .000430 .000439

Throughput 575668 707134 1265710 1090568 1396049 1337841

Packet Intensity 817.64 960.42 2069.78 1771.63 2327.71 2231.22

Table 1: Timings and Means for Packet Arrival, Throughput, and Intensity

10,000 Iterations

 ANALYSIS

The table above provides some interesting results in regard to the wait time. In other

words there are some large disparities between the CPU and the elapsed times. Further,

while the CPU times scale pretty well to the 10 host level the elapsed times actually start

increasing at the 6 host level which can be attributed to the network overhead if one looks

at the corresponding increases in network intensity. More specifically, the CPU time

required to solve the problems decreases as additional units are added. However, there is

not a linear decrease. In fact, the decrease from 2 units to 12 units is only about three

times. Elapsed time also exhibited similar traits within the two samples. In both cases it

was reduced when four units were used, but increased steadily as additional units were

added. Interestingly, packets in the sample provide a clue as to why the elapsed time

increases when more than four units are utilized. When the number of units is increased

from 4 to 6 the number of required packets about doubles which results in significant

communication overhead. The output below illustrates how easy it will be to extract the

same information from a TCP packet capture file. All that is needed is the host to analyze

the round trip times, the number of times to average those round trip tests, the file name,

and whether or not the inter-arrival times are desired.

######################

DUMP STATISTICS ##

######################

Name of the TCP packet capture file to analyze:

output

Calculate Inter-arrival? (Expensive!) [y/n]

7

y

Host to analyze Round Trip Time (RTT):

localhost

Number of times to analyze RTT:

10

Please wait...

 100%

Pinging...

Number of packets: 1954

Data exchanged: 1291692 (bytes)

Time difference: 16.113371 (seconds)

Packets per second: 121.26574879955286823595

Average Inter-arrival: .00824635158648925281 (seconds)

Average packet length: 661.05015353121801432958 (bytes)

Average window size: 1140.29119754350051177072 (bytes)

Average Round Trip Time: .00004700000000000000 (seconds) to localhost

Average Max Bandwidth [Throughput]: 194092118.73080859774820765957 (bits/sec)

Average Transmission Rate: 641301.93489618032129962128 (bits/sec)

Traffic Intensity: .12499999999999999999

In looking at this sample run there are a number of encouraging statistics in regard to

supporting an effective parallel computing environment for molecular modeling

simulation. This test was undertaken in a virtual environment whereby the resources are

multiplexed across multiple zones. Even so the performance characteristics in regard to

though put compare favorably with the dedicated host cluster used in the 2007 study. As

the current test-bed is tuned one can certainly expect superior performance from the new

virtualized environment.

DISCUSSION

In terms of providing an advantage in solving the problems in less time the 2007 data set

fails when more than four units are utilized. While the reduction in the CPU time is

encouraging as more host were added, the increase in network traffic offsets this

advantage. Therefore, the computing environment needed to be enhanced for the

algorithm to be effective given the massive amount of inter-processor communication

utilized.

To provide the desired improvement several factors were considered besides redesigning

the distribution algorithm. First, it was important to secure a network speedup to at least

1Gbs. It was expected that the added speed would also help reduce the loss in packet

payload efficiency as hosts are added. In both data sets packet average is about 650 bytes.

If this could be increased higher transmission efficiency could be achieved. This

moderate size may in part be explained by the overhead of setting up and maintaining the

8

additional TCP connections used by MPI. There may be some promise in adapting the

software to use PVM which is based on UDP which is connectionless. (Guster, Al-

Hammah, Safonov and Bachman, 2003) found that PVM could greatly reduce the

communications overhead when compared to MPI. Also, perhaps multi-core hosts would

help in this regard because the processors would all be in the same box and connected via

a high speed bus. However, an analysis of the number of management packets (such as

TCP syn) in the data revealed that they typically accounted for only .05% of the total

packets which may negate the potential of PVM. A further analysis of the packet sizes in

2007 data revealed that there were often a large number of small packets. In fact the

number of packets less than 100 bytes averaged (payload less than 40 bytes) around 35%

across the data and in some cases exceeded 45% within a single trial. These values help

explain why the transfer rates observed were well below Ethernet’s maximum of 1514

bytes. Last, the proposed script goes a long way to improving the data collection process

and will especially be useful in simulations that require many trail in which the number

of processors and iterations are varied.

 REFERENCES

Courson, M., Mink, A., Marcais, M. and Traverse, B., An Automated Benchmarking

Toolset, In HPCN Europe, p497-506, 2000.

Fahringer, T. and Prodan, R., ZENTURIO: An Experiment Management System for

Cluster and Grid Computing, 4th Intl. APART Workshop, Euro-Par, 2002.

Fatoohi, R. and Weeratunga, S., Performance Evaluation of Three Distributed

Computing Environments for Scientific Applications, In Proceedings of Supercomputing

‘94, p400-409, 1994.

Guster, D., Al-Hamamah, A., Safonov, P. and Bachman, E., Computing and Network

Performance of A Distributed Parallel Processing Environment Using the MPI and PVM

Communication Methods, The Journal of Computing Sciences in Colleges, Vol. XVIII

(4), p248-253, 2003.

 Guster, D., Robinson, D. and Richardson, M., The Application of the Power Law Process

in Modeling the Inter-Arrival Times of Packets in a Computer Network, Proceedings of

the Midwest Decision Sciences Institute, Springfield, IL, April 22-24, 1999.

Guster, D., Safonov, P. and Sundheim, R., Analysis of End-user Services and Their

Potential Load on the Network, Journal of the Academy of Business and Economics. Vol.

V (3), 2005.

Guster, D. C., Sultanov, R., Nordby, M., & Slattery, T. Managing a Computer Cluster:

Tradeoffs and Scalability. Presentation at the International Academy of Business and

Economics, Las Vegas, NV. October, 2007.

9

Krzenski, K. The Effect of Varying the Packet Interarrival Distribution in the Simulation

of Ethernet Computer Networks, Unpublished graduate research project, St. Cloud State

University, 1998.

Luckenbach, T., Ruppelt, R. and Schulz, F., Performance Experiments within Local ATM

Networks, GMD-FOKUS, Berlin, Germany, 1994.

Mengjou, L., Hsiehn J., Du, H., C., Thomas, J., P. and MacDonald, J., Distributed

Network Computing over Local ATM Networks, Computer Science Department

University of Minnesota, Computer Science Department Technical Report, p94-17, 1994.

Ns-3Project. http://www.nsnam.org/docs/models/html/distributed.html, 2011.

Partridge, C. The End of Simple Traffic Models, Editor’s Note, IEEE Network, Vol. VII

(5), 1993.

Popescu, A. A Parallel Approach to Integrated Multi-Gbit/s Communication over

Multiwavelength Optical Networks, Ph.D. dissertation, Royal Institute of Technology,

Stockholm, 1994.

Refson, K., Moldy: a portable molecular dynamics simulation program for serial and

parallel computers, Computer Physics Communications, Vol. CXXVI (310), 2000.

Riley, G. et al., Performance Improvement Through Overhead Analysis: a case study in

molecular dynamics, Proc. 11th ACM Intl. Conf. Supercomputing, p36-43, 1997.

Subramoni, H., Lai, P., Sur, S. and Panda, D. Improving Application Performance and

Predictability using Multiple Virtual Lanes in Modern Multi-Core InfiniBand Clusters,

39
th

 International Conference, San Diego, CA, Sept 2010.

Takizawa, S. Endo, T. and Matsuoka, S. Locality aware MPI communication on a

commodity opto-electronic hybrid network. Proceeding of the IEEE International

Symposium on Parallel and Distributed Processing, April 2008.

Truong, H. and Fahringer, T., On Utilizing Experiment Data Repository for Performance

Analysis of Parallel Applications. In 9th International Europar Conference (EuroPar 03),

LNCS, Klagenfurt, Austria, Springer-Verlag, 2003.

Vandolore, B., Babic, G. and Jain, R., Analysis and Modeling of Traffic in Modern Data

Communications Networks. A paper submitted to the Applied Telecommunication

Symposium, 1999.

Vila-Sallent, J., Sole-Pareta, J., Jove, T. and Torres, J., Potential Performance of

Distributed Computing Systems over ATM Networks, INFOCOM '97, 1996.

