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Abstract

This paper provides a survey of some research literature on the question of whether some 
NP-complete problems are easier than others.  The classic open problem regarding NP-
completeness is usually framed as determining whether P = NP, that is, whether the class 
of problems that can be deterministically decided in polynomial time is the same as the 
class of problems that are non-deterministically decided in polynomial time.  It is widely 
believed that P ≠ NP, but proof of this result remains elusive.  In the decades that have 
passed  waiting  for  the  major  open  question  to  be  resolved,  some  researchers  have 
investigated the question of whether some of the NP-complete problems might be easier 
than  others.   We  know  that  NP  is  a  subclass  of  EXP  –  the  class  of  problems 
deterministically decided in exponential  time, and we expect that  none of the hardest 
problems in NP (the NP-complete problems) are in P.  Is it possible that some or all of 
the NP-complete problems might be in a deterministic complexity class SUBEXP, which 
lies  between  P  and  EXP?   If  we  assume  that  the  Satisfiability  problem  is  strongly 
exponential, can we prove that all or some of the other NP-complete problems are also 
strongly exponential?

A survey of the research literature shows that there is no firm consensus on which of the 
hard problems are easier than the others.  In this paper we examine various definitions of 
sub-exponential  time, discuss the hypothesis that Satisfiability is strongly exponential, 
and review the results regarding which hard problems might be in SUBEXP.  Our goal is 
to provide a clear summary, for both faculty and students, of research on a major open 
question  at  the  center  of  computer  science  that  remains  intriguing  and  somewhat 
controversial, even fifty years after Stephen Cook first defined the class of NP-complete 
problems.



1  Introduction

We understand the class NP to be the class of languages whose membership functions can 
be computed  by non-deterministic  Turing machine  programs in  polynomial  time.   P, 
likewise, represents the class of languages whose membership functions can be computed 
by deterministic  Turing machine  programs in  polynomial  time.   We know that  every 
language in P must also be in NP, since a deterministic Turing machine can easily be 
modified to make it non-deterministic.  We don't know, however, whether every language 
in NP is also in P.  The time required for a deterministic Turing machine to simulate a 
non-deterministic one is exponential in the worst case, so NP must be a subclass of EXP 
(the class of  languages with deterministic, exponential-time Turing machine deciders). 
But  to  date,  no  one  has  actually proven that  some language  in  NP does  not  have  a 
deterministic, polynomial-time decider.  At the same time, it seems highly unlikely that 
every NP language has such a decider.

Stephen Cook was the first to identify a problem in NP that is complete [1].  He showed 
that any polynomial-length computation by a non-deterministic Turing machine can be 
modeled by a polynomial-size Boolean expression such that the expression is satisfiable 
if and only if the computation accepts its input.  Thus if the satisfiability of a Boolean 
expression can be deterministically determined in polynomial time, any non-deterministic 
Turing  machine  computation  and  be  deterministically  simulated  in  polynomial  time. 
Shortly  after  Cook  defined  the  first  NP-complete  problem,  Karp  demonstrated  that 
numerous other problems in NP are complete  by defining polynomial-time reductions 
from the known NP-complete problems to the new ones [4].  The NP-complete class was 
soon recognized  to  be  a  rather  large subclass  of  NP,  containing  many combinatorial 
problems that regularly occur in computing applications.

We  normally  think  of  complete  problems  to  be  the  hardest  in  their  class,  so  it  is 
somewhat  counter-intuitive  to  believe  that  some  complete  problems  are  harder  than 
others.   But  as  it  turns  out,  the  requirement  that  reductions  between  NP-complete 
problems take no more than polynomial-time leaves room for deterministic complexity 
distinctions.  While worst-case, exact algorithms for most NP-complete problems require 
strongly exponential time, it appears that some can operate in sub-exponential (but still 
super-polynomial) time.  The research literature on this topic, however, is not particularly 
consistent.  The purpose of this paper is to review and clarify some of the results that 
have been published over the years, with the expectation that clarifications will eventually 
lead to a consensus on which NP-complete problems are harder than others.

2 The Meaning of Sub-Exponential Time

We can define a deterministic time class called SUBEXP that lies between P and EXP.  It 
contains all languages in P plus all the languages whose deterministic deciders have time 
functions that grow faster than  nc,  for any positive constant  c  (super-polynomial),  but 
slower than cn, for any constant c > 1 (sub-exponential).  The function f x = 2x is 
a good example of such a time function.  We find various definitions for sub-exponential 
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in  research  articles.   Stearns  and  Hunt  [6]  used  the  concept  of  power  index  for 
exponential functions.  The power index for f x = 2x is one, while the power index 
for f x = 2x is one-half.  In general, the power index of f x = 2x i

is i, and we 
can call a function sub-exponential if its power index is strictly less than one.

In other articles (such as [2]), a function f(x) is classified as sub-exponential if it is strictly 
less than 2cx for every constant c > 0.  This can also be expressed using little-oh notation: 
a function  whose complexity is  2o(x) can be called sub-exponential.   With  any of  the 
asymptotic notations (O, Ω, Θ,  o, ω), we may find an expression such as 2o(x) used as 
alternative to  O(2x).  The former notation is useful for characterizing time functions for 
combinatorial problems, which frequently combine a polynomial function  p(x) with an 
exponential function 2x.  It is not technically correct to say that a time function  t(x) = 
p(x)∙2x is O(2x).  The polynomial factor makes the function exceed c∙2x for any constant c. 
But certainly, for large enough x, p(x)∙2x < 2x∙2x, and 2x∙2x = 22x, so we can say that p(x)∙2x  

is  2o(x).   We also find  O*-notation used to  suppress polynomial  factors in complexity 
classifications.  Gerhard Woeginger [7], for example, uses O*(T(m(x))) as a shorthand for 
O(T(m(x)) ∙ p(|x|)).

We can provide one more alternative for the definition of sub-exponential growth based 
on the quotient f(x)/f(x-1).  This definition facilitates simple empirical verification of sub-
exponential  complexity,  which  is  perhaps  easier  than  solving  for  constants  in  the 
definitions  of  asymptotic  notation.   For  polynomial  functions,  the  quotient  f(x)/f(x-1) 
decreases, approaching the limit of 1, as  x increases.  For exponential functions of the 
form  f(x)  =  cn,  the  quotient  is  constant  at  f(x)/f(x-1)  =  c.   Sub-exponential  functions 
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Figure 1:  A comparison of polynomial, sub-exponential, and exponential functions.



behave like polynomials with respect to this quotient -- it decreases approaching 1 as x 
increases.  We can easily distinguish a truly sub-exponential function like f x=2x

from a function like (1/x)∙2x, which appears to grow more slowly than c∙2x.  For f(x) = (1/
x)∙2x,  the  quotient  f(x)/f(x-1)  increases,  approaching  2  as  x increases,  rather  than 
decreasing towards 1.  So  f(x) = (1/x)∙2x is exponential, as it can be shown algebraically 
to be O(cx) for a constant 1 < c < 2.

Finally,  we consider  whether  sub-exponential  time  is  a  significant  improvement  over 
exponential time.  In light of the analysis in the previous paragraph, we might expect sub-
exponential functions to behave more like polynomials, and, for at least a while longer as 
x increases,  this  is  the  case.   Stearns  and  Hunt  [6]  observe  that  sub-exponential 
algorithms  can  be  run  on  data  sets  with  thousands  of  items,  compared  to  perhaps 
hundreds  of  items  for  exponential  algorithms.   A  comparison  of  exponential,  sub-
exponential, and polynomial growth can be found in Figures 1 through 3.  Figures 1 and 2 
present two views of the same information -- with a standard scale in Figure 1, and with 
an exponential y-scale in Figure 2.  They compare the values of three functions, x2, 2x, and

2x for values of x between 0 and 32.  The highest curve is 2x in both figures.  It grows 
so fast  that  the scaling factor needed to  accommodate it  makes  the other two curves 
overlay one another in Figure 1.  With the exponential y-scale in Figure 2, the curves for 
x2 and 2x are distinct, with 2x at the bottom.  The sub-exponential function actually 
has lower than quadratic values in this range.  Figure 3 extends the comparison of x2 and

2x beyond the  x-value at  which they cross,  which is  about  250.   From this  point 
onward, 2x rapidly becomes higher than  x2.  But it's worth noting that for data sets 
with  a  few hundred items,  a  sub-exponential  algorithm might  actually out-perform a 

3

Figure 2:  Exponential-scale comparison of polynomial, sub-exponential, and exponential functions.



quadratic  algorithm.   For  some  applications  this  might  deliver  exact  solutions  to 
combinatorial problems in a reasonable amount of time.

3  Which NP-Complete Problems are Sub-Exponential?

Two major research contributions can be found in the research literature, about a decade 
apart,  dealing  with  the  question  of  which  NP-complete  problems  are  easier  than  the 
others.   Both  make  the assumption,  consistent  with  widely-held  expectation,  that  the 
Satisfiability problem has strongly exponential  time complexity --  2Ω(n) for a Boolean 
expression with  n variables.   This  is  called  the Satisfiability Hypothesis.   Given this 
conjecture, the authors determine what other problems might be easier or not easier than 
Satisfiability.   According to the first  of  these papers [6],  the Clique problem and the 
Partition  problem are  sub-exponential  with  power  index  one-half.   According  to  the 
second [2,  3],  Clique  is  strongly exponential,  and no problems are  identified  as  sub-
exponential.

The  Clique  problem  is  the  problem  of  finding  the  largest  complete  subgraph  in  an 
undirected graph.  The Partition problem is the problem of determining whether a set of 
positive integers can be divided into two subsets with the same sum.  The two problems 
are  not  closely related,  except  that  both  are  NP-complete.   In [6],  Stearns  and Hunt 
describe algorithms for these problems that have time complexity 2O x where x is the 
length in bits of the problem input.  In the case of Clique, the input is a list of edges (the 
adjacency list  for the graph) and the algorithm is simple recursive backtracking.  It is 
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proven by induction that the number of recursive calls in the backtracking program is no 
more than n⋅22e where e is the number of edges in the graph and n is the number of 
nodes.  For the Partition problem, the input is a list of numbers and the algorithm is a 
hybrid that employs both backtracking and dynamic programming.  Suppose the input list 
contains n numbers with maximum m, and let b be the bit length of the entire list (then b 
≤ n ∙ lg m).  The list of numbers  is divided into two subsets A and B, where B contains all 
the numbers with fewer than b bits,  and  A contains the numbers with b bits  or 
more.  Backtracking is applied to A, dynamic programming is applied to B, and the results 
are  combined  to  determine  whether  a  partition  can  be  found.   This  hybrid  approach 
exploits the fact that backtracking works better on a sparse list (a shorter list relatively 
large numbers) and dynamic programming works better on a dense list (a longer list of 
relatively small numbers).  It is shown that the number of steps for the hybrid algorithm is 
bounded by b2⋅2b . So both Clique and Partition have algorithms with sub-exponential 
time functions when the bit length of the input is the complexity parameter.

About a decade later, Impagliazzo, Paturi, and Zane [3] published a study that sought to 
determine which NP-complete problems have strongly exponential complexity (under the 
assumption  that  Satisfiability  is  strongly  exponential).   They noted  that  incremental 
improvements in the O(p(n)∙cn) exponential complexity for many NP-complete problems 
raised the issue of whether strict lower bounds for the values of  c actually existed.  To 
address this issue, they defined a form of reduction that would preserve sub-exponential 
time complexity.  This family of reductions is called SERF (sub-exponential reduction 
family), and the authors defined two problems to be SERF-equivalent if there is a SERF 
reduction  between  them.   The  reductions  are  defined  to  have  an  explicitly  specified 
complexity parameter, so measures like the number of nodes or the number of edges in a 
graph can be used instead of input length. The SERF reductions do not change the size of 
the complexity measure by more than a constant factor, thus insuring that the reduction 
has linear space complexity when input length is the measure.  The time complexity of 
the reductions  can actually be super-polynomial,  provided it  remains  sub-exponential. 
The main result is that a large number of NP-complete problems, including Clique, are 
SERF-equivalent to k-Satisfiability.

The proof that Clique and k-Satisfiability are SERF-equivalent directly clashes with the 
claim that Clique,  but not Satisfiability,  has sub-exponential  complexity.   The authors 
address this  conflict  by suggesting that  input  length is  not  an appropriate  complexity 
measure for distinguishing exponential from sub-exponential complexity.  This seems a 
little disconcerting, since input length is the classic complexity measure that is used for 
the definition of all the complexity classes, including P, NP, and NP-complete.  While 
Impagliazzo,  Paturi,  and  Zane  do  not  explicitly  address  whether  Partition  is  sub-
exponential, their critique of Stearns and Hunt's Clique analysis implies that the Partition 
analysis is also flawed.  An earlier version of the Impagliazzo, Paturi, and Zane article [2] 
contains the statement that the Subset Sum problem is SERF-hard, implying that Partition 
(which is a special case of Subset Sum) is not appropriately classified as sub-exponential.

A few years later, Gerhard Woeginger [7]  published a survey of exact algorithms for 
many NP-complete  problems.   His  introduction  states  the  commonly held  belief  that 
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super-polynomial time is the best we can hope for with regard to these problems, and that 
while there is a scattering of results for different problems across the literature, there is no 
general theory of how the problems relate to each other, and there is no explanation for 
the wide variation in the values of  c in complexities of the form  O(p(n)∙cn).  Figure 4 
below  shows  the  best  known  complexities  for  some  of  the  problems  discussed  by 
Woeginger.

Problem Best known c
for complexity O(p(n)∙cn)

Travelling Salesman 2
k-Colorability in graphs 2

Max-Cut in graphs 2
Bandwidth in graphs 2

Max-Cut with maximum degree 3 1.5
3-Satisfiability 1.48
3-Colorability 1.33

Subset Sum or Knapsack 1.14
Maximum Independent Set 1.1
Figure 4: Base constants for exponential complexities of some NP-complete problems.

Woeginger's  survey  does  not  mention  the  Partition  problem,  nor  does  it  cite  sub-
exponential time for any of the problems it discusses.  The complexity parameter n for the 
Subset Sum complexity in Figure 4 is the number of integers in the input list, not the total 
bit length of the input list.  Woeginger summarizes the results of Impagliazzo, Paturi, and 
Zane in a discussion of how to prove that a problem has no sub-exponential time exact 
algorithm.  Woeginger offers as an open problem whether a proof that one of the SERF-
complete problems is sub-exponential would imply that P = NP.  Woeginger concludes 
that for all the literature generated about NP-complete problems over the past fifty years, 
the study of their exact solutions remains a rich and promising area for research.

4  Attempting to Resolve the Inconsistency

It is possible to shed some light on the inconsistent complexity results for the Clique 
problem by examining the effects of a symmetric representation for the edge list  of a 
graph.  This approach is described in detail in [5].  When a set of objects is dense, that is, 
when it contains more than half of the universe of possible objects, a simple list of objects 
is not the most efficient representation.  For a dense set, the list of missing objects would 
be shorter, perhaps significantly shorter.  It is easy to devise a list  with a header that 
identifies the universe of possible values, has a field indicating the polarity of the list, 
and enumerates whichever is shorter -- the set or its complement.  A list with positive 
polarity is the same as a conventional list.  A list with negative polarity is a list of all 
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missing  items.   A polarized  list  is  one  of  many representation  schemes  that  can  be 
characterized  as  symmetric.   With  symmetric  representation,  the  length  of  the 
representation  for  a  set  is  the  same  as  the  length  of  the  representation  for  the  set's 
complement.

If we use symmetric representation for the edge list in a graph, we can no longer claim 
sub-exponential complexity for Clique.  The worst case occurs for a dense graph, where 
the number of edges  e is  Θ(n2), where  n is the number of vertices, and the number of 
missing edges is Θ(n).  In this case the length of the symmetric adjacency list is Θ(n), and 
the number of steps in the backtracking algorithm is n⋅22e , which is 2O n2 , or 2O(n). 
Since a symmetric list is more space efficient than a conventional adjacency list, we can 
claim that it is the most appropriate representation to use for complexity classification. 
So it looks like Impagliazzo, Paturi, and Zane are right with regard to Clique -- it has the 
same  complexity  as  k-Satisfiability.   However,  we have  achieved  this  result  without 
disputing the use of input length as a valid complexity parameter.

It  is  interesting  to  pursue  this  same  analysis  for  the  Partition  problem.   Symmetric 
representation can be easily applied to a list of numbers, and the representation length for 
a dense list can be significantly shorter than the conventional list.  But the worst case for 
Partition is a sparse set of numbers, not a dense one.  Solving Partition for a dense set is 
very easy.  It appears possible to establish that Partition can be solved in linear time for 
any set that's dense enough to have significantly shorter representation using a symmetric 
list.  This would allow us to devise an algorithm that adapted its method to the density of 
the input set, achieving sub-exponential complexity for sparse and dense sets alike, even 
under symmetric representation.

5  Conclusion

In conclusion we share Gerhard Woeginger's view that we still have a lot to learn about 
exact solutions for NP-complete problems.  There is a consensus that exact algorithms 
will remain super-polynomial, but there is no apparent consensus on whether some of the 
hard problems have sub-exponential complexity, particularly Partition, Subset Sum, and 
various  related  problems  that  are  known  to  have  pseudo-polynomial  time  solutions. 
Anticipating  that  such  a  consensus  will  eventually  emerge,  we  would  expect  the 
relationship  between  the  non-deterministic  and  deterministic  time  classes  to  look 
something  like  the  diagram  in  Figure  5  below.   The  non-deterministic  classes  are 
indicated with dashed lines.  NP is somewhere within EXP, containing all of SUBEXP 
and P.  The NP-complete class is inside NP and outside of P, spanning the boundary 
between SUBEXP and EXP.
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Figure 5: Conjectured relationship between time classes.
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