
The Prospects for Sub-Exponential Time

Thomas E. O'Neil
Computer Science Department

University of North Dakota
Grand Forks, ND 58202-9015

oneil@cs.und.edu

Abstract

This paper provides a survey of some research literature on the question of whether some
NP-complete problems are easier than others. The classic open problem regarding NP-
completeness is usually framed as determining whether P = NP, that is, whether the class
of problems that can be deterministically decided in polynomial time is the same as the
class of problems that are non-deterministically decided in polynomial time. It is widely
believed that P ≠ NP, but proof of this result remains elusive. In the decades that have
passed waiting for the major open question to be resolved, some researchers have
investigated the question of whether some of the NP-complete problems might be easier
than others. We know that NP is a subclass of EXP – the class of problems
deterministically decided in exponential time, and we expect that none of the hardest
problems in NP (the NP-complete problems) are in P. Is it possible that some or all of
the NP-complete problems might be in a deterministic complexity class SUBEXP, which
lies between P and EXP? If we assume that the Satisfiability problem is strongly
exponential, can we prove that all or some of the other NP-complete problems are also
strongly exponential?

A survey of the research literature shows that there is no firm consensus on which of the
hard problems are easier than the others. In this paper we examine various definitions of
sub-exponential time, discuss the hypothesis that Satisfiability is strongly exponential,
and review the results regarding which hard problems might be in SUBEXP. Our goal is
to provide a clear summary, for both faculty and students, of research on a major open
question at the center of computer science that remains intriguing and somewhat
controversial, even fifty years after Stephen Cook first defined the class of NP-complete
problems.

1 Introduction

We understand the class NP to be the class of languages whose membership functions can
be computed by non-deterministic Turing machine programs in polynomial time. P,
likewise, represents the class of languages whose membership functions can be computed
by deterministic Turing machine programs in polynomial time. We know that every
language in P must also be in NP, since a deterministic Turing machine can easily be
modified to make it non-deterministic. We don't know, however, whether every language
in NP is also in P. The time required for a deterministic Turing machine to simulate a
non-deterministic one is exponential in the worst case, so NP must be a subclass of EXP
(the class of languages with deterministic, exponential-time Turing machine deciders).
But to date, no one has actually proven that some language in NP does not have a
deterministic, polynomial-time decider. At the same time, it seems highly unlikely that
every NP language has such a decider.

Stephen Cook was the first to identify a problem in NP that is complete [1]. He showed
that any polynomial-length computation by a non-deterministic Turing machine can be
modeled by a polynomial-size Boolean expression such that the expression is satisfiable
if and only if the computation accepts its input. Thus if the satisfiability of a Boolean
expression can be deterministically determined in polynomial time, any non-deterministic
Turing machine computation and be deterministically simulated in polynomial time.
Shortly after Cook defined the first NP-complete problem, Karp demonstrated that
numerous other problems in NP are complete by defining polynomial-time reductions
from the known NP-complete problems to the new ones [4]. The NP-complete class was
soon recognized to be a rather large subclass of NP, containing many combinatorial
problems that regularly occur in computing applications.

We normally think of complete problems to be the hardest in their class, so it is
somewhat counter-intuitive to believe that some complete problems are harder than
others. But as it turns out, the requirement that reductions between NP-complete
problems take no more than polynomial-time leaves room for deterministic complexity
distinctions. While worst-case, exact algorithms for most NP-complete problems require
strongly exponential time, it appears that some can operate in sub-exponential (but still
super-polynomial) time. The research literature on this topic, however, is not particularly
consistent. The purpose of this paper is to review and clarify some of the results that
have been published over the years, with the expectation that clarifications will eventually
lead to a consensus on which NP-complete problems are harder than others.

2 The Meaning of Sub-Exponential Time

We can define a deterministic time class called SUBEXP that lies between P and EXP. It
contains all languages in P plus all the languages whose deterministic deciders have time
functions that grow faster than nc, for any positive constant c (super-polynomial), but
slower than cn, for any constant c > 1 (sub-exponential). The function f x = 2x is
a good example of such a time function. We find various definitions for sub-exponential

1

in research articles. Stearns and Hunt [6] used the concept of power index for
exponential functions. The power index for f x = 2x is one, while the power index
for f x = 2x is one-half. In general, the power index of f x = 2x i

is i, and we
can call a function sub-exponential if its power index is strictly less than one.

In other articles (such as [2]), a function f(x) is classified as sub-exponential if it is strictly
less than 2cx for every constant c > 0. This can also be expressed using little-oh notation:
a function whose complexity is 2o(x) can be called sub-exponential. With any of the
asymptotic notations (O, Ω, Θ, o, ω), we may find an expression such as 2o(x) used as
alternative to O(2x). The former notation is useful for characterizing time functions for
combinatorial problems, which frequently combine a polynomial function p(x) with an
exponential function 2x. It is not technically correct to say that a time function t(x) =
p(x)∙2x is O(2x). The polynomial factor makes the function exceed c∙2x for any constant c.
But certainly, for large enough x, p(x)∙2x < 2x∙2x, and 2x∙2x = 22x, so we can say that p(x)∙2x

is 2o(x). We also find O*-notation used to suppress polynomial factors in complexity
classifications. Gerhard Woeginger [7], for example, uses O*(T(m(x))) as a shorthand for
O(T(m(x)) ∙ p(|x|)).

We can provide one more alternative for the definition of sub-exponential growth based
on the quotient f(x)/f(x-1). This definition facilitates simple empirical verification of sub-
exponential complexity, which is perhaps easier than solving for constants in the
definitions of asymptotic notation. For polynomial functions, the quotient f(x)/f(x-1)
decreases, approaching the limit of 1, as x increases. For exponential functions of the
form f(x) = cn, the quotient is constant at f(x)/f(x-1) = c. Sub-exponential functions

2

Figure 1: A comparison of polynomial, sub-exponential, and exponential functions.

behave like polynomials with respect to this quotient -- it decreases approaching 1 as x
increases. We can easily distinguish a truly sub-exponential function like f x=2x

from a function like (1/x)∙2x, which appears to grow more slowly than c∙2x. For f(x) = (1/
x)∙2x, the quotient f(x)/f(x-1) increases, approaching 2 as x increases, rather than
decreasing towards 1. So f(x) = (1/x)∙2x is exponential, as it can be shown algebraically
to be O(cx) for a constant 1 < c < 2.

Finally, we consider whether sub-exponential time is a significant improvement over
exponential time. In light of the analysis in the previous paragraph, we might expect sub-
exponential functions to behave more like polynomials, and, for at least a while longer as
x increases, this is the case. Stearns and Hunt [6] observe that sub-exponential
algorithms can be run on data sets with thousands of items, compared to perhaps
hundreds of items for exponential algorithms. A comparison of exponential, sub-
exponential, and polynomial growth can be found in Figures 1 through 3. Figures 1 and 2
present two views of the same information -- with a standard scale in Figure 1, and with
an exponential y-scale in Figure 2. They compare the values of three functions, x2, 2x, and

2x for values of x between 0 and 32. The highest curve is 2x in both figures. It grows
so fast that the scaling factor needed to accommodate it makes the other two curves
overlay one another in Figure 1. With the exponential y-scale in Figure 2, the curves for
x2 and 2x are distinct, with 2x at the bottom. The sub-exponential function actually
has lower than quadratic values in this range. Figure 3 extends the comparison of x2 and

2x beyond the x-value at which they cross, which is about 250. From this point
onward, 2x rapidly becomes higher than x2. But it's worth noting that for data sets
with a few hundred items, a sub-exponential algorithm might actually out-perform a

3

Figure 2: Exponential-scale comparison of polynomial, sub-exponential, and exponential functions.

quadratic algorithm. For some applications this might deliver exact solutions to
combinatorial problems in a reasonable amount of time.

3 Which NP-Complete Problems are Sub-Exponential?

Two major research contributions can be found in the research literature, about a decade
apart, dealing with the question of which NP-complete problems are easier than the
others. Both make the assumption, consistent with widely-held expectation, that the
Satisfiability problem has strongly exponential time complexity -- 2Ω(n) for a Boolean
expression with n variables. This is called the Satisfiability Hypothesis. Given this
conjecture, the authors determine what other problems might be easier or not easier than
Satisfiability. According to the first of these papers [6], the Clique problem and the
Partition problem are sub-exponential with power index one-half. According to the
second [2, 3], Clique is strongly exponential, and no problems are identified as sub-
exponential.

The Clique problem is the problem of finding the largest complete subgraph in an
undirected graph. The Partition problem is the problem of determining whether a set of
positive integers can be divided into two subsets with the same sum. The two problems
are not closely related, except that both are NP-complete. In [6], Stearns and Hunt
describe algorithms for these problems that have time complexity 2O x where x is the
length in bits of the problem input. In the case of Clique, the input is a list of edges (the
adjacency list for the graph) and the algorithm is simple recursive backtracking. It is

4

Figure 3: Quadratic vs. sub-exponential growth.

proven by induction that the number of recursive calls in the backtracking program is no
more than n⋅22e where e is the number of edges in the graph and n is the number of
nodes. For the Partition problem, the input is a list of numbers and the algorithm is a
hybrid that employs both backtracking and dynamic programming. Suppose the input list
contains n numbers with maximum m, and let b be the bit length of the entire list (then b
≤ n ∙ lg m). The list of numbers is divided into two subsets A and B, where B contains all
the numbers with fewer than b bits, and A contains the numbers with b bits or
more. Backtracking is applied to A, dynamic programming is applied to B, and the results
are combined to determine whether a partition can be found. This hybrid approach
exploits the fact that backtracking works better on a sparse list (a shorter list relatively
large numbers) and dynamic programming works better on a dense list (a longer list of
relatively small numbers). It is shown that the number of steps for the hybrid algorithm is
bounded by b2⋅2b . So both Clique and Partition have algorithms with sub-exponential
time functions when the bit length of the input is the complexity parameter.

About a decade later, Impagliazzo, Paturi, and Zane [3] published a study that sought to
determine which NP-complete problems have strongly exponential complexity (under the
assumption that Satisfiability is strongly exponential). They noted that incremental
improvements in the O(p(n)∙cn) exponential complexity for many NP-complete problems
raised the issue of whether strict lower bounds for the values of c actually existed. To
address this issue, they defined a form of reduction that would preserve sub-exponential
time complexity. This family of reductions is called SERF (sub-exponential reduction
family), and the authors defined two problems to be SERF-equivalent if there is a SERF
reduction between them. The reductions are defined to have an explicitly specified
complexity parameter, so measures like the number of nodes or the number of edges in a
graph can be used instead of input length. The SERF reductions do not change the size of
the complexity measure by more than a constant factor, thus insuring that the reduction
has linear space complexity when input length is the measure. The time complexity of
the reductions can actually be super-polynomial, provided it remains sub-exponential.
The main result is that a large number of NP-complete problems, including Clique, are
SERF-equivalent to k-Satisfiability.

The proof that Clique and k-Satisfiability are SERF-equivalent directly clashes with the
claim that Clique, but not Satisfiability, has sub-exponential complexity. The authors
address this conflict by suggesting that input length is not an appropriate complexity
measure for distinguishing exponential from sub-exponential complexity. This seems a
little disconcerting, since input length is the classic complexity measure that is used for
the definition of all the complexity classes, including P, NP, and NP-complete. While
Impagliazzo, Paturi, and Zane do not explicitly address whether Partition is sub-
exponential, their critique of Stearns and Hunt's Clique analysis implies that the Partition
analysis is also flawed. An earlier version of the Impagliazzo, Paturi, and Zane article [2]
contains the statement that the Subset Sum problem is SERF-hard, implying that Partition
(which is a special case of Subset Sum) is not appropriately classified as sub-exponential.

A few years later, Gerhard Woeginger [7] published a survey of exact algorithms for
many NP-complete problems. His introduction states the commonly held belief that

5

super-polynomial time is the best we can hope for with regard to these problems, and that
while there is a scattering of results for different problems across the literature, there is no
general theory of how the problems relate to each other, and there is no explanation for
the wide variation in the values of c in complexities of the form O(p(n)∙cn). Figure 4
below shows the best known complexities for some of the problems discussed by
Woeginger.

Problem Best known c
for complexity O(p(n)∙cn)

Travelling Salesman 2
k-Colorability in graphs 2

Max-Cut in graphs 2
Bandwidth in graphs 2

Max-Cut with maximum degree 3 1.5
3-Satisfiability 1.48
3-Colorability 1.33

Subset Sum or Knapsack 1.14
Maximum Independent Set 1.1
Figure 4: Base constants for exponential complexities of some NP-complete problems.

Woeginger's survey does not mention the Partition problem, nor does it cite sub-
exponential time for any of the problems it discusses. The complexity parameter n for the
Subset Sum complexity in Figure 4 is the number of integers in the input list, not the total
bit length of the input list. Woeginger summarizes the results of Impagliazzo, Paturi, and
Zane in a discussion of how to prove that a problem has no sub-exponential time exact
algorithm. Woeginger offers as an open problem whether a proof that one of the SERF-
complete problems is sub-exponential would imply that P = NP. Woeginger concludes
that for all the literature generated about NP-complete problems over the past fifty years,
the study of their exact solutions remains a rich and promising area for research.

4 Attempting to Resolve the Inconsistency

It is possible to shed some light on the inconsistent complexity results for the Clique
problem by examining the effects of a symmetric representation for the edge list of a
graph. This approach is described in detail in [5]. When a set of objects is dense, that is,
when it contains more than half of the universe of possible objects, a simple list of objects
is not the most efficient representation. For a dense set, the list of missing objects would
be shorter, perhaps significantly shorter. It is easy to devise a list with a header that
identifies the universe of possible values, has a field indicating the polarity of the list,
and enumerates whichever is shorter -- the set or its complement. A list with positive
polarity is the same as a conventional list. A list with negative polarity is a list of all

6

missing items. A polarized list is one of many representation schemes that can be
characterized as symmetric. With symmetric representation, the length of the
representation for a set is the same as the length of the representation for the set's
complement.

If we use symmetric representation for the edge list in a graph, we can no longer claim
sub-exponential complexity for Clique. The worst case occurs for a dense graph, where
the number of edges e is Θ(n2), where n is the number of vertices, and the number of
missing edges is Θ(n). In this case the length of the symmetric adjacency list is Θ(n), and
the number of steps in the backtracking algorithm is n⋅22e , which is 2O n2 , or 2O(n).
Since a symmetric list is more space efficient than a conventional adjacency list, we can
claim that it is the most appropriate representation to use for complexity classification.
So it looks like Impagliazzo, Paturi, and Zane are right with regard to Clique -- it has the
same complexity as k-Satisfiability. However, we have achieved this result without
disputing the use of input length as a valid complexity parameter.

It is interesting to pursue this same analysis for the Partition problem. Symmetric
representation can be easily applied to a list of numbers, and the representation length for
a dense list can be significantly shorter than the conventional list. But the worst case for
Partition is a sparse set of numbers, not a dense one. Solving Partition for a dense set is
very easy. It appears possible to establish that Partition can be solved in linear time for
any set that's dense enough to have significantly shorter representation using a symmetric
list. This would allow us to devise an algorithm that adapted its method to the density of
the input set, achieving sub-exponential complexity for sparse and dense sets alike, even
under symmetric representation.

5 Conclusion

In conclusion we share Gerhard Woeginger's view that we still have a lot to learn about
exact solutions for NP-complete problems. There is a consensus that exact algorithms
will remain super-polynomial, but there is no apparent consensus on whether some of the
hard problems have sub-exponential complexity, particularly Partition, Subset Sum, and
various related problems that are known to have pseudo-polynomial time solutions.
Anticipating that such a consensus will eventually emerge, we would expect the
relationship between the non-deterministic and deterministic time classes to look
something like the diagram in Figure 5 below. The non-deterministic classes are
indicated with dashed lines. NP is somewhere within EXP, containing all of SUBEXP
and P. The NP-complete class is inside NP and outside of P, spanning the boundary
between SUBEXP and EXP.

7

Figure 5: Conjectured relationship between time classes.

References

[1] S. Cook, “The Complexity of Theorem-Proving Procedures”, Proceedings of the
Third ACM Symposium on Theory of Computing, pp. 151-158, ACM, New York
(1971).

[2] R. Impagliazzo, R. Paturi, and F. Zane, “Which Problems Have Strongly Exponential
Complexity?”, Proceedings of the 39th IEEE Symposium on Foundations of
Computer Science, pp. 653-662, IEEE (1998).

[3] R. Impagliazzo, R. Paturi, and F. Zane, “Which Problems Have Strongly Exponential
Complexity?”, Journal of Computer and System Sciences 63, pp. 512-530, Elsevier
Science, USA (2001).

[4] R. Karp, “Reducibility Among Combinatorial Problems,” in Complexity and
Computer Computations, ed. R. E. Miller and J. W. Thatcher, pp. 85-103, Plenum
Press, New York (1972).

[5] T. E. O'Neil, “The Importance of Symmetric Representation,” Proceedings of the
2009 International Conference on Foundations of Computer Science (FCS 2009), pp.
115-119, CSREA Press (2009).

[6] R. Stearns and H. Hunt, “Power Indices and Easier Hard Problems”, Mathematical
Systems Theory 23, pp. 209-225, Springer-Verlaug, New York (1990).

[7] G. J. Woeginger, “Exact Algorithms for NP-Hard Problems: A Survey,” Lecture
Notes in Computer Science 2570, pp. 185-207, Springer-Verlaug, Berlin (2003).

8

