lterative-Expansion A*

Colin M. Potts and Kurt D. Krebsbach
Department of Mathematics and Computer Science
Lawrence University, Appleton, Wisconsin 54911
{colin.m.potts, kurt.krebsba¢l@lawrence.edu

March 14, 2012

Abstract

In this paper we describe an improvement to the popular ID&grsh algorithm that em-
phasizes a different space-for-time trade-off than prestipsuggested. In particular, our
algorithm, called Iterative-Expansion A* (IEA*), focuses reducing redundant node ex-
pansions within individual depth-first search (DFS) itenas$ of IDA* by employing a rel-
atively small amount of available memory—bounded by therarthe heuristic—to store
selected nodes. The additional memory required is exp@iert in the solution depth,
but only in the difference between the solution depth ancetitenated solution depth. A
constant-time hash set lookup can then be used to prune eatitrees as DFS proceeds.
Overall, we show 2- to 26-fold time speedups vs. an optimimzdion of IDA* across sev-
eral domains, and compare IEA* with several other compedproaches. We also sketch
proofs of optimality and completeness for IEA*, and note tBa&* is particularly efficient
for solving implicitly-defined general graph search profe

1 Introduction

Heuristic search techniques suffer from two types of mennelgted problems: too much,
or too little. Optimal algorithms, such as A*, require an ambof memory exponential
in the length of the solution path. This causes the algorithmun out of memory before
producing a solution, or to spend an impractical amountroétgenerating, storing, and
revisiting the stored search information. A common appndacthis problem is embod-
ied in the IDA* algorithm, which combines the linear memoeguirements of depth-first
search (DFS) with the heuristic estimate from A* search. WHiIA* was in fact the first
algorithm to successfully solve many early search probjetmsotoriously suffers from
over-reliance on trading time for space spending time regeimg nodes of the search tree.
There are two main types of redundancy. First, IDA* periatlicrestarts the entire DFS
from the root of the tree after each succesgiMamit is reached. This “iterational” redun-
dancy is traditionally accepted as an effective “time formoey” trade-off to exploit DFS'’s
linear memory requirement, although other researchers treade progress in addressing
this type of redundancy as well [9, 10].

The second type involves redundameighin a single iteration of DFS. Because DFS only
keeps the current path in memory at any given time, it reggasrentire subtrees of the
graph, expanding all successors of such a state once forpadicho the state. This can
be a major—and often underestimated—time inefficiency dA*lCout one that can be
effectively addressed within the context of the multipérations of IDA*, and is therefore
the focus of our technique. We present the IEA* algorithmd anll show that IEA*
drastically outperforms IDA* under a variety of assumpson

2 A* and Iterative-Deepening A*

Since its introduction, the A* search algorithm [4, 5] hasdm®e the standard by which
best-first search algorithms are judged. A* expands nodsstoan the sum (denotgdl of

the cost accumulated along a pagh @nd a heuristic estimate of the distance from that node
to the nearest goal state)(This node-expansion strategy guarantees that A* is cetapl
and optimal, provided that never overestimates the actual distance to a goal state [2].
Unfortunately, A* requires an amount of memory exponentidhe length of the solution
path, causing the algorithm to run out of memory before pcodya solution on difficult
problems. The IDA* algorithm [6] was developed to address themory limitation, and
does so by combining the linear memory requirements of fammed) DFS with thef
function of A*. IDA* performs a sequence of DFS iterationghvincreasingf-limits until

an optimal solution is found.

2.1 IDA* Optimizations

A first and extremely effective step in curtailing the nodemois to remove cycles from
the graph. This can be done without sacrificing speed anduitincreasing the memory
requirement. A2-cycle occurs when we expand a noBte pick one of its childrerC' to
expand, and then one of those expanded nodes is the pare8imilarly, ann-cycle is

when we attempt to expand one of the 1 states on the current path. Both types of cycles
are easily eliminated.

3 lterative-Expansion A*

Low memory techniques like IDA* are extremely fast at expagdhodes as compared
to memory-intensive searches (like A*). For example, dejpgnon the node’successor
function, a redundant node can often be regenerated muah aquiackly than checking to
see whether it has already been generated; however, alwggaarating a node implies
regenerating the entire subtree rooted at that node. In JD#generating subtrees can be a
major inefficiency both within a single iteration and muliigal acrossf-limited iterations.
We now compare IEA* to the optimized version of IDA*. For poges of this paper, we
assume identical action costs. IEA* strikes a balance betwe and IDA* to speed up the
search by using a modest and bounded increase to IDA*'s memaquirement. Since we
eliminate cycles consistently in both algorithms, we seekliminate other unnecessary
expansions within single iterations.

A useful way to think about tree search is that we explore athg that appear—based on
a heuristic—to be of a specified length until we discover thay belong to a longer path.
All of these paths are unique but may contain the same subssathich occur whenever
there are transpositions in the tree (a single state withipheilpaths to it). The subtree
of a transposition node is explored once for each path tdEf*Iseeks to eliminate the
transpositions which will result in the greatest redungaeimnination. It is clear that those
higher up in the tree result in larger subtrees being elitesheboth in the current iteration
of DFS, and in all future iterations. In fact, we demonstiia this strategy eliminates
an exponential number of node regenerations using memamdaal by the error in the
heuristic function.

3.1 IDA* vs. IEA* Node Expansion

Figure 1 demonstrates how IDA* and IEA* node expansion dsffécach tree represents a
successive iteration of both IDA* and IEA*. Thivalues of all nodes shown in an iteration
are equal, except for the nodes from the previous iteratibhs highlighted nodes are on
the closed list that IEA* keeps. IEA* begins its search byiagdhe root to the fringe. It
then performs arf-Limited-Search from that node to thilimit of h(root). When that
search finishes, we have completed the first iteration. ID&gibs in exactly the same
way by performing the samg-Limited-Search starting at the root using the saf¥lamit.
However, IEA* keeps track of the children of the root withvalue < h(root)—the nodes
connected to the fringe in this figure. These children are #dted to the fringe for the
next iteration and thus added to the closed list as well (@ncede is added to the closed
list, it remains there for the duration of the search.) Whef*IDegins its second iteration,
it restarts from the root using a neyvlimit based on the last iteration. IEA* uses the
samef-limit, but instead of a complete restart it begins with tleeles on the fringe (the
periphery of the closed list—similar to a search like A*.)APwill eventually re-expand
all nodes that IEA* has stored, and thus do the equivalentasfisg f-Limited-Searches

from each node on the fringe, which is how IEA* proceeds. llofes that IEA* will
expand the same set of nodes as IDA*, but whenever a tratigpos detected using the
closed list, that node will not be re-expanded, eliminatimgentire subtree rooted there.

o/o/ \o\oo
A N A AN

o/////:/// .\u\o
o/o/ \o\o oo//o/ g\o o/ \o o/ \o
\

(‘3 o/c‘a\o (‘3 o/o/\o [N &4

7 AN A S
@) O‘ @ 0 o o ? ?
Q o ?
o
e
° T TT——w—we
//.\\ /%/./x T A Na ‘./O/O\\OO
o0 o e o e oo e e e eseeo o
6000 000000000000 O 0o 00 000000600 00 00
22 98 voX 29 OR R R BRSO b
900 06 © 60 6000 0000000080 G60000060060
600660 o 6 o oo odéo 6o o 6d e
00 oo 6000 o o 600
00 00
o

Figure 1: IDA* vs. IEA* node expansion and closed-list maimance.

3.2 ThelEA* Algorithm

As shown in the top-level function, Iterative-Expansiof-Ahe first while loop of the
algorithm (line 4) iterates until a solution is found, or wengprove no solution exists. It
also sets a new highgrlimit on each iteration using the minimugivalue of the generated
nodes (line 15), and creates a new variable catlad- fringe (line 5), which is where we
store information for the next iteration. The next while posimply selects the nodes in
the fringe based on priority (lines 6-7), and beginsfanmited-Search from each (line 8).
After performing the FLS, Expand-Fringe is invoked, andresgccessos of the current
best node is then added to new-fringe and the closed listibaty if f(s) < f-limit, and

s is not on the closed list (lines 2-4). If all children were aolided (i.e., a cutoff) then the
parent node is put back ontew- fringe, otherwise the parent can be left affw- fringe
for good. The FLS is the standard IDA* one, except for line &vehwe trim the successors
based on the closed list.

© 0 N O O A~ W N P

=
o

11
12
13

14
15

16

Function Iterative-Expansion-A*(initial)

result < cutoff;
f-limit < f (initial) ;
fringe, closed « {initial};
whileresult = cutoff do
new-fringe < 0;
whilefringe # 0 do
best « pop min f-value noden fringe;
result < f - Li mi t ed- Sear ch(best, f-limit) ;
if result £ cutoff then
| return result

expansion «Expand- Fri nge(best, f-limit) ;
new-fringe «<—new-fringe U expansion;
closed «closed U expansion;

fringe «+ new-fringe;
| f-limit <~ min{f(s)[s € Gen, f(s) > f-limit};

return result

Function f-Limited-Search(node, f-limit)

Result: a solution, failure, or cutoff
cutoff-occurred <« false;

2 if f (node) > f-limit then

14
15
16
17

AW N P

[©2)]

L return cutoff

elseif Goal - Test (node) then
| returnresult U {node}

else
foreach states in successor s(nodg do
if s ¢ closed then
result «f-Limited-Search(s, f-limit);
if result = cutoff then
| cutoff-occurred « true;

elseif result # failure then
| returnresult

if cutoff-occurred then
| return cutoff
ese

| returnfailure

Function Expand-Fringe(node, f-limit)

Result: nodes for new fringe

nodes « (;

foreach states in (successor s(hode) —closed) do
if f (s) <f-limitthen

L | nodes « nodes U {s};

if nodes # (successor s(node) —closed) then
| nodes « nodes U {node};

return nodes

4 Empirical Results

We now present empirical results obtained across two detmadiosn domains. All exper-
iments were run on a Intel Core i7-2820QM 2.30 Ghz processtr 86b of available
RAM. Both the IDA* and IEA* implementations use to the sarfiimited-Search func-
tion. We implement full cycle checking in both to keep the amsons consistent. We
use a hash set to do cycle and closed-list checking. Giventtie hash set passed to the
f-Limited-Search function is the only variation between tive depth-first searches. The
algorithmic difference is that between iterations we upd&tA*’s closed list by inserting
new states into it, as previously described. Finally, wetheeManhattan distance heuristic
function on both algorithms and domains.

4.1 Fifteen-Puzzle Domain

Figure 2 illustrates how IEA* runtimes compare with IDA* faach of the 100 Korf

Fifteen-Puzzle problems (sorted by the amount of time IE&dkt) The important fea-

ture of this graph is how it uses a log scale to show the diffege between IEA* and
IDA*. We note that the difference between the two shows upeksively constant on the
graph, demonstrating an exponential difference in rurgimis we will see, these times
correspond linearly with differences in nodes expanded.

Time (min)
100+

10;

1,

&‘Hmwmwwwww‘ProbIen
0 20 40 60 80 10C

Figure 2: Runtime comparison for IEA* vs. IDA* for each of K&fl00 Fifteen-Puzzle
Problems, plotted against a log scale. Note that each elifter is approximately the same,
reflecting an exponential difference.

Figure 3 shows the same data plotted as the ratio of IDA* to*|Eftime, effectively
representing IEA*'s speedup factor for each of the problefks we see, IEA* performs
almost 4 times better than IDA* on average. Computing the IDBA* runtime ratios,
we get a range of 0.8 to 14.0, a large disparity that hugelgrialEA*. While this result
is related to an exponential reduction in the number of nogmmsions, IEA* incurs a
slightly greater time cost for expansions. Therefore, gwefit in terms of nodes expanded

comes from two sources: the number of transpositions thatran the givenf-limit, and
the number of iterations. For easier problems this benedinbaproduced a large disparity
between IDA* and IEA* node expansions, and thus we see IEAiNg out. However,
in increasingly difficult cases, IEA* starts to win at arouddimes better. With more
iterations, and more costly effects by missed transpastiogh in the tree for IDA*, this
ratio begins sky-rocketing and we enjoy 14 times betterguarénce.

IDA +/IEA%

12/
10}

N B OO

Figure 3: Speed-up factor for IEA* vs. IDA* for each of KorfX00 Fifteen-Puzzle Prob-
lems.

Figure 4 shows us the closed list for IEA* on the same problemsorted by the number
of iterations. This is plotted against lines for the complexlasses of A* and IEA*.
We see that in every case, IEA* uses less memory than thegbeddamount, which is
exponentially better than A*.

For example, we look at a Fifteen-Puzzle instance with ogitisolution depthd = 55,
andh(root) = 43. The Manhattan distance heuristic has parity, that/is= 2. Sok =
[543 = 6 andb = 4, so we getclosed-list| < 4° = 4096. However, if we assume
an average branching factor bf= 2.5, then that IEA* stores an average af® ~ 245
nodes in the closed list. For IEAR45 < nodes < 4096, but for A*, 2.5'2 ~ 59,605
< nodes < 412 = 16,777,216. Where our experimental results are 184 nodd&Adr,
and 6,488,168 for A*. Further, IDA* requirk! nodes, so a maximum dfx 55 = 220 and
an average o2.5 x 55 = 137.5.

A second way to illuminate the exponential difference na@tledve is to look at the average
exponential curve. We take the number of nodes expandedfatepth for both IDA* and
IEA*, take the difference, and curve fit a function of the founx 6. Figure 5 plots the
data points (the actual differences) along with the fittekedor each problem against a
logarithmic scale. It is easy to see how closely the curv@sagmate the points, and that
all appear as a line in the graph showing the exponentiareiffce. For our fitted function,
a is a measure of how quickly we will see beneliis a gauge of long-term node count,
andzx specifies the iteration. Then, we take the average of albgato get roughly, = 15,
andb = 6.4. The standard deviation faris approximately 1.2, but fos it is 36. This

Nodes

10%
108
10°
10%

100

Figure 4: Number of nodes stored on the closed list for eadfodfs 100 Fifteen-Puzzle
Problems (bottom line), plotted against the average caxitplelass of A*: 2.54-h(reot)

—h(root)

(top line), and the average complexity class of IER%S 5" (middle line) .

is to be expected, singevaries greatly with how soon the fringe becomes effectivepb
remains relatively constant as time wears on. Thus we expeneral—and we see in
practice—that IEA* really starts to perform better as wef@en more iterations; i.e., as
more node expansions are required. We forgo a discussiorf bere because it is well
known that for the Fifteen-Puzzle, IDA* with cycle checkirgga faster method, and thus
IEA* surpasses it even further. However, in our second dapfarid Navigation, A* has
superior results. This is largely because we use a 256 byr2@/gich is an explicit graph
that easily fits into memory. We test on the Grid Navigatiomdm because it is rampant
with transpositions, which DFS historically strugglestwitWe selected this domain to
show how extremely effective IEA*’s closed list is at detagtthese transpositions. As
expected, we observe IEA* outperforming IDA* exponenyiall

4.2 Grid Navigation Domain

As a second test domain, we present results of searchinghfop@imal path through a
grid-based map with obstacles. We seek an optimal routerf@gant allowed to move
between adjacent cells in one of (at most) four directiongurie 6 shows the sampling of
test problems, presented as the ratio of IDA* to IEA* runtjreffectively telling us how
much better or worse IEA* did compared to IDA*. We observet tiEzd* runs from 2 to
26 times faster than IDA* on all but 3 problems, with an averageedup factor of about 5.
These tests were run on 1000 different problems, and weiragepresentative selection
of 41 of them here (which, if anything, are biased to IDA*svadtage). For example,
one exceptionally difficult problem not included in Figursl@owed IEA* performing 400
times faster. In addition, most of the low ratios (includiegses) came from problems
where the runtimes were on the order of only 10ms.

IDA «—IEAx%

108+
106+
10%+

10C_~

e teration
12

Figure 5: Difference between number of nodes expanded by N3A IEA*, plotted by
iteration. The 100 curves are fitted to the actual data of @eKlorf Fifteen-Puzzle prob-
lems, with the individual points representing the actuiedences by iteration.

IDA «/IEAx
250 e

20r
15}

10}

L L Problen
40

Figure 6: Speed-up factor for IEA* vs. IDA* for a random sampl of Grid Navigation
problems.

5 Theoretical Results

5.1 Spacecomplexity

In general, the memory requirement for depth-limited de&© (bd), assuming thak is
the maximum branching factor antis the depth of the shallowest solution. Assuming
h is the heuristic function, led/ be the minimum increase ifi-limit, and r be the root
node. Finally, we let = [d‘Th(”} (which is the number of iterations.) Then IEA* stores
a maximum ofO(b*) nodes in memory—an increase bounded by the error in thestieuri
function h.

Each iteration causes thfelimit to increase by at least/, so at most, we will perfornk
iterations, thus increasing the closed listsmes. In the worst case, suppose during each
iteration that every possible node is added to the closedTisus, at a given iteratiofy
O(b*) nodes will be on the closed list.

To see how this works, we compare the number of nodes adddeiAitd that of A*. To

do this, we view A* as an iterative search where each “iterdtrepresents all the nodes of
the samef-value, which must all be expanded before expanding anyenighlued nodes.
Now, we consider the number of nodes that can be added patigteto the closed list. For
A* any node withf < f-limit will be added to the closed list, which includes alldes of
all subtrees of the fringe satisfying this property—oftenexponential number of nodes.
Now suppose these subtrees contained soifgeof the children of the fringe nodes, and no
nodes at greater depths. This number represents an exwamedound for A*; however,
IEA* will always expand exactly that many nodes.

5.2 Completeness

To show completeness, we rely upon the completeness of IDAE only way for IEA*
to be incomplete is if—by keeping a closed list—IEA* somehiails to consider a node
that IDA* does consider. So we only need to show that the firabdes of a pathP to
the goal must be on the closed list. The initial state isdfiyion the closed list after the
very first expansion. Now the next node énis either on the closed list or it is not. If it
is, we proceed; if it is not, then the initial state was on tiregle and thef-Limited-Search
would proceed normally from there. Through iteration, we g®t the IEA* algorithm is
complete.

5.3 Optimality

Proof of IEA*'s optimality follows from the proof of optimél for IDA*. Since IEA*
iterates at increasing-depths, which are set each time using the minimtsvalue that
was found greater than the currgittiepth, we know that no solution exists at gfvgepth
checked previously due to the proof of IEA*'s completeneBserefore, the first time we
find a solutions at depthd, we know there can exist no solution at any depth less éhan
Thus,s is an optimal solution.

6 Related Work

While IDA* was in fact the first algorithm to successfully selmany early search prob-
lems, it notoriously suffers from over-reliance on tradinge for space, using too little

memory. Because DFS remembers only the current path, maresrareé re-expanded
redundantly both within and acrogdlimit iterations.

Whenh is consistent, A* handles a graph like a tree and never expanmbde more than

once; however, IDA* cannot prevent the re-expansion of sddea graph given only the

current path. The only way to completely eliminate dupkcabdes from a graph search
is to store all generated nodes (i.e., the union of the clasedopen lists); however, it has

long been known that some duplicates can be cheaply eliedriat comparing new nodes
to nodes on the current path from the root [7]. This optimaatrequires no additional
memory, but analysis shows that it can be expensive, astlo¢sedes on the current path
is constantly changing, incurring overhead costs withyeld#fS node expansion.

A variety of proposals have also been published that usdiaddi available memory to
improve the runtime performance of IDA*. Sen and Bagchi’'s MREg@brithm [9] accepts
a runtime parametel/ denoting the amount of additional memory MREC is allowed to
use beyond IDA* requirements. MREC then uses this to storeuah of the explicit graph
as possible to prevent duplicate generation.

As discussed earlier, an obvious improvement for problewalving general graph search
is to eliminate cycles. Dillenburg and Nelson describe tyyes — full cycle-checking and
parent cycle-checking, and provide guidelines for whigsetghould be used with IDA* on
a given problem [3] . Taylor and Korf manage to eliminate sauplicates without explic-
itly storing them by performing a limited breadth-first sgaof the space, and creating a
finite-state machine (FSM) describing a set of operatangsrknown to produce duplicate
nodes [10]. The FSA represents a more efficient abstracfitmecset of duplicates in the
shallow portion of the search tree. Then, whenever a stsiegcountered during DFS that
matches an FSM string, the rest of that path can be safelyepgruidve should note that
this technique is only useful for problems described imhide.g., the Fifteen-Puzzle).
Reinefeld, et.al., have suggested adapting strategiestivorplayer games to dynamically
reorder node successors as well as combining these stst®ijh standard transposition
table storage techniques [8]. The reordering techniqussritbed differ from ours in that
they only potentially speed up the final iteration of IDA*, efeas IEA* produces sav-
ings from each transposition node forward through all feitierations. Finally, so-called
fringe searchappears to add both the closed list and the open list from Amfdement
an algorithm with the same memory requirements that IDA* wiisally developed to
address [1].

7 FutureWork

We are currently exploring two threads of research relatetthé work reported on here.
The most immediate work concerns developing a paralleizzdion of IEA* to exploit
multicore machine architectures. One of the biggest issugarallelization is partitioning
the work effectively. Search algorithms in particular teade executed sequentially, and
each step must synchronize across the board; however, theavaave structured the IEA*
fringe lends itself to a useful and natural partitioninglod wvork. We are currently devel-
oping a method to cache the closed list across multiple psmre while maintaining cache
consistency. We also intend to apply results of this worketortstic search planners, espe-
cially in domains which tend to be dense with solutions, ardshich iterative-deepening
techniques are particularly efficient at finding the firstioytl solution.

10

8 Conclusion

We introduce an improvement on the classical IDA* algorittiat uses additional avail-
able memory to find solutions faster. Our algorithm, IEA*duees redundant node ex-
pansions within individual DFS iterations by keeping a tieldy small amount of extra

memory which we can show is bounded by the error in the héuriBhe additional mem-

ory required is exponential not in the solution depth, buyon the difference between

the solution depth and the estimated solution depth. We shaw 14-fold speedups in

one domain, and 2- to 26-fold speedups in a majority of thdlpros in the other. We

also sketch proofs of optimality and completeness for IEad note that this algorithm is
particularly efficient for solving implicitly-defined gered graph search problems.

References

[1] Bjornsson, Y.; Enzenberger, M.; Holte, R. C.; and Schagffei2005. Fringe search:
Beating A* at pathfinding on game maps.|[EEE Symposium on Computational Intel-
ligence and Games

[2] Dechter, R., and Pearl, J. 1985. Generalized best-fissthestrategies and the opti-
mality of A*. Journal of the ACMB2(3):505-536.

[3] Dillenburg, J. F., and Nelson, P. C. 1993. Improving tHecefncy of depth-first search
by cycle elimination.Information Processing Letter5:5-10.

[4] Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A formai®dor the heuris-
tic determination of minimum cost path$EEE Transactions on Systems Science and
CyberneticsSSC-4(2):100-107.

[5] Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1972. CorrediioA formal basis for the
heuristic determination of minimum cost patt®GART Newslette37:28-29.

[6] Korf, R. E. 1985. Depth-first iterative-deepening: anioyatl admissible tree search.
Artificial Intelligence27:97-109.

[7] Pearl, J. 1984Heuristics: Intelligent Search Strategies for Computertieon Solving
Reading, Massachusetts: Addison-Wesley.

[8] Reinefeld, A., and Marsland, T. A. 1994. Enhanced itemtieepening searchEEE
Transactions on Pattern Analysis and Machine Intelligeh6&701—710.

[9] Sen, A. K., and Bagchi, A. 1989. Fast recursive formulasifor best-first search that
allow controlled use of memory. IIICAI, 297-302.

[10] Taylor, L. A., and Korf, R. E. 1993. Pruning duplicate esdn depth-first search. In
National Conference on Artificial Intelligenc@56—761.

11

