
Affordable USB Forensics

Philip A. Polstra, Sr.
Computer Information Systems

University of Dubuque
Dubuque, IA 52001
ppolstra@dbq.edu

Abstract

This talk/paper will provide a brief overview of USB basics. USB mass storage devices,
the most common of which are USB flash (or thumb) drives will be covered in detail.
Simple inexpensive devices for creating forensic duplicates of USB flash drives and
blocking write access to flash drives will be discussed. Schematics and source code will
be provided for all devices presented.

1 Introduction
Since its introduction USB has quickly taken over the PC peripheral market as the default
interconnect standard. USB flash drives have replaced CD-ROM/DVD-ROMs and
floppy drives as a means of exchanging data and providing booting alternatives.

While everyone uses USB devices, few understand how they work. A family of live
Linux distributions has become popular among security practitioners. Forensic
investigators are extremely likely to encounter evidentiary flash drives during the course
of their work. In this paper, an inexpensive devices for creating forensic duplicates of
USB flash drives and for blocking USB write operations are discussed.

1.1 USB History

Before the introduction of Universal Serial Bus (USB), devices were connected via non-
universal serial, PS/2 ports, & LPT ports. In 1996 USB 1.0 was introduced. USB 1.0
supports transport speeds of 1.5 Mbps (low speed) and 12 Mbps (full speed). In 1998
USB 1.1 was introduced. USB 1.1 was essentially a bug fix for some problems in USB
1.0. Two years later in 2000 USB 2.0 was created. USB 2.0 added a third speed of 480
Mbps known as high speed. Following the flurry of activity and releases every two
years, it was not until eight years later in 2008 that USB 3.0 came out. USB 3.0
introduced a new speed of up to 5 Gbps known as super speed. Unlike previous versions
of USB, USB 3.0 requires a different connector with separate wires for super speed
transmissions.[2]

1.2 USB Hardware

USB utilizes a simple 4-wire connection (power, ground, 2 data wires). Cabling prevents
improper connections which were a problem in non-universal serial connections. USB
devices are hot pluggable. Differential voltages are used to provide greater immunity to
noise than what is achieved with a typical serial connection. Cable lengths up to 16 feet
are possible. Cable length depends on speed, with high speeds dictating shorter cables.[1,2]

1.3 USB Software

Configuration of USB devices is automatic requiring no settable jumpers. The process by
which a USB device is discovered by a host (PC) is known as enumeration. During the
enumeration process the host queries the device for a set of descriptors. USB devices
indicate their abilities by stating they support various standard device classes with
corresponding drivers. Some of the more common USB device classes include human
interface device (HID), printer, audio, and mass storage. This paper will primarily cover
mass storage devices which are commonly referred to as USB flash or thumb drives.

2

1.4 Connecting a Device

Once a device is connected, a twelve-step process is begun.[2] The steps consist of:

1. Device is connected
2. Hub detects
3. Host (PC) is informed of new device
4. Hub determines device speed capability as indicated by location of pull-up

resistors
5. Hub resets the device
6. Host determines if device is capable of high speed (using chirps)
7. Hub establishes a signal path
8. Host requests descriptor from device to determine max packet size
9. Host assigns an address
10. Host learns devices capabilities
11. Host assigns and loads an appropriate device driver (INF file)
12. Device driver selects a configuration

1.5 USB Endpoints

Endpoints are the virtual wires for USB communications. All endpoints are one way
with in/out direction specified relative to host. In most cases, packet fragmentation,
handshaking, etc. is done by hardware. The high bit of an endpoint address tells direction
with 1 indicating in (from the device to the host) and 0 representing out (from the host to
the device). There are four types of endpoints: control, bulk transport, interrupt, and
isochronous.[2]

1.5.1 Control Endpoints

The primary mechanism for most devices to communicate with a host is via a control
endpoint. Every device must have at least one in and out control endpoint which is often
referred to as endpoint zero (EP0). Device must respond to standard requests on EP0.
Standard requests include getting and setting address, descriptors, power, and status.
Devices may also respond to class specific and vendor specific requests. Transfer have
two or three transport stages: setup, data (optional), and status.[2]

In the setup stage the host sends a setup token, then data packet containing setup request.
If the device receives a valid setup packet, an acknowledgment (ACK) is returned. The
setup request is 8 bytes in length. The first byte is bitmap telling type of request &
recipient (device, interface, endpoint). The remaining bytes are parameters for request
and response.[1,2]

During the optional data stage requested information is transmitted to or from the host as
appropriate.[1,2]

In the status stage a zero length data packet (ZLDP) is from the device to the host to
acknowledge successful receipt of a valid command.[1,2]

3

1.5.2 Interrupt and Isochronous Endpoints

Interrupt endpoints are used to avoid polling and busy waits for devices with infrequent
communications. Keyboards are a good example of a device that uses interrupt
endpoints. Devices utilizing interrupt endpoints are typically low speed which allows for
longer cables, and better error tolerances.[1]

Isochronous endpoints are used in situations where guaranteed bandwidth is required.
Such endpoints are primarily used for time-critical apps such as streaming media. More
information on these types of endpoints and USB in general can be found at [1].

1.5.3 Bulk Endpoints

Bulk endpoints are used when a large amount of data is to be transmitted. No latency
guarantees are provided for bulk endpoints. Good performance is achieved with bulk
endpoints on an otherwise idle bus. Bulk transports are superseded by all other transport
types. Only full speed (8-64 byte packets) and high speed (512 byte packets)
transmissions are supported when using bulk endpoints. Bulk endpoints are used
extensively in USB flash drives (and external hard drives). Bulk transactions consist of a
token packet, 0 or more data packets, and an ACK handshake packet (if successful).[1,2]

1.6 Descriptors

Descriptors are used to describe various USB objects. The have a standard format. The
first byte is the length of the descriptor in bytes (so the host knows when to stop reading).
The second byte determines type of descriptor. The remaining bytes are the descriptor
itself. There are several common types of descriptors including device, configuration,
interface, endpoint, and string descriptors.[1,2]

1.6.1 Device Descriptors

Devices descriptors are 18 bytes and length. They contain basic information about a
device such as its class, packet size, vendor identifier, and number of configurations.
Table 1 details the fields found in a device descriptor.[1,2]

4

Offset Field Size Value Description

0 bLength 1 Number 18 bytes

1 bDescriptorType 1 Constant Device Descriptor (0x01)

2 bcdUSB 2 BCD 0x200

4 bDeviceClass 1 Class Class Code

5 bDeviceSubClass 1 SubClass Subclass Code

6 bDeviceProtocol 1 Protocol Protocol Code

7 bMaxPacketSize 1 Number Maxi Packet Size EP0

8 idVendor 2 ID Vendor ID

10 idProduct 2 ID Product ID

12 bcdDevice 2 BCD Device Release Number

14 iManufacturer 1 Index Index of Manu Descriptor

15 iProduct 1 Index Index of Prod Descriptor

16 iSerialNumber 1 Index Index of SN Descriptor

17 bNumConfigurations 1 Integer Num Configurations
Table 1: Device Descriptor Format

1.6.2 Configuration Descriptors

Every device has at least on configuration descriptor. The configuration descriptor
consists of a 9 byte header and then one or more interface descriptors each of which
contain one or more endpoint descriptors. Typically a host will ask for this descriptor
which contains the total length including all sub-descriptors. A second request is then
sent to the device for the full descriptor. Details for the configuration descriptor header
are provided in Table 2.[1,2]

Offset Field Size Value Description

0 bLength 1 Number Size in Bytes

1 bDescriptorType 1 Constant 0x02

2 wTotalLength 2 Number Total data returned

4 bNumInterfaces 1 Number Num Interfaces

5 bConfigurationValue 1 Number Configuration number

6 iConfiguration 1 Index String Descriptor

7 bmAttributes 1 Bitmap b7 Reserved, set to 1. b6 Self Powered
b5 Remote Wakeup b4..0 Reserved 0.

8 bMaxPower 1 mA Max Power in mA/2
Table 2: Configuration Descriptor Header

5

1.6.3 Interface Descriptors

Every device has at least one interface descriptor. The interface descriptor is described in
Table 3.[1,2]

Offset Field Size Value Description

0 bLength 1 Number 9 Bytes

1 bDescriptorType 1 Constant 0x04

2 bInterfaceNumber 1 Number Number of Interface

3 bAlternateSetting 1 Number Alternative setting

4 bNumEndpoints 1 Number Number of Endpoints used

5 bInterfaceClass 1 Class Class Code

6 bInterfaceSubClass 1 SubClass Subclass Code

7 bInterfaceProtocol 1 Protocol Protocol Code

8 iInterface 1 Index Index of String Descriptor
Table 3: Interface Descriptor Format

1.6.4 Interface Descriptors

Each device has at least one endpoint. The endpoint descriptor format is presented in
Table 4.[1,2]

Offset Field Size Value Description

0 bLength 1 Number Size of Descriptor (7 bytes)

1 bDescriptorType 1 Constant Endpoint Descriptor (0x05)

2 bEndpointAddress 1 Endpoint B0..3 Endpoint Number.
b4..6 Reserved. Set to Zero
b7 Direction 0 = Out, 1 = In

3 bmAttributes 1 Bitmap b0..1 Transfer Type 10 = Bulk
b2..7 are reserved. I

4 wMaxPacketSize 2 Number Maximum Packet Size

6 bInterval 1 Number Interval for polling endpoint data
Table 4: Endpoint Descriptor Format

1.6.5 String Descriptors

Various items are described by Unicode strings stored in string descriptors. Mass storage
devices are required to have a serial number string. At a minimum the the last 13 digits
of the serial number must be unique for every device with a particular manufacturer and
product identifier. The string descriptor format is provided in Table 5.[1,2]

6

Offset Field Size Value Description

0 bLength 1 Number Size of Descriptor in Bytes

1 bDescriptorType 1 Constant String Descriptor (0x03)

2 bString n Unicode Unicode Encoded String
Table 5: String Descriptor Format

2 USB Mass Storage Devices
USB mass storage devices have become a popular way to store, backup, and share data.
The most common mass storage device uses NAND flash memory.[3] Such devices are
commonly referred to as flash or thumb drives. Unlike many USB devices, mass storage
devices utilize bulk endpoints for control commands (as opposed to using control
endpoints). Because they use bulk endpoints, mass storage devices are also known as
bulk only mass storage (BOMS) or bulk-bulk-bulk (BBB) devices.[3]

2.1 Communicating with Mass Storage devices

There are two or three phases in each mass storage transaction: command block wrapper
transmission (CBW), data-transport (optional), and command status wrapper response
(CSW). Commands are sent to drive using a CBW. Each CBW contains a command
block (CB) with actual command. Nearly all drives use a (reduced) SCSI command set.
Commands requiring data transport will send/receive on bulk endpoints. All transactions
are terminated by a Command Status Wrapper (CSW). The CSW indicates success or
failure for the transaction.[3]

2.1.1 Command Block Wrapper Phase

The 31-byte CBW is sent to the device on the bulk out endpoint. The last 16 bytes
contain the command block (CB) itself. The length of each CB varies from 6-16 bytes
depending on the command.[3] The following C structure describes the CBW:

typedef struct _USB_MSI_CBW {
unsigned long dCBWSignature; //0x43425355 “USBC”
unsigned long dCBWTag; // associates CBW with CSW response
unsigned long dCBWDataTransferLength; // bytes to send or receive
unsigned char bCBWFlags; // bit 7 0=OUT, 1=IN all others zero
unsigned char bCBWLUN; // logical unit number (usually zero)
unsigned char bCBWCBLength; // 3 hi bits zero, rest bytes in CB
unsigned char bCBWCB[16]; // the actual command block (>= 6 bytes)

} USB_MSI_CBW;

The first byte of the CB is the command. The following C structures describe the CB for
FORMAT UNIT and READ(10) commands.[6] Further details may be found in [3].

typedef struct _CB_FORMAT_UNIT {
unsigned char OperationCode; //must be 0x04

7

unsigned char LUN:3; // logical unit number (usually zero)
unsigned char FmtData:1; // if 1, extra parameters follow command
unsigned char CmpLst:1; // if 0, partial list of defects, 1, complete
unsigned char DefectListFormat:3; //000 = 32-bit LBAs
unsigned char VendorSpecific; //vendor specific code
unsigned short Interleave; //0x0000 = use vendor default
unsigned char Control;

} CB_FORMAT_UNIT;
typedef struct _CB_READ10 {

unsigned char OperationCode; //must be 0x28
unsigned char RelativeAddress:1; // normally 0
unsigned char Resv:2;
unsigned char FUA:1; // 1=force unit access, don't use cache
unsigned char DPO:1; // 1=disable page out
unsigned char LUN:3; //logical unit number
unsigned long LBA; //logical block address (sector number)
unsigned char Reserved;
unsigned short TransferLength;
unsigned char Control;

} CB_READ10;

2.1.2 The Data Transport Phase

Commands that involve the exchange of data will send or receive data on bulk endpoints
as appropriate. Not all commands have a data phase.[3]

2.1.3 The CSW Phase

Each command returns a CSW. The CSW is used to report success or failure. There are
two possible failure codes. One failure code indicates a general error and the other
indicates that a data phase error has occurred. A host must immediately execute a
REPORT SENSE command after an error has been reported in the CSW in order to
determine the exact nature of the error that has occurred.[3] The CSW is described by the
following C structure:

typedef struct _USB_MSI_CSW {
unsigned long dCSWSignature; //0x53425355 “USBS”
unsigned long dCSWTag; // associate CBW with CSW response
unsigned long dCSWDataResidue; // difference between requested data

and actual
unsigned char bCSWStatus; //00=pass, 01=fail, 02=phase error, reset

} USB_MSI_CSW;

8

3 Creating Forensic Duplicates
USB flash drives present themselves as SCSI hard drives with 512 byte blocks. Larger
block sizes are possible, but uncommon. A 512 byte block requires 528 bytes of storage
because the block requires 16 bytes of error correction code (ECC).[3]

Creating a forensic copy of a flash drive requires a sector by sector copy to be performed.
Unlike hard drives , there is no place between sectors to store hidden information. Care
should be taken when creating forensic duplicates of flash drives. Mounting a flash drive
on most operating systems will result in alteration of the drive when access timestamps
are updated. USB-friendly microcontrollers such as the Vinculum II by FTDI can be
used to make such copies safely and without the need for a computer.[4] The author has
fully described two portable forensic duplicator based on the FTDI chip at [7]. Source
code and construction details for these duplicators are available from the author on
request.

4 Blocking USB Mass Storage Write Operations
There are a couple of free ways to block USB write operations. Some, mostly older,
flash drives have write protect switches. Additionally, for Windows users, all write
operations to USB mass storage devices can be blocked by creating the
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\
StorageDevicePolicies\ WriteProtect key in the registry and setting its value to 1.[7]

Commercial write blockers are available. At several hundred dollars for device, they are
not practical for everyday use. Utilizing techniques described in this paper, write
blockers can be constructed for less than $30. Full source code and construction details
are available upon request.

4.1 Chip Choice

The FTDI Vinculum II (VNC2) microcontroller was selected for this project. The VNC2
features include

• 2 full-speed USB 2.0 interfaces (host or slave capable)
• 256 KB E-flash memory
• 16 KB RAM
• 2 SPI slave and 1 SPI master interfaces
• Easy-to-use IDE
• Simultaneous multiple file access on BOMS devices
• Several development modules available[4,7]

A compact device can be constructed from a 32-pin V2DIP1-32 module. This requires 4
solder connections to attach a standard USB A cable. The Vinco Arduino-like
development board can be used to create a slightly larger device which does not require
any soldering.[4]

9

4.2 Write Blocker Operation

The device needs to block bad command blocks that could modify the drive. An easy
approach would be to block the commands that could alter the flash drive. Best practice
and future proofing would dictate white listing instead. All VNC2 chips have the same
memory and flash storage. They only differ in number of GPIO lines available. Same
software will almost run on both packages provided additional code required to power
Vinco host port is included.

The write blocker presented here features a multi-threaded design. One thread is
associated with the slave port to make it appear as a BOMS device to a PC. This thread
watches the control endpoint and services requests from the PC. One thread is associated
with the host port for talking to the flash drive. This thread enumerates the device and
gets endpoints. This thread then periodically checks to see if the drive is still there. The
main thread bridges the slave and host ports. Non-CBW packets (data packets) are
passed through to the host port. Whitelisted CBWs are also passed on to the host port.
USB host & slave drivers built in to the Vinculum operating system (VOS) create
additional threads.

The main loop consists of an infinite loop which receives CBWs from the PC and then
calls an appropriate handler. An excerpt appears here:

usbSlaveBoms_readCbw(cbw, slaveBomsCtx);
switch (cbw->cb.formated.command)
{

case BOMS_INQUIRY:
handle_inquiry(cbw);
break;
…

}

Handlers take various forms depending on expected data to be sent or received. Some
commands that are blocked report success despite the fact that they fail. This is done for
some commands because Windows handles failure of some commands such as write
poorly. As an example, the BOMS INQUIRY handler appears here:

void handle_inquiry(boms_cbw_t *cbw)
{

unsigned char buffer[64];
unsigned short responseSize;
boms_csw_t csw;
if (forward_cbw_to_device(cbw))
{

if (responseSize = receive_data_from_device(&buffer[0], 36))
{

forward_data_to_slave(&buffer[0], responseSize);
if (receive_csw_from_device(&csw))

10

{
forward_csw_to_slave(&csw);

}
}

}
}

4.3 Recommended Usage

There are two recommended uses for the device. The first is to block writes on Windows
computers. This allow a security practitioner to avoid risking damage to flash drives
containing security tools. Anti-virus software will often try to delete such tools as they
can be interpreted as malware.
Forensic examination of mass storage devices is the other recommended use of the
device. Linux is recommended for forensics work for a number of reasons. Windows
might miss or mishandle upper locial units (LUNs) on subject flash drives. Additionally,
Linux has all the non-FAT filesystems an investigator would likely encounter.

5 Conclusions
USB flash drives have become commonly used devices. Using the techniques described
in this paper small, inexpensive, and effective devices can be constructed in order to
preserve and replicate data stored on USB mass storage devices.

References

[1] The Universal Serial Bus Documentation http://www.usb.org/developers/docs.
[2] USB Complete: The Developers Guide (4th ed.) by Jan Axelson.
[3] USB Mass Storage: Designing and Programming Devices and Embedded Hosts by
Jan Axelson.
[4] FTDI Application Notes http://www.ftdichip.com
[5] SCSI References http://seagate.com
[6] Embedded USB Design by Example by John Hyde
[7] Phil Polstra- 44Con USB Flash Drive Forensics Video
http://www.youtube.com/watch?v=CIVGzG0W-DM

11

	1 Introduction
	1.1 USB History
	1.2 USB Hardware
	1.3 USB Software
	1.4 Connecting a Device
	1.5 USB Endpoints
	1.5.1 Control Endpoints
	1.5.2 Interrupt and Isochronous Endpoints
	1.5.3 Bulk Endpoints

	1.6 Descriptors
	1.6.1 Device Descriptors
	1.6.2 Configuration Descriptors
	1.6.3 Interface Descriptors
	1.6.4 Interface Descriptors
	1.6.5 String Descriptors

	2 USB Mass Storage Devices
	2.1 Communicating with Mass Storage devices
	2.1.1 Command Block Wrapper Phase
	2.1.2 The Data Transport Phase
	2.1.3 The CSW Phase

	3 Creating Forensic Duplicates
	4 Blocking USB Mass Storage Write Operations
	4.1 Chip Choice
	4.2 Write Blocker Operation
	4.3 Recommended Usage

	5 Conclusions

