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Abstract
Many exponentially-hard problems can be solved by searching through a space of states
to determine a sequence of steps constituting a solution. Algorithms that produce opti-
mal solutions (e.g., shortest path) generally require greater computational resources (e.g.,
time) than their sub-optimal counterparts. Consequently, many optimal algorithms cannot
produce any usable solution when the amount of time available is limited or hard to pre-
dict in advance. Anytime algorithms address this problem by initially finding a suboptimal
solution very quickly and then generating incrementally better solutions with additional
time, effectively providing the best solution generated so far anytime it is required. In this
research, we generate initial solutions cheaply using a fast search algorithm. We then im-
prove this low-quality solution by identifying subsequences of steps that appear, based on
heuristic estimates, to be considerably longer than necessary. Finally, we perform a more
expensive search between the endpoints of each subsequence to find a shorter connecting
path. We will show that this improves the overall solution incrementally over time while
always having a valid solution to return whenever time runs out. We present results that
demonstrate in several problem domains that AIRS (Anytime Iterative Refinement of a
Solution) rivals other widely-used and recognized anytime algorithms and also produces
results comparable to other popular (but not anytime) heuristic algorithms such as Bidirec-
tional A* search.



1 Motivation: Greedy Plateaus

Figure 1: This graph shows a low-quality (270-step) solution with three greedy plateaus.
For each step on the x-axis, the estimated distance from that state to the goal (h value) is
plotted.

Inexpensive searches can be used to generate low-quality solutions quickly. In particu-
lar, we begin by using best-first greedy search (“Greedy”)—in which the search is guided
solely by the heuristic estimated distance to the goal (denoted h)—to generate an initial
low-quality solution. In domains in which “low-quality” implies “longer” (e.g., more ac-
tions), these long solutions often contain one or more greedy plateaus. A greedy plateau
is comprised of a sequence of states that all remain at approximately the same estimated
distance (h value) from the goal. This apparent “orbit” of the goal can often make up the
majority of the solution.
Figure 1 provides a Greedy Solution in which we observe three such plateaus: one from
steps 50-80, another from 90-130, and the third from 150-250. Greedy plateaus often result
from greedy searches where h, while admissible, badly underestimates the actual remaining
distance to the goal. After most of the states on the “orbit” are visited, h values eventually
improve only to settle on other plateaus later, as shown above.
The motivation for the algorithm we present, called AIRS, is based on the observation that
most plateaus should be fairly easy to identify and to shorten with a better, more memory-
intensive search (e.g., Bidirectional A*). We also observe that the larger the number of
states on a plateau (with the same h value), the greater is the probability that pairs of
states near the extremes of the plateau will have a much shorter path between them than is
reflected in the greedy solution. The unnecessarily longer path can then be replaced with
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the short-cut, eliminating the wasteful segment. This is the crux of iterative refinement as
embodied in the AIRS algorithm.

2 AIRS

2.1 Initial vs. Refinement Search
AIRS is a modular algorithm which allows the use of any two searching algorithms as the
initial and the refinement algorithms. The initial algorithm is used to generate an inexpen-
sive but low-quality solution. The refinement search algorithm is generally more expensive
(both in time and memory) and attempts to “patch” the current solution by searching be-
tween chosen points to find a shorter path between them. We note that memory-intensive
search algorithms in particular—which might require far too much memory to be used to
generate an entire solution—can often be exploited in the refinement stage because the
depth of the sub-solution search is only a small fraction of the overall solution depth, dras-
tically reducing the exponent of the chosen algorithm’s exponential memory requirement.
In this paper, we use two versions of the A* algorithm: Weighted A* (WA*) for the initial
solution and Bidirectional A* (BidA*) for the refinement algorithm. Recall that A* [3, 4]
defines the state evaluation function f = g + h, with includes the accumulated distance
along a path (denoted g) together with the estimate h. WA* is a version of A* that weights
the g and h values. Standard WA*uses f = ε ∗ g + h where ε ≤ 1. When ε = 1, the
algorithm becomes A* and produces optimal results. Anytime Weighted A*(AWA*) uses
a generated ε value which increases after each search. We use a starting value of ε = 0.3
with a 0.2 increase in each iteration.
BidA* [10] is a version of A* where instead of one search, two A* searches are initiated
in opposition to one another. On a sequential processor, the two searches alternate, each
expanding a node and then checking whether or not there exists an intersection between
their respective fringes. The version we use for this paper checks to see if the children of
each expanded node intersect the opposing fringe to determine if there exists a solution
path. While this often results in a near-optimal solution, it does not guarantee optimality,
as the full-blown BidA* would. Because we only seek to refine a particularly wasteful seg-
ment of the solution, and because we cannot expect the incremental (refined) solution to be
optimal anyway, we cannot justify using the optimal version because the time and memory
required to guarantee optimality (i.e., to continue searching after the first fringe intersection
is found) has been shown to require exponential space just like unidirectional A* [5] in the
worst case, while the near-optimal version is a superior trade-off as a refinement algorithm.

2.2 Iterative Refinement
The number of states explored with an expensive search is exponential in the length of the
solution. AIRS suggests an alternative by first generating a quick solution using a cheap
search like Greedy or WA* with a small weight on g. AIRS then analyzes that solution
and computes what it believes to be a “balloon” defined by two points at the extremes of
the plateau the appear to be in close proximity based on estimated distance between them
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Figure 2: An intuitive example of an AIRS solution path after refinement process is com-
plete. Solid lines depict the final path, with dashed lines showing either discarded balloons
or unacceptable bridges.

(which we call h2). Then, using a more expensive search such as A*, BidA*, or WA*,
AIRS attempts to replace the balloon with a “bridge” connecting these apparently close
states, and shortening the overall solution.
Figure 2 depicts a solution path at the end of the AIRS refinement process. The continuous
line represents the final solution. Three pairs of points representing balloons—(A,B),
(C,D), and (E,F )—had been chosen at some point by AIRS as candidates for refinement.
In part, these balloons were chosen because the endpoints appear to be close to each other in
the state space. The dashed lines between pairs (A,B) and (C,D) indicate the paths found
between these points in the initial (low-quality) solution that were then later replaced with
a shorter path, as shown with a grey, solid line. In contrast, the grey dashed line shown
between states E and F is a refinement that was actually worse than the original sequence,
and so the original is retained. In cases where a refinement is ignored, the endpoints (E,F )
are cached and later used by AIRS to avoid repeating already-failed (but good-looking)
searches.
Pairs of points on the current solution continue to be chosen in prioritized order and (pos-
sibly) refined in this manner. When refinements are made, new sequences of states are
introduced, opening up new possibilities for further refinement.

2.3 The AIRS Algorithm
We now provide a description of the AIRS algorithm. In Line 1, we must store the mini-
mum cost for the domain. The minimum cost is the smallest action cost within the domain.
For example, the 15-Puzzle’s minimum cost would be 1 because there is no action which
costs less than 1. This is used later in computing the Ratio (Line 11) to weight it toward
larger refinements in case two pairs of states return the same ratio. In Line 2, AIRS ini-
tially computes a low-quality solution generated by a fast and suboptimal algorithm such
as Greedy (f = h) or an appropriately-weighted WA*. AIRS also stores all previous failed
searches in a list (FS) which is initially empty (Line 3). Given the initial solution, AIRS
then attempts to identify which pair of states along the solution appear to be in close prox-
imity in the state space, but for which the current path appears disproportionately long. By
computing a shortcut between these states with a more expensive algorithm (e.g., BIDA*),
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Function AIRS(Problem)
1 p← Minimum Cost;
2 Sol← GreedySearch(ProblemStart,ProblemGoal);
3 FS← ∅ ;
4 while TimeRemaining > 0 do
5 (Bx, By)← (−1,−1) ;
6 Br← Intetger.MAXVALUE ;
7 x← 0;
8 while x < Length(Sol )− 2 do
9 y← x + 2;

10 while y < Length(Sol ) do
11 Ratio← h2(Solx, Soly)

g(Soly)−g(Solx)−p + h2(Solx, Soly)
(g(Soly)−g(Solx)−p)−MaxOverlap(x + 1,y − 1,Sol,FS ) ;

12 if Ratio < Br then
13 Br← Ratio;
14 (Bx,By)← (x, y);

15 y← y + α;

16 x← x + β;

17 FixedSect← BidirectionalA*(SolBx, SolBy);
18 if g(FixedSectlast) < g(SolBy)− g(SolBx) then
19 Sol← Sol0,Bx−1 + FixedSect + SolBy+1,last;
20 clear(FS);

21 else
22 FS← FS

⋃
(Bx,By);

23 return Sol;

Function MaxOverlap(start, end, Sol, fails)
24 Greatest← 0;
25 x← 0;
26 while x < Length(fails ) do
27 q← failsx.second;
28 s← failsx.f irst;
29 overlap← Min(g(Solend),g(Solq))− Max(g(Solstart),g(Sols));
30 if overlap > Greatest then
31 Greatest← overlap;

32 x← x + 1;

33 return Greatest;
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AIRS attempts to shorten the overall solution with a minimum of additional search.
The function h2(si, sj) is the function within a problem domain which estimates the dis-
tance between two states. In contrast, the function h is a function of one argument that
estimates the distance between a state and the nearest goal. To determine the best candi-
date set of points, it performs an O(n2) computation by iterating through a subset of all
pairs of states (si, sj) on the solution path s1, s2, . . . , sn where i < j and n is the current
solution length (Lines 8-16), and where α and β (Lines 15-16) parameterize the resolution
of the subset selected. For each pair, it computes a specialized ratio to determine how much
a search between the two states would benefit the solution (Line 11). This ratio compares
the estimated distance between the states—according to the function h2— by the current
distance along the current solution and then adds on a weighting factor designed to keep
the algorithm from repeating previous failed searches by using the function MaxOverlap.
The functionMaxOverlap first iterates through all the failed searches since the most recent
successful refinement (Line 26). Given each pair, it computes the degree of overlap between
that segment and the search defined by the two inputs start and end (Line 29). If the
overlap is larger than the greatest overlap so far, it updates the greatest overlap with that
value (Lines 30-31). Once it iterates through all the failed searches, it return the greatest
overlap found (Line 33).
Once the two states have been selected, AIRS uses a second, more expensive search al-
gorithm to find a path between them (e.g., BiDA* search, as in Line 17). If the solution
returned is shorter than the current path between the chosen states, we update the solution
to use the new path and clear the list of previous failed searches (Lines 18-20). If the re-
turned solution is longer than the current path, we add the pair of chosen states to the list
of failed searches in Lines 21-22. AIRS repeats this process in anytime fashion until time
runs out, at which time it returns the current solution.

2.4 AIRS as an Anytime Algorithm
We take this opportunity to observe that AIRS is ideally-suited for use as an anytime al-
gorithm. Anytime algorithms are flexible algorithms designed to return the best solution
possible in the time available, but without knowing how much time is available in advance.
We will show that AIRS has the two crucial properties required of an effective anytime al-
gorithm. First, AIRS finds an initial solution very quickly: a crucial property of a algorithm
that might be asked to return a solution in very little time. Second, the iterative refinements
performed by AIRS are also relatively fast as compared to common competing algorithms
(e.g., WA*). In particular, we will show that performing expensive search over short seg-
ments results is shorter iterations, which is beneficial so that when the clock runs out, the
probability of wasting time on an “almost completed refinement” is minimal. (This can be
a problem for WA*, in which consecutive searches take longer and longer as ε grows).
Still, the AIRS algorithm—like any algorithm—has important trade-offs to make. For
an initial (poor) solution length of n steps, AIRS could choose to perform an entire O(n2)
computation to check all orderings of pairs states to consider as the best “balloon” to refine.
As will be seen shortly, this computation is generally small in comparison to the resulting
expensive search that follows it.

5



We also observe that many of the expensive searches fail to find a significantly better so-
lution on a sub-sequence of the current solution. As we show in the empirical results,
however, it is still worthwhile in terms of time and space to attempt these refinements. In
other words, even counting the time wasted in generating and attempting to short-circuit
balloons in vain, the successful refinements are still cheaper and more effective than just
using a better but more expensive algorithm in the first place.

3 Empirical Results
We now discuss some empirical results obtained in two domains: Fifteen Puzzle and Ter-
rain Navigation.

3.1 Fifteen Puzzle Domain
Figure 3 shows the comparison of solution lengths for AIRS against Anytime Weighted A*
given the amount of time it took Bidirectional A* to complete each of the 100 Korf Fifteen
Puzzles [6].

Figure 3: AIRS vs WeightedA* for 100 Korf 15-Puzzles.

As shown in Figure 3, AIRS compares favorably to another anytime algorithm, WA*, on
the Korf Fifteen Puzzle benchmark. Because anytime algorithms are designed to return a
solution at “any time,” we ran a non-anytime algorithm, BidA*on each of the 100 Korf
problems first to establish a baseline. Then, for each problem, we gave both AWA* and
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AIRS this amount of time to produce a solution in anytime fashion. Figure 3 shows the
solution quality for each algorithm for each problem.
The x-axis represents a specific Fifteen Puzzle problem instance and the corresponding y
is the cost of the final solution produced by each algorithm. The 100 problem instances
are sorted from left to right based on the difference in cost between AIRS and AWA*; i.e.,
problems in which AIRS outperformed AWA* are further to the left. We see from this
that AIRS significantly outperforms AWA* in 47% of the problems (i.e., as indicated by
vertical line A). In approximately 23% of the problems, AIRS outperforms AWA* by a
small margin. In about 22%, both algorithms achieve solutions of the same length and in
the last 8%, AWA*’s solutions are better.
In general, AWA* suffers from infrequent iterations and thus takes much longer to complete
each iteration to produce a shorter solution. AIRS largely outperforms Anytime Weighted
A* due to its ability to make continuous small improvements, which is a useful property in
“anytime” situations. Counter-intuitively, we have also observed that AIRS can actually, at
times, converge to a higher-quality solution more quickly starting with a terrible solution
than it can with a better initial solution, even given the same amount of time in each case.
This can happen in domains that are structured in a way that large “near cycles” can appear
in the initial solution, but can easily be refined away in a single refinement iteration.

3.2 Terrain Navigation Domain
We now turn our attention to a second domain, namely Terrain Navigation (TerrainNav).
TerrainNav is inspired by so-called “grid world” domains, but has been elaborated for our
purposes here, as we note that in a standard grid world without obstacles or non-uniform
costs, an iterative refinement approach is not appropriate. At one extreme (e.g., a minimum
spanning tree), there may be a unique path which, by definition, admits no possibility of
iterative refinement. At the other extreme, in domains where many equally good paths
exist, even Greedy often finds one in the initial search, again leaving little or no room for
refinement.
In TerrainNav, each coordinate on a grid is given a weight to represent its height. A larger
difference in heights between subsequent steps means a larger cost. “Mountains” of various
height and extent are placed throughout the map, sharply raising the weight on a specific
coordinate and probabilistically raising the weights around the peak proportional to the
peak’s height and the distance from the peak. For TerrainNav, we use Greedy for the initial
search with Euclidean distance as the heuristic estimate (h). Because h ignores terrain
costs, Greedy walks “through” each mountain on its way to a fast and suboptimal solution.1

In Figures 4 and 6, we compare the AIRS solution cost after each refinement step to that of
the overall BidA* solution cost. (Note that horizontal lines for BidA* are y ≈ 1700 and y ≈
400, and are shown for reference even though BidA* is only run once, and takes the same
amount of time to run as we allow AIRS to run.) The y-axis represents the solution costs
for each method while the x-axis represents the ith iteration of successful AIRS refinement.

1We note that this method of solving a relaxed version of the problem quickly is reminiscent of current
planning approaches that solve a simplified planning problem quickly, and then use distances in the “relaxed
solution” as heuristic estimates during the real planning search. The difference here is that we choose portions
of the relaxed solution to refine directly using shorter searches.
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Figure 4: Solution cost after each AIRS refinement step when AIRS is used as an anytime
algorithm and given the same amount of time as BidA*.

We do not plot failed attempts at refinement, but rather consider them (and their time) as
part of the process of a successful refinement. We note that early refinements produce a
drastic reduction in the solution cost, with later ones continuing the refinement at a reduced
pace.
Figures 5 and 7 compare the time spent on each phase of refinement. For each refinement,
the black section shows time spent on pair selection, with the grey showing the localized
refinement (BidA*) search time. The y-axis represents time in seconds, and the x-axis
represents the ith iteration of refinement. Again, the ith iteration consists of the total time
spent doing all pair selection and BidA* (refinement) searches performed between success-
ful improvements of the solution.
We observe from the time-based graphs (Figures 5 and 7) that approximately the same
amount of time was used in pair selection, regardless of the solution length from one itera-
tion to the next. This is due to two factors. First, as the current solution length decreases,
the O(n2) search space decreases quadratically. Second, as mentioned earlier, the specific
pair that AIRS selects is not from the set of all states, but from a uniform sampling which
is restricted based on several parameters, including resolution parameters α and β (Lines
15-16), and the current solution length. By restricting the space in a systematic way, we can
drastically reduce the time to identify the next pair, while slightly increasing the probability
of having to perform multiple BidA* searches to find a successful one. We strike a balance
in our algorithm, but any AIRS search should include this as a tunable parameter for best
results.
We see an example of this in Figure 7 from steps 3-9. In this range, we can see that
both pair selection and BidA* took about the same amount of time because AIRS finds a
successful refinement with only a single BidA* search. Comparing this against Figure 6,
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Figure 5: For each refinement, the black section shows time spent on pair selection, with
the grey showing refinement (BidA*) search time.

we see that those same refinements drastically reduced the length of the solution. This is
the balance we want. In contrast, in Figure 5, we seen that BidA* takes much more time
than pair selection. This specific problem is, in fact, a difficult one. Early on, BidA* does
not take an excessive amount of time even though there are multiple searches happening
per refinement, but later, the trade-off does not work ideally because the BidA* searches
are hard. We are currently working on a more flexible mechanism to more intelligently
trade off time between these two AIRS phases.

4 Related Work
Anytime algorithms were first proposed as a technique for planning when the time available
to produce a plan is unpredictable and the quality of the resulting plan is a function of
computation time [1]. While many algorithms have been subsequently cast as anytime
algorithms, of particular interest to us are applications of this idea to heuristic search.
For example, Weighted A*, first proposed by Pohl [9], has become a popular anytime can-
didate, in part because it has been shown that the cost of the first solution will not exceed
the optimal cost by a factor of greater than 1+ε, where ε depends on the weight [8]. Hansen
and Zhou provide a thorough analysis of Anytime Weighted A* (WA*), and make the sim-
ple but useful observation that there is no reason to stop a non-admissible search after the
first solution is found [2]. They describe how to convert A* into an anytime algorithm
that eventually converges to an optimal solution, and demonstrate the generality of their
approach by transforming the memory-efficient Recursive Best-First Search (RBFS) into
an anytime algorithm. An interesting variant of this idea, called Anytime Repairing A*
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Figure 6: Same as Figure 4 with different terrain parameters.

(ARA*) was proposed initially for real-time robot path planning, and makes two modifi-
cations to AWA* which include reducing the weight between searches and limiting node
re-expansions [7].

5 Conclusion
We introduce a new algorithm, AIRS (Anytime Iterative Refinement of a Solution), that
divides a search problem into two phases: Initial Search and Refinement Search. The user
is free to choose specific search algorithms to be used in each phase, with the idea being
that we generate an initial solution cheaply using a fast but sub-optimal search algorithm,
and refine relatively short portions of the evolving solution with a slower, more memory-
intensive search. An important contribution of our method is the efficient identification of
subsequences of solution steps that appear, based on heuristic estimates, to be considerably
longer than necessary. Once identified, if the refinement search computes a shorter con-
necting path, the shorter path is substituted and the current solution path is incrementally
improved. We emphasize that this method is ideal as an anytime algorithm, as it always
has a valid solution to return when one is required, and, given the way subsequences are
chosen, refinement iterations are kept quite short – reducing the probability of wasting ex-
pensive search time by failing to complete a refinement just before time happens to run out.
Finally, we present results that demonstrate in several problem domains that AIRS rivals
other popular search choices for anytime algorithms.
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Figure 7: Same as Figure 5 with different terrain parameters.
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