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Abstract 
 
This work set out to explore the issues associated with mapping an unknown environment 
using singular and pairs of robotic explorers. The results were then compared to a baseline 
in which the search order was randomized every turn. This was done to show if having 
rigid search orders were better or worse than random movement. Since it is unreasonable 
to use brute force to test all possible combinations of explorer pairs, generic strategies 
(combinations of search orders) were developed. These strategies included: 0-7,1-6, 2-5, 
and 3-4 Reflected Explorers, 45, 90, 135, 180, 225, 270, and 315 Degree Clockwise 
Rotated Explorers, Non-Shared and Shared Random Explorers, and Rigid Shared Pair. 
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MOTIVATION & BACKGROUND 
 
Clearly, it is possible for a single explorer to systematically visit all accessible spaces in a 
given environment. However, variability in an unknown environment’s size and 
complexity, make it difficult to understand the optimal approach. The problem becomes 
more interesting when we allow the possibility of multiple agents conducting the 
exploration. This work set out to explore the issues associated with mapping an unknown 
environment using singular and teams of robotic explorers.  
 
The results of this work can be applied to almost any mapping or navigational problem. An 
obvious application would be the exploration of unknown environments such as the sea 
floor, other planets, and environments we are unable to explore due to size, such as ant 
colonies. Furthermore, other applications could include robotic vacuums, search and rescue 
operations, and sea trash collectors. 
 
 
PROJECT DESCRIPTION 
 
 
Map Limits, Assumptions, and Generation 
 
The first step was to program a tool that created maps for the robots to explore. For this 
experiment, a two-dimensional array was used to represent the environment/map. The map 
generating algorithm would be given a specific number of columns, rows, percent 
obstacles, starting location for the robots, and number of maps to generate. See Figure 1 
for a visual representation of a generated map.  
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To make a map, the algorithm creates an array free of obstacles of n+2 columns and rows. 
Then, a border of obstacles is placed to confine the robot. Next, (row*column*percent 
obstacles) obstacles are placed at random into the array with the exception of the starting 
location of the robots. This was done so the explorers do not start stuck inside an obstacle. 
The algorithm then checks with a recursive function if all open squares are connected either 
orthogonally or diagonally. This is done to make sure the percent difficulty is accurate. If 
an open square were to be impossible to reach, it could be effectively counted as an 
obstacle. Finally, steps were taken to eliminate duplication of maps. This process continues 
until the program made the requested number of mazes.  
 
 
Robot Limits, Assumptions, and Generation 
 
Much like the environment, the robot is given parameters before being deployed. These 
include a search order, starting row, starting column, and a map where all tiles except the 
starting tile are unknown. The search order is a string of eight unique digits ranging from 
zero to seven. Reading from left to right tells the robot which direction it should try to 
move first, second, … etc. See Figure 2 for an example of a search order. There are eight 
directions because the robots are allowed to move both orthogonally and diagonally. For 
the majority of the research the starting position was column 0 and row 0 due to some 
benefits which will be discussed later. It was noticed, however, that changing the starting 
location affects which search order performs better. For example, if the starting position 
was rotated 90 degrees, the best search order would also be rotated 90 degrees.  
 

   
During an explorer’s movement phase, it checks through its search order and tries to move 
in the indicted direction as long as the location has not already been visited. If the location 
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it moves to is open, it marks down its previous spot as visited, adds it to the top of its 
backtracking stack, and updates its individual map. If the location is an obstacle it updates 
the map and continues to try using the search order until an open spot is found. If all 
surrounding spots are either visited or obstacles, an algorithm is run to try and optimize the 
backtracking stack by removing spots that do not need to be revisited. Then, the explorer 
pops the top spot off the backtracking stack and moves there. The main assumptions of this 
process are that all strategies/search orders revolve around the same backtracking technique 
and all strategies are context free (does not take into account previous moves when 
deciding which direction to move). 
 
The efficiency of the explorer was evaluated based on the total open tiles divided by the 
total units moved to fully map an environment. This gives us the average fraction of 
unknown tiles discovered per unit moved. Moving orthogonally to an open square has a 
cost of one unit, moving diagonally to an open square has a cost of the square root of two 
units, but trying to move into an obstacle has a cost of zero. This was done because the 
robot could be assumed to be the same size as its current tile. Thus, the cost of moving into 
an obstacle would be approximately zero. The other assumptions made were that if the 
locations of the direction of “1” and “4” were obstacles but “2” was open then the explorer 
could move in the direction of “2” and that explorers could occupy the same spot. 
 
 
Brute Force Backtracking – Single Bot 
 
For a single explorer all 8! or 40,320 different possible search orders were tested. The 
results were then compared to a baseline in which the search order was randomized every 
turn. This was done to show if having rigid search orders were better or worse than random 
movement. 
 
Since the 8! + 1 explorers could not be run over all possible maps, a random selection was 
made at the beginning of each run. Then, all explorers were run through the selection. This 
meant that there was some error in the performance of each search order. This error had an 
inverse relationship with the number of maps in the random selection compared to total 
possible number of maps at a given percent obstacles. This error range was able to be 
quantized for a single explorer when it was realized that if the explorers started at column 
0 and row 0 for every search order there was a complementary search order that when all 
possible maps were tested, they had the same performance. See Figure 3 for how to find 
the complement. 
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Using this information, a pruning algorithm was created to find the top performing search 
orders for a given percent difficulty and map size. To do this, the algorithm would first run 
all explorers through the selected maps. Then it would find the largest difference between 
all the search order complements and double the value. This represents the error range of 
that run. This value would then be added to the top performing explorer’s performance 
creating the cutoff. Any pair of explorers in which neither one did better than the cut off 
would be removed from the running. This would decrease the number of explorers needed 
to be tested and thus allow the program to run a larger selection of maps further reducing 
the error. This process would continue until the top 25 explorer complements were found. 
This pruning algorithm was then repeated on 5% to 60% obstacles in intervals of 5% to see 
how the percent obstacles affected the top 25 explorer complements for 20x20 maps. See 
Table 1 for all future overall top search orders. 
 
During the project, it was found that search orders starting with “310” and “130” preformed 
significantly better than strategies that started with “647” and “467” when the starting 
position was column 0 and row 0. This suggests that search orders that prioritize first 
hugging the starting corner and moving orthogonally before diagonally do better than 
strategies that initially search farther away. This makes sense because the cost of moving 
orthogonally is less than diagonally and if the explorer does not miss any tiles in its starting 
area it does not have to backtrack to reach them. This also meant that if the starting position 
was the bottom right of the map instead of the top left the roles would be reversed making 
search orders starting with “647” and “467” perform best. Finally, percent obstacles had a 
direct impact on the overall performance of the 8! explorers compared to the random 
baseline. At 5% obstacles, the majority of the robots performed better than the baseline. 
However, an increasing number of explorers performed worse than the baseline as the 
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percent difficulty increased. It is believed that this is due to a reduction in large groups of 
open spaces and an increase of narrow passageways where there is only one path regardless 
of search order. Looking at Figure 4, it can be seen that at 60% difficulty even the best 
search order barely performed better than the random baseline.  
 

   
 
 
Estimated Backtracking – Two Bots 
 
Since it is unreasonable to try and use brute force to test all possible combinations of two 
explorers, generic strategies (combinations of search orders) were developed based on the 
results observed from single explorers. These strategies were then run on a random 
selection of 500 maps and compared over the same starting position and range of percent 
obstacles as the single bots were. Unless otherwise stated, there was no communication 
between robots when they were mapping. These strategies included:  
 
 
0-7, 1-6, 2-5, and 3-4 Reflected Explorers 
 
These four strategies involved taking every search order and reflecting it over a diagonal 
line between the two numbers listed to create a partner. This is the same process as in 
Figure 3. These strategies were chosen as a way to promote the robots exploring different 
parts of the environment. Looking at Figure 5, it can be seen that the 3-4 reflected 
performed best at 5 and 30 to 45% difficulties, 1-6 reflected preformed best at 50 to 60%, 
and the 0-7 reflected outperformed them from 10 to 25%. This data suggests that depending 
on the percent difficulty the best combination of search order changes. 
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45, 90, 135, 180, 225, 270, and 315 Degree Clockwise Rotated Explorers 
 
These seven strategies involved taking every search order and rotating it clockwise to 
create a partner. For example, a 90-degree rotation for “01352467” is “24107635.” These 
strategies were chosen because as noted before rotating the starting position rotates the best 
search order. With that in mind, having rotations of a search order should allow it to 
effectively deal with a larger range of situations. From Figure 6, two conclusions can be 
seen. First, it was found that the 180-degree rotated explorers performed significantly better 
than the other rotated strategies. This is probably due to the 180-degree strategy making 
the explorers move as far away from each other as possible, thus reducing the amount of 
turns searching already visited tiles. Secondly, That the 45 and 315, 90 and 270, and 135 
and 225-degree rotated strategies created pairs with very similar results. This is due to the 
similarity of their rotations with the ability of the same pairs being able to be generated. 
This is supported by Table 1, where both 45 and 315-degree rotated best search order pairs 
are the same.  
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Non-Shared and Shared Random Explorer Baselines 
 
The non-shared random strategy involved having two explorers each with search orders 
that were randomly generated every movement phase. This strategy was used as a baseline 
for the other non-shared strategies. On the other hand, the shared random strategy differs 
by having explorers share where they have found open tiles and obstacles. This strategy 
was used as a baseline for shared strategies. Figure 7 shows that the random shared strategy 
performed better than the non-shared supporting that there is a benefit, at least in terms of 
units moved, of sharing information between explorers.  
 

 



 8 

Rigid Shared Pair 
 
This strategy makes a second explorer with the exact same search order as the original and 
has them share where they have found open tiles and obstacles. They were allowed to share 
because otherwise they would take the exact same paths and thus require exactly double 
the units moved compared to using only one. Looking at Figure 7, this strategy performed 
better than non-shared random but lost in performance when compared to shared random 
at higher percent obstacles. 
 
 
Overall Comparison 
 
Figure 8 shows the best strategy from each category compared to the random baselines. 
Much like in Figure 4, the strategies tended to converge as the percent difficulty increased, 
especially for rigid and random shared. However, this time both 3-4 reflected and 180-
degree rotated maintained a visibly higher efficiency then their random pair baseline at 
60% percent difficulty. Suggesting that as the number of explorers increases so does the 
importance of a strategy.  
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ONGOING AND FUTURE WORK  
 
The research project is currently in the process of expanding the program to be able to run 
complex multi explorer strategies, create contextualized individual and double explorer 
strategies, further investigate the pros and cons of sharing between explorers, and run 
explorers on larger selections of maps to reduce error. The multi robot strategies would be 
based on the results and observations made from the single and double explorer tests. 
However, they would also have extended features which include staged deployment of 
explorers, a network hub which receives all information gathered to make decisions as to 
where/when to send and the search orders given to new/inactive explorers. As for the 
contextualized strategies, some examples being “always turning left when reaching an 
obstacle” and “keep going straight until hitting an obstacle”, a similar analysis would be 
conducted and then compared to past results. Finally, the map making algorithm is being 
optimized to be able to effectively make maps with percent difficulty greater than 60%. 
 


