
Autonomous Blind Robotic Mapping

Matthew Appler, Stephen Hughes
Mathematics & Computer Science Department

Coe College
5008, 1220 1st Ave NE, Cedar Rapids, IA 52402

MatthewAppler@gmail.com

Abstract

This work set out to explore the issues associated with mapping an unknown environment
using singular and pairs of robotic explorers. The results were then compared to a baseline
in which the search order was randomized every turn. This was done to show if having
rigid search orders were better or worse than random movement. Since it is unreasonable
to use brute force to test all possible combinations of explorer pairs, generic strategies
(combinations of search orders) were developed. These strategies included: 0-7,1-6, 2-5,
and 3-4 Reflected Explorers, 45, 90, 135, 180, 225, 270, and 315 Degree Clockwise
Rotated Explorers, Non-Shared and Shared Random Explorers, and Rigid Shared Pair.

 1

MOTIVATION & BACKGROUND

Clearly, it is possible for a single explorer to systematically visit all accessible spaces in a
given environment. However, variability in an unknown environment’s size and
complexity, make it difficult to understand the optimal approach. The problem becomes
more interesting when we allow the possibility of multiple agents conducting the
exploration. This work set out to explore the issues associated with mapping an unknown
environment using singular and teams of robotic explorers.

The results of this work can be applied to almost any mapping or navigational problem. An
obvious application would be the exploration of unknown environments such as the sea
floor, other planets, and environments we are unable to explore due to size, such as ant
colonies. Furthermore, other applications could include robotic vacuums, search and rescue
operations, and sea trash collectors.

PROJECT DESCRIPTION

Map Limits, Assumptions, and Generation

The first step was to program a tool that created maps for the robots to explore. For this
experiment, a two-dimensional array was used to represent the environment/map. The map
generating algorithm would be given a specific number of columns, rows, percent
obstacles, starting location for the robots, and number of maps to generate. See Figure 1
for a visual representation of a generated map.

 2

To make a map, the algorithm creates an array free of obstacles of n+2 columns and rows.
Then, a border of obstacles is placed to confine the robot. Next, (row*column*percent
obstacles) obstacles are placed at random into the array with the exception of the starting
location of the robots. This was done so the explorers do not start stuck inside an obstacle.
The algorithm then checks with a recursive function if all open squares are connected either
orthogonally or diagonally. This is done to make sure the percent difficulty is accurate. If
an open square were to be impossible to reach, it could be effectively counted as an
obstacle. Finally, steps were taken to eliminate duplication of maps. This process continues
until the program made the requested number of mazes.

Robot Limits, Assumptions, and Generation

Much like the environment, the robot is given parameters before being deployed. These
include a search order, starting row, starting column, and a map where all tiles except the
starting tile are unknown. The search order is a string of eight unique digits ranging from
zero to seven. Reading from left to right tells the robot which direction it should try to
move first, second, … etc. See Figure 2 for an example of a search order. There are eight
directions because the robots are allowed to move both orthogonally and diagonally. For
the majority of the research the starting position was column 0 and row 0 due to some
benefits which will be discussed later. It was noticed, however, that changing the starting
location affects which search order performs better. For example, if the starting position
was rotated 90 degrees, the best search order would also be rotated 90 degrees.

During an explorer’s movement phase, it checks through its search order and tries to move
in the indicted direction as long as the location has not already been visited. If the location

 3

it moves to is open, it marks down its previous spot as visited, adds it to the top of its
backtracking stack, and updates its individual map. If the location is an obstacle it updates
the map and continues to try using the search order until an open spot is found. If all
surrounding spots are either visited or obstacles, an algorithm is run to try and optimize the
backtracking stack by removing spots that do not need to be revisited. Then, the explorer
pops the top spot off the backtracking stack and moves there. The main assumptions of this
process are that all strategies/search orders revolve around the same backtracking technique
and all strategies are context free (does not take into account previous moves when
deciding which direction to move).

The efficiency of the explorer was evaluated based on the total open tiles divided by the
total units moved to fully map an environment. This gives us the average fraction of
unknown tiles discovered per unit moved. Moving orthogonally to an open square has a
cost of one unit, moving diagonally to an open square has a cost of the square root of two
units, but trying to move into an obstacle has a cost of zero. This was done because the
robot could be assumed to be the same size as its current tile. Thus, the cost of moving into
an obstacle would be approximately zero. The other assumptions made were that if the
locations of the direction of “1” and “4” were obstacles but “2” was open then the explorer
could move in the direction of “2” and that explorers could occupy the same spot.

Brute Force Backtracking – Single Bot

For a single explorer all 8! or 40,320 different possible search orders were tested. The
results were then compared to a baseline in which the search order was randomized every
turn. This was done to show if having rigid search orders were better or worse than random
movement.

Since the 8! + 1 explorers could not be run over all possible maps, a random selection was
made at the beginning of each run. Then, all explorers were run through the selection. This
meant that there was some error in the performance of each search order. This error had an
inverse relationship with the number of maps in the random selection compared to total
possible number of maps at a given percent obstacles. This error range was able to be
quantized for a single explorer when it was realized that if the explorers started at column
0 and row 0 for every search order there was a complementary search order that when all
possible maps were tested, they had the same performance. See Figure 3 for how to find
the complement.

 4

Using this information, a pruning algorithm was created to find the top performing search
orders for a given percent difficulty and map size. To do this, the algorithm would first run
all explorers through the selected maps. Then it would find the largest difference between
all the search order complements and double the value. This represents the error range of
that run. This value would then be added to the top performing explorer’s performance
creating the cutoff. Any pair of explorers in which neither one did better than the cut off
would be removed from the running. This would decrease the number of explorers needed
to be tested and thus allow the program to run a larger selection of maps further reducing
the error. This process would continue until the top 25 explorer complements were found.
This pruning algorithm was then repeated on 5% to 60% obstacles in intervals of 5% to see
how the percent obstacles affected the top 25 explorer complements for 20x20 maps. See
Table 1 for all future overall top search orders.

During the project, it was found that search orders starting with “310” and “130” preformed
significantly better than strategies that started with “647” and “467” when the starting
position was column 0 and row 0. This suggests that search orders that prioritize first
hugging the starting corner and moving orthogonally before diagonally do better than
strategies that initially search farther away. This makes sense because the cost of moving
orthogonally is less than diagonally and if the explorer does not miss any tiles in its starting
area it does not have to backtrack to reach them. This also meant that if the starting position
was the bottom right of the map instead of the top left the roles would be reversed making
search orders starting with “647” and “467” perform best. Finally, percent obstacles had a
direct impact on the overall performance of the 8! explorers compared to the random
baseline. At 5% obstacles, the majority of the robots performed better than the baseline.
However, an increasing number of explorers performed worse than the baseline as the

 5

percent difficulty increased. It is believed that this is due to a reduction in large groups of
open spaces and an increase of narrow passageways where there is only one path regardless
of search order. Looking at Figure 4, it can be seen that at 60% difficulty even the best
search order barely performed better than the random baseline.

Estimated Backtracking – Two Bots

Since it is unreasonable to try and use brute force to test all possible combinations of two
explorers, generic strategies (combinations of search orders) were developed based on the
results observed from single explorers. These strategies were then run on a random
selection of 500 maps and compared over the same starting position and range of percent
obstacles as the single bots were. Unless otherwise stated, there was no communication
between robots when they were mapping. These strategies included:

0-7, 1-6, 2-5, and 3-4 Reflected Explorers

These four strategies involved taking every search order and reflecting it over a diagonal
line between the two numbers listed to create a partner. This is the same process as in
Figure 3. These strategies were chosen as a way to promote the robots exploring different
parts of the environment. Looking at Figure 5, it can be seen that the 3-4 reflected
performed best at 5 and 30 to 45% difficulties, 1-6 reflected preformed best at 50 to 60%,
and the 0-7 reflected outperformed them from 10 to 25%. This data suggests that depending
on the percent difficulty the best combination of search order changes.

 6

45, 90, 135, 180, 225, 270, and 315 Degree Clockwise Rotated Explorers

These seven strategies involved taking every search order and rotating it clockwise to
create a partner. For example, a 90-degree rotation for “01352467” is “24107635.” These
strategies were chosen because as noted before rotating the starting position rotates the best
search order. With that in mind, having rotations of a search order should allow it to
effectively deal with a larger range of situations. From Figure 6, two conclusions can be
seen. First, it was found that the 180-degree rotated explorers performed significantly better
than the other rotated strategies. This is probably due to the 180-degree strategy making
the explorers move as far away from each other as possible, thus reducing the amount of
turns searching already visited tiles. Secondly, That the 45 and 315, 90 and 270, and 135
and 225-degree rotated strategies created pairs with very similar results. This is due to the
similarity of their rotations with the ability of the same pairs being able to be generated.
This is supported by Table 1, where both 45 and 315-degree rotated best search order pairs
are the same.

 7

Non-Shared and Shared Random Explorer Baselines

The non-shared random strategy involved having two explorers each with search orders
that were randomly generated every movement phase. This strategy was used as a baseline
for the other non-shared strategies. On the other hand, the shared random strategy differs
by having explorers share where they have found open tiles and obstacles. This strategy
was used as a baseline for shared strategies. Figure 7 shows that the random shared strategy
performed better than the non-shared supporting that there is a benefit, at least in terms of
units moved, of sharing information between explorers.

 8

Rigid Shared Pair

This strategy makes a second explorer with the exact same search order as the original and
has them share where they have found open tiles and obstacles. They were allowed to share
because otherwise they would take the exact same paths and thus require exactly double
the units moved compared to using only one. Looking at Figure 7, this strategy performed
better than non-shared random but lost in performance when compared to shared random
at higher percent obstacles.

Overall Comparison

Figure 8 shows the best strategy from each category compared to the random baselines.
Much like in Figure 4, the strategies tended to converge as the percent difficulty increased,
especially for rigid and random shared. However, this time both 3-4 reflected and 180-
degree rotated maintained a visibly higher efficiency then their random pair baseline at
60% percent difficulty. Suggesting that as the number of explorers increases so does the
importance of a strategy.

 9

ONGOING AND FUTURE WORK

The research project is currently in the process of expanding the program to be able to run
complex multi explorer strategies, create contextualized individual and double explorer
strategies, further investigate the pros and cons of sharing between explorers, and run
explorers on larger selections of maps to reduce error. The multi robot strategies would be
based on the results and observations made from the single and double explorer tests.
However, they would also have extended features which include staged deployment of
explorers, a network hub which receives all information gathered to make decisions as to
where/when to send and the search orders given to new/inactive explorers. As for the
contextualized strategies, some examples being “always turning left when reaching an
obstacle” and “keep going straight until hitting an obstacle”, a similar analysis would be
conducted and then compared to past results. Finally, the map making algorithm is being
optimized to be able to effectively make maps with percent difficulty greater than 60%.

