
A Novel Approach to Introduce Classes in C++
Lasanthi Gamage

Mathematics and Computer Science Department
Webster University

St. Louis, MO 63110
lasanthigamage67@webster.edu

Jayantha Herath
Department of Computer Science

St. Cloud State University
St. Cloud, MN 56304

jherath@stcloudstate.edu

Abstract—This article discusses the approach of using UML to
introduce classes for the first-time Object-oriented programming
takers; it is worth noting here that the students are not expected
to have prior experience in UML. The discussion presented in this
article includes a collection of example UML diagrams that are
used to demonstrate some selected concepts of Object-oriented
programming, including, class definitions, class functions, access
modifiers, constructors, and inheritance. This method of intro-
ducing object-oriented concepts has put into practice for several
semesters and has attracted students’ gratification.

I. INTRODUCTION

When it comes to object-oriented programming, many stu-
dents struggle to grasp the concepts. This is not necessarily be-
cause of students’ lack of logical thinking; even students who
were very good with procedural programming, sometimes fail
to understand Object-oriented programming (OOP) concepts
because the differences between the two are not clearly and
explicitly explained.

Most pedagogical approaches introduce programming con-
cepts to students one at a time, starting from, for example, the
general structure of the class, the class definition, member
functions, access specifiers, constructors, and so on. This
step-by-step build-up of concepts naturally takes at least a
couple of lectures before the students can start to develop a
solid understanding of classes and class interactions. Such an
approach, in many ways, is akin to a bottom-up introduction
to the TCP/IP stack (in a networking class) where the physical
layer is introduced first and the application layer is introduced
the last. Alternatively, it is also possible to first start with
classes and their interactions directly, and then deep dive into
the associated details. This is similar, in nature, to a top-down
approach.

Visual representations of classes using UML-like visual aids
are an effective way to jump-start an introduction to object-
oriented programming concepts. Instead of getting bogged
down on details at the onset, UML help students see the
forest through the trees and grasp the benefits of core OOP
concepts such as abstraction, aggregation, encapsulation, and
association much faster. Furthermore, UML diagrams can be
easily converted into classes fast-tracking actual programming.

The rest of the paper is organized as follows. Section I
discusses how to introduce classes using UML. Section II dis-

cusses how UML can be then used to introduce class instances
(objects) and constructors. Section III discusses the techniques
used to introduce function overloading using constructors as
a case study. Section IV discusses how UML is effective in
introducing class hierarchies and Inheritance. Section V gives
a summary of work related to teaching introductory level
programming. Lastly, a conclusion of the presented work is
provided in Section VI.

INTRODUCTION TO CLASSES

A good choice of topic to motivate students on the ad-
vantage of Classes is parallel arrays. Many textbooks readily
discuss parallel arrays in some contexts, making it an excellent
and easily adaptable topic for instructors. For example, part
of the chapter on Arrays in Gaddis’ textbook is dedicated to
parallel arrays [1]. Savitch, in his book, does not use the exact
term, but introduces the concept as part of a discussion on a
2-D grading program [2].

Clock

- hour : int
- min : int
- sec : int

+ setTime(int, int, int) : void
+ getTime(int&, int&, int&) const: void
+ printTime() const : void
+ incrementSecs() : void
+ incrementMins() : void
+ incrementHours() : void
+ equalTime(const Clock&) const : bool

Fig. 1: UML Class Diagram for a Clock

Parallel arrays can be used to keep track of different
attributes of a list of objects and provide plenty of easily
tangible (real-world) case studies. Two of which are explained
herewith. First, consider students in a classroom. Each student
could be tracked for several attributes such as name (string), id
(int), average quiz score (double), seating index (short), etc.
Without the use of objects (or Classes), each attribute will
have to be maintained in a separate array of its own because
of the data type differences and because each attribute explain
a different feature of a student. It’s not difficult to explain

1

how tracking attributes in this manner becomes cumbersome
and complex for large classrooms, or across several classes
over a span of semesters. In fact, the complexity of tracking
attributes in this manner can be a great discussion point on the
advantages of aggregation, where a single “custom variable”,
i.e. a single Student object, can aggregate multiple attributes
into one.

Second, consider a Clock, more specifically, a Digital Clock.
Limiting ourselves to only functional attributes1, what are the
attributes associated with a digital clock? Consider Figure 1
which describes a clock object and several ways to interact
with it in a UML diagram. This UML diagram has three
parts: (i) the name of the object; (ii) three integer attributes to
denote hours, minutes, and seconds; and (iii) several methods
/functions that are used to interact (or to communicate) with
the clock. Each attribute is identified by an access modifier (+
or - sign), an attribute name, and an attribute type separated
from the attribute name using a colon (:). Similarly, meth-
ods/functions are identified by an access modifier, function
signature (function name and a list of parameters), and the
return type separated by a colon. The (+) access modifier
indicates that the corresponding element is publicly accessible
for the user. The (-) access modifier indicates that the element
is hidden from or inaccessible to user interaction.

The UML diagram approach is a simple, direct, and intuitive
way for students to understand aggregation. The combination
of attributes, access modifiers, and functions help students
distinguish between elements of an object that should be
exposed for user manipulation and those that should not.
Thus, students start to understand much deeper OOP concepts
such as abstraction and encapsulation in a more direct
and easily understandable manner. This understanding also
helps students quickly translate the UML diagram into a
programming code. For example, consider Listing 1 which
depicts a direct translation of the UML diagram in Figure 1
to a C++ code.

1hence ignoring physical attributes like color, shape, etc.

#include <iostream>
using namespace std;

class clock
{

private:
int hour;
int min;
int sec;

public:
void setTime(int, int, int);
void getTime(int&, int&, int&) const;
void printTime() const;
void incrementSecs();
void incrementMins();
void incrementHours();
bool equalTime(clock&);

}

Listing 1: C++ Translation of the clock UML Diagram

As shown, the C++ code is nearly a word-to-word copy
of the UML diagram. Important points to highlight during
instruction are to show that the plus sign (or the (+) access
modifier) translates into public elements of the class in the
programming code, while the minus sign (the (-) access
modifier) translates into private elements. The name of the
object in UML translates to the name of the class prefixed with
the keyword class. At this level, no emphasis is placed on
creating objects or instances of a class. The main focus here is
on Aggregation using a class, along supplemental emphasis
on Abstraction and Encapsulation. Further re-enforcement of
these key OOP concepts can be achieved by providing students
with additional UML examples that they are asked to translate
into the corresponding programming code.

What’s left this exercise at this point is for students to fill-in
the details of each function definition. This can be assigned
as an active learning exercise, an assignment, or a quiz. Based
on classroom experience, students do not find such exercises
overly difficult as they already possess necessary programming
background from their introductory programming courses.
There is also greater flexibility for the instructor to change
function definitions between semesters or different sections of
the same offering. As an example, Listing 2 depicts a sample
implementation of the incrementHours() function in which
students were instructed to implement a 24-hour format digital
clock.

void Clock::incrementHours()
{

// assuming a 24-hour format
hours = (hours + 1) % 24;

}

Listing 2: Implementation of the incrementHours Function

II. CONSTRUCTORS AND CLASS INSTANCES

So far, the students know how to manipulate the attributes
of an object through functions. But, how the object is created

2

TV

+ channel : int
+ volumeLevel : int
+ on : bool

«contructor» + TV()
+ turnOn() : void
+ turnOff() : void
+ setChannel(int) : void
+ setVolume(int) : void
+ channelUp() : void
+ channelDown() : void
+ volumeUp() : void
+ volumeDown() : void

Fig. 2: UML Diagram for a TV with a Constructor

for the first place? Having introduced students to classes, the
next natural step for them is the create instances of classes
as objects. Consider the UML diagram of a Television (TV)
object depicted in Figure 2.

The UML diagram for the TV is conceptually very similar
to that of the clock with one exception – the additional
public function of the namesake. The optional keyword
«constructor» is used to emphasize this but not essential
for students’ understanding (thus, it can be omitted if needed).
This new function-like addition (called as the constructor) lets
create an object. It is worth emphasizing that the constructors
do not have a return type. The implementation of the construc-
tor (definition) is also very similar to the function definitions
which students have already learned, with the exception that
there is no return type. It is, however, important to emphasize
the constructor’s utility, which is to initialize (set default
values) of new objects upon creation.

As for our example, when a new TV is constructed (or
bought from a store), by default, it’s in default off state.
Furthermore, all new TVs have an initial volume level and
an initial channel set by default. In fact, all new TVs have
these same exact initial preset values. The constructor, thus,
help us set these default values without having to explicitly
call a function.

Listing 3 is the UML to C++ to translation for the TV.
Given our emphasis is on constructors, here the constructor is
implemented within the scope of the class implementation for
greater clarity, but can be implemented outside the class scope
just like any other class function; important point to focus here
is on how to set the default values of an object using a con-
structor, rather than where the constructor is implemented; For
brevity, not all function implementations are listed here except
for setChannel(int) and setVolume(int) functions.

The use and the behavior of the constructor can be easily
explained to students using a simple driver program. For
example, consider the main() function depicted in Listing
3, which creates two TV objections tv1 and tv2. While tv2

remains untouched, the channel and volumeLevel of tv1 are

#include <iostream>
using namespace std;

class TV
{
public:
int channel;
int volumeLevel;
bool on;

TV()
{
channel = 1 //default channel
volumeLevel = 1 //default volume level
on = false // default state

}
void turnOn();
void turnOff();
void setChannel(int);
void setVolume(int);
void channelUp();
void channelDown();

}; .
.
.

void TV::setChannel(int newCH)
{
if(on && newCH >= 1 && newCH < 120)
channel = newCH;

}
void TV::setVolume(int newVOL)
{
if(on && newVOL >= 1 && newCH < 100)
volumeLevel = newVOL;

} .
.
.
.

int main()
{
TV tv1; // instance of a class
TV tv2; // instance of a class

tv1.setChannel(45);
tv1.setVolume(6);

cout << "TV1 channel = " << tv1.channel << endl;
cout << "TV2 channel = " << tv2.channel << endl;
return 0;

}

Listing 3: C++ Translation of the TV UML Diagram including
a main() function

changed using the setChannel(int) and setVolume(int)

functions. When their channel values are printed using a
couple of simple cout print statements, students are able to
observe that tv2 is still on its initial channel value, as shown
below.

TV1 channel = 45
TV2 channel = 1

3

III. DEFAULT CONSTRUCTORS AND OVERLOADING

Loan

- annualInterestRate : double
- numberOfYears : int
- loanAmount : double

«contructor» + Loan()
«contructor» + Loan(double, int, double)
+ getAnnualInterestRate() : double
+ getNumberOfYears() : int
+ getLoanAmount() : double
+ setAnnualInterestRate(double) : void
+ setNumberOfYears(int) : void
+ setLoanAmount(double) : void
+ getMonthlyPayment() : double
+ getTotalPayment() : double

Fig. 3: UML Diagram for a Loan object with Overloaded
Constructors

With the TV constructor depicted in Figure 2 and its im-
plementation listed in Listing 3, we see that every TV has the
same initial attribute values. In some situations, it is required
to set different initial attribute values to different objects.
Consider the UML diagram for a Loan class depicted in Figure
3. It has two constructors: one with no parameters and another
with parameters. The former one called the default constructor
is suitable to set attribute values common to majority of loans.
The later constructor, which is an overloaded constructor, is
useful when the attributes are different from the common
attributes.

Listing 4 depicts the UML to C++ translation for the Loan
object depicted in Figure 3. Just as in Listing 3, function
implementations have been skipped for brevity. The important
point to emphasize to students during instruction is how the
default constructor is pre-populated with default values (just
as in the TV() constructor in Listing 3), and the overloaded
constructor is distinguished from the default constructor (or
any other constructor as for that matter) using a unique
permutation of input parameters. Further reinforcement can
be provided through testing, such as what’s done here in the
main() function. Two Loan objects are created, one using
the default constructor called the originalLoan, and another
using the overloaded constructor called the refinanceLoan.
When their private attribute interestRate is printed, the
object created with the default constructor prints the default
value, while the object created with the overloaded constructor
prints the user provided value. A sample output of this code
execution is provided as follows:

Original Rate = 4.25
Refinance Rate = 2.99

In general, there could be as many constructors as one
may desired, as long as no two constructors share the same
function signature (i.e., the same list of parameters). It is worth

#include <iostream>
using namespace std;

class loan
{
private:
double interestRate;
int numberOfYears;
double loanAmount;

public:
loan()
{
interestRate = 4.25;
numberOfYears = 30;
loanAmount = 250,000;

}
loan(double rate, int years, double amount)
{
interestRate = rate;
numberOfYears = years;
loanAmount = amount;

}
double getInterestRate();
int getNumberOfYears();
double getLoanAmount();
void setInterestRate(double);
void setNumberOfYears(int);
void setLoanAmount(double);
double getMonthlyPayment();
double getTotalPayment();

}; .
.
.

int main()
{
// instance of a class with default constructor
loan originalLoan;
// instance of a class with overloaded constructor
loan refinanceLoan(2.99,15,189000);

cout << "Original Rate = "
<< originalLoan.getInterestRate() << endl;

cout << "Refinance Rate = "
<< refinanceLoan.getInterestRate() << endl;

return 0;
}

Listing 4: C++ Translation of the Loan UML Diagram with
Overloaded Constructors, including a main() Function

reminding the students about function overloading rules here,
for instance, the name of the parameters does not make the
list different, but the type of the parameters does.

IV. INHERITANCE

Now, let’s consider a program that maintains an inventory
of motor vehicles ranging from motorcycles to trucks for a
rental service provider. For each different vehicle, we have
set of attributes of which some are common and some other
are unique. Similar observations can be made on functions as
well where some capabilities are common to all vehicles. To
illustrate this point, consider Figure 4 that depicts individual
UML diagrams for a motorcycle, a car, and a truck. All
three vehicles have two common attributes: some number of

4

Motorcycle

- wheels : int
- weight : float
- ccValue: int

+ init(int,float,init) : void
+ getWheels() : int
+ getWeight() : float
+ getCCValue() : int

Car

- wheels : int
- weight : float
- numOfSeats : int

+ init(int,float,int) : void
+ getWheels() : int
+ getWeight() : float
+ getSeats() : int

Truck

- wheels : int
- weight : float
- cargoLimit : int

+ init(int,float,int) : void
+ getWheels() : int
+ getWeight() : float
+ getCargoLimit() : float

Fig. 4: UML Diagrams of Motorcycle, Car, and Truck Objects

wheels, and a weight. similarly, all three vehicles also have
three common functions: void init(int,float,int)2,
int getWheels(void), and float getWeight(void). Ad-
ditionally, each UML diagram also depicts an attribute unique
to each vehicle along with a function to retrieve that attribute
value.

An example, such as this one, is an effective way to
introduce the concept of Inheritance. By pointing out that
redundancies that exist in different vehicles, students can be
motivated to understand how a hierarchy is a better way to
describe the relationship between them. It can be also used
to show how the overall cost of maintaining different vehicle
objects can be reduced by reducing redundancies. This natural
observation can be then explained using a hierarchy similar to
the one depicted in Figure 5. Here, the common attributes
and functions from the three vehicles have been removed and
aggregated into a new parent object called the Vehicle.

At this point, students naturally start questioning the type of
access modifier that should be used for the common attributes
in the parent object. Since they were private attributes in
individual child objects, it makes sense to mark them as private
in the parent object. However, in doing so, the child objects
lose access to the attributes. This becomes the opportunity to
introduce protected (#) access modifier.

When common attributes are rearranged using hierarchies,
the access modifier of the common attributes are also modi-
fied correspondingly; the private access modifier (-) has now
turned into a protected access modifier (#). Member functions
in derived classes have access to all protected members
(e.g., weight and wheels) and public members (e.g., void
init(int,float,int)) but, not to private members. Thus,
with hierarchical relationships, childs (e.g. Motorcycle, Car,
and Truck) "inherit" features of the parents (e.g. Vehicle).
Effectively, a Car is-a Vehicle. Similarly, a Motorcycle or
a Truck is also is-a Vehicle. But a Motorcycle is not a Truck
or a Car.

The is-a relationship, which is indicative of Inheritance,
depends on where each object lie in the hierarchy; objects in
different levels have a is-a relationship, while objects at the
same level do not have a is-a relationship.

2An initialization function, similar in concept to a default constructor

V. RELATED WORK

It is a common understanding that learning programming
is challenging. The reasons for these challenges include un-
suitable learning styles, lack of motivation, and need for
multiple skills and knowledge [3]. It becomes even more chal-
lenging when it comes to object-oriented programming [4].
The instructors experiment with different strategies to make
learning exciting and fun, and more importantly improve the
retention. This section addresses different strategies that have
been experimented to achieve the aforementioned objectives.

One such strategy that teachers have adopted is introducing
active learning approaches [5], including teaching in computer
labs [6], class time assignment[7], having mandatory lab class,
flipped classroom [5], [8], [9], group assignments [10]–[12],
2-stage assignment submissions [11]. Some other experiments
consider using other tools such as visual aided program-
ming languages (e.g., Alice and Scratch [13]), game-based
approaches [14], different applications (e.g., Mind mapping
software [15]) and kids-favorite toys such as Lego®[16]. In
addition to the above strategies, some researches introduce
different modeling approaches [17] to teach programming,
especially object-oriented concepts.

Active learning approaches would be effective in learning
as, in most of those cases, the students get a chance to
apply their critical thinking. It, however, still needs instructor’s
supervision and guidance for struggling students which makes
it less practical for large class sizes. Alice and Scratch, on the
other hand, would work fine in large classes when each student
has access to the software, which is feasible. Alice and Scratch
would be good platforms to introduce programming as well.
Especially, for high-school and middle-school students. They
provide a friendly and easy programming environment without
the chaos in adhering punctuation and syntax. However, when
it comes to college-level programming, students should be able
to develop the skills to write programs on their own where they
will be using proper punctuation and syntax. At this level,
Alice and Scratch do not help that much.

We introduce a novel visual aid into the scope of object-
oriented teaching by which students will be able to grasp
object-oriented concepts quickly; it is UML diagrams. None of
the previous work has been found in this direction. One article

5

Vehicle

wheels : int
weight : float

+ init(int,float) : void
+ getWheels() : int
+ getweight() : float

Motorcycle

- ccValue: int

+ getCCValue() : int

Car

- numberOfSeats : int

+ getSeats() : int

Truck

- cargoCapacity : int

+ getCargoLimit() : float

Fig. 5: UML Diagram of Vehicles with Inheritance

[18], however, talks about the experience of teaching OOP and
UML to different audiences and talks about them as separate
modeling concepts. The article [18] extends their discussion
on the suitability of each modeling concepts to different
audiences. Our approach, on the other hand, demonstrate how
UML’s visual representation aspect can be blended in teaching
OOP; in fact in C++. This method has several advantages,
including, it is scalable for any size of class, it does not require
any additional software or accessories that are carried to and
from the class. Additionally, showing the concepts all at once
(for example, the entire class definition and inheritance), clears
away their burden on connecting and relating different pieces
of concepts together.

VI. CONCLUSION

This paper shares experience in using UML diagrams as
a way to introduce OOP concepts to first-time course takers.
The paper presented several examples of UML diagrams used
to introduce classes, constructors, class instances (objects),
function overloading, and inheritance. Also presented are an
effective way to convert a UML diagram to the corresponding
programming code.

REFERENCES

[1] T. Gaddis, J. Walters, and G. Muganda, Starting Out
with C++: Early Objects, 7th. USA: Addison-Wesley
Publishing Company, 2010, ch. 8.6, ISBN: 0136077749.

[2] W. Savitch, Absolute C++, 5th. USA: Addison-
Wesley Publishing Company, 2012, ch. 5.4, ISBN:
9780132830713.

[3] T. Jenkins, “On the Difficulty of Learning to Program,”
in Loughborough University, 2002.

[4] J. Bennedsen, M. E. Caspersen, and M. Klling, Reflec-
tions on the Teaching of Programming: Methods and
Implementations, 1st ed. Springer Publishing Company,
Incorporated, 2008, ISBN: 3540779337.

[5] D. Chakravorty, M. Pennings, H. Liu, Z. Wei, D. Ro-
driguez, L. Jordan, D. McMullen, N. Ghaffari, S. Le,
D. Rodriquez, C. Buchanan, and N. Gober, “Evaluating
active learning approaches for teaching intermediate
programming at an early undergraduate level,” The
Journal of Computational Science Education, vol. 10,
pp. 61–66, Jan. 2019. DOI: 10.22369/issn.2153-4136/
10/1/10.

[6] M. O. Hegazi and M. Alhawarat, “The challenges and
the opportunities of teaching the introductory computer
programming course: Case study,” Oct. 2015. DOI: 10.
1109/ECONF.2015.61.

[7] S. Zhuang, H. Wang, W. Zhao, T. Fan, and Y. Zhang,
“Practical guidance method for c/c++ teaching reform,”
Jul. 2015, pp. 834–837. DOI: 10 .1109 / ICCSE.2015 .
7250361.

[8] Y. Shi, Y. Ma, J. MacLeod, and H. H. Yang, “Col-
lege Students’ Cognitive Learning Outcomes in Flipped
Classroom Instruction: A Meta-Analysis of the Empir-
ical Literature,” Journal of Computers in Education,
May 2019. DOI: 10.1007/s40692-019-00142-8.

[9] G. Akcayir and M. Akçayır, “The Flipped Classroom: A
Review of Its Advantages and Challenges,” Computers
and Education, vol. 126, Aug. 2018. DOI: 10.1016/j.
compedu.2018.07.021.

[10] N. Nagappan, L. Williams, M. Ferzli, E. Wiebe, K.
Yang, C. Miller, and S. Balik, “Improving the cs1
experience with pair programming,” vol. 35, Jan. 2003,
pp. 359–362. DOI: 10.1145/792548.612006.

[11] J. Chen, Y. Cao, L. Du, Y. Ouyang, and L. Shen,
“Improve student performance using moderated two-
stage projects,” Apr. 2019, pp. 201–207. DOI: 10.1145/
3300115.3309524.

[12] H. Yuan and Y. Cao, “Hybrid pair programming - a
promising alternative to standard pair programming,”

6

Feb. 2019, pp. 1046–1052. DOI: 10 . 1145 / 3287324 .
3287352.

[13] J. Maloney, M. Resnick, N. Rusk, B. Silverman, and
E. Eastmond, “The scratch programming language and
environment,” ACM Transactions on Computing Educa-
tion (TOCE), vol. 10, p. 16, Nov. 2010. DOI: 10.1145/
1868358.1868363.

[14] Y. S. Wong and M. Yatim, “Computer game as learning
and teaching tool for object oriented programming in
higher education institution,” Procedia - Social and
Behavioral Sciences, vol. 123, Mar. 2014. DOI: 10.1016/
j.sbspro.2014.01.1417.

[15] Y. Liu, Y. Tong, and Y. Yang, “The application of mind
mapping into college computer programming teaching,”
Procedia Computer Science, vol. 129, pp. 66–70, Jan.
2018. DOI: 10.1016/j.procs.2018.03.047.

[16] C. Hood and D. Hood, “Teaching programming and
language concepts using legos®,” vol. 37, Sep. 2005,
pp. 19–23. DOI: 10.1145/1151954.1067454.

[17] M. Pedroni and B. Meyer, “Object-Oriented Model-
ing of Object-Oriented Concepts,” in Teaching Funda-
mentals Concepts of Informatics, Berlin, Heidelberg:
Springer Berlin Heidelberg, 2010, pp. 155–169, ISBN:
978-3-642-11376-5.

[18] S. Moisan and J.-P. Rigault, “Teaching object-oriented
modeling and uml to various audiences,” in Models
in Software Engineering, S. Ghosh, Ed., Berlin, Hei-
delberg: Springer Berlin Heidelberg, 2010, pp. 40–54,
ISBN: 978-3-642-12261-3.

7

