
THREE FOCUSED ARTIFICIAL INTELLIGENCE

ASSIGNMENTS BASED ON CHILDREN’S GAMES

John Maraist

Computer Science Department

University of Wisconsin - La Crosse

1725 State Street, La Crosse, Wisconsin 54601

jmaraist@uwlax.edu

Abstract

We present assignments based on three children’s games for an entry-level

artificial intelligence class, each focused on a specific topic of the standard in-

troductory algorithmic AI curriculum. Rushhour asks students to focus on the

design and comparison of heuristics for an A* search problem. Chocolate Fix

is a puzzle game well-suited to constraint search, both in a simple backtracking

implementation and with consistency propagation. Finally, Tsuro is a multi-

player strategy game suitable for both adversarial and Monte Carlo search-

based agents. The scope of effort required of students for all three assignments

can be adjusted by providing a greater or lesser amount of scaffolding code.



1 Introduction

Game agents are appealing assignments in the artificial intelligence class: Students see

them as fun, and good solutions require a solid understanding of curriculum topics. Vari-

ous games have consistently motivated advanced research over the last seventy years, no-

tably among them chess, Go, and poker [1, 2]. In this paper we describe three children’s

games well-suited for automated play by agents using algorithms typically studied in the

first-semester artificial intelligence class. Each assignment allows a focus on specific com-

mon topics: Rushhour for the design and comparison of heuristics for A* search; Chocolate

Fix for constraint satisfaction problems (CSPs), and Tsuro for both adversarial and Monte

Carlo search. The scope of effort required of students for all three assignments can be ad-

justed by providing a greater or lesser amount of scaffolding code. For each of these games

we report our approach to constructing an assignment around that game, discuss some ob-

servations of the students’ experiences with the assignments, and sketch some possible

future variations. All three games we present meet the bar of requiring thoughtful student

work, but are also sufficiently simple as to be quickly understandable by students who less

avid board game players. The multiplayer game in particular can admit tournament play

among submitted agents, a friendly competition which can further motivate students.

We assigned these games in an elective class focusing on search and probabilistic algo-

rithms in artificial intelligence. The class combined undergraduate and graduate sections,

both covering the same major topics but with some additional material and higher assess-

ment standards in the latter. Our department offers separate electives on Monte Carlo and

other simulation-based techniques and on machine learning, so these topics are not ad-

dressed in the artificial intelligence elective. Our core coursework currently uses Java, and

most assignments in our AI class did the same. Materials from these assignments, including

all code distributed to students, is available for download [4].

2 Design of heuristics for A* search: Rushhour

Rushhour is a children’s puzzle based on sliding blocks back-and-forth on a grid. One of

the blocks represents the family car, which is stuck in traffic: one or more blocks sit in

between the family car and an exit at the end of the family car’s row of the grid. Solving

a puzzle configuration requires moving cars within each one’s row or column so that the

family car is moved to the exit. The blocks must remain flat on the board, and may not be

placed on top of each other, nor to “jump” over each other. Only the family car is able to

exit; the other vehicles must remain in the frame. Figure 1 shows an opening puzzle state,

and its solution.

Rushhour as an assignment

We used Rushhour to explore the design of heuristics for A* search, and in particular to:

• Construct different heuristics for a single problem;

• Describe the techniques used to derive their heuristics from a full solution;

• Discuss the properties of their heuristics, including whether each is admissible and/or

consistent, and the computational complexity of each; and

1



(a) Stuck in traffic. (b) Driving free!

Figure 1: Rushhour boards. Image (a) shows an opening position, with the red family

car stuck in traffic. In the solution position shown in Image (b), the family car can drive

through the exit.

• Experimentally compare their heuristics to each other, and to simple breadth-first

search (BFS).

This assignment contained both programming and written components. To focus the stu-

dents’ efforts on the heuristics themselves, we gave the students a substantial amount of

code, both for a generic A* implementation, and for a model of the Rushhour game and

several boards. We expected the students to program the heuristics themselves, but since

they had already completed an assignment on implementing the core of A*, we provided

an A* implementation parameterized over the heuristic. We asked them to consider at least

three distinct heuristics. As an example we provided a trivial heuristic estimating zero

additional cost for all moves (so essentially equivalent to BFS). We further asked the stu-

dents to implement the composite heuristic described in their text which uses the point-wise

maximum over their individual heuristics.

We asked the students to consider the two techniques discussed in the text for deriv-

ing admissible heuristics [3, Sec. 3.6], solving relaxed problems and solving subproblems,

and describe how each of their solutions fits into that taxonomy. Admissibility and con-

sistency being essential properties of heuristics for effective A* deployments, the students

gave informal “proofs” of how each of their heuristics satisfied these properties. Although

we did ask the students to discuss their implementations’ computational complexity, it was

not a primary focus since not all had completed our algorithms elective. Finally, we asked

the students to use the data collected by the provided A* implementations to calculate the

effective branching factor (EBF) of their algorithms on each of the several sample config-

urations, examine the stability of the EBF across different initial boards, and to use these

results to discuss the quality of their heuristics.

This assignment was generally well-received by the students, who mostly submitted

well-completed implementations. We did notice more weakness than we expected in their

written use of technical definitions of heuristic properties. This weakness manifested in

particular when justifying the admissibility and consistency of their heuristics; in some

cases the answer was a simple unjustified declaration that the properties hold. In the future

we would better scaffold the awareness of the technical details of these definitions with

2



low-stakes quizzes before, or soon after, releasing the assignment. We would also more

explicitly point to examples in the text, or to provided answers on past/similar projects,

to show the form of an appropriate response. One specific issue with EBF calculations is

the simplified formula which, although not discussed in our adopted text [3], is available

online. In the future we would either give them this formula up front, or else explicitly

mention it as an unacceptable oversimplification.

Another possible Rushhour-based assignment which we did not explore this semester

would be for local search algorithms, to see if a process like simulated annealing would be

able to find puzzle solutions.

3 A domain for constraint satisfaction search: Chocolate Fix

Chocolate Fix is a puzzle game in which the player finds the correct arrangement of pieces

on a square grid. The pieces represent candies, each with a unique combination of a shape

and a color. The conceit of the game is that the player is assembling candy sampler boxes,

where the particular arrangement of the candies for each box must be inferred from hints

specific to that “order.” For a Chocolate Fix puzzle of size n:

1. There are n different shapes and n different colors.

2. There are n
2 pieces, each with a different shape/color combination.

Each puzzle has a set of clues showing how the grid, or some part of the grid, must be

arranged. The physical game (and the examples which we present here) are on a 3×3 grid,

but we expected students’ solutions to address the general case of n× n puzzles.

Consider the following problem:

This problem has two clues. The first (left-hand) clue spans the entire 3× 3 grid. There are

several requirements which this clue requires of a solution:

• The upper-left corner must have the brown triangle, and the upper-right corner must

have the white square.

• It gives a partial hint for the center square; a triangular piece will go there but the

color is not disclosed.

• In the bottom row, the clue requires specific colors but does not insist on a particular

shape. The clue requires red in the bottom left, white in the bottom middle, and

brown in the bottom right.

3



• It says nothing about three squares: the middle of the top row, the middle of the left

column, and the middle of the right column.

So after considering the first clue, we can place two pieces with certainty:

However the first clue alone does not give us enough information to place other pieces with

certainty. The second (right-hand) clue fits within a 2× 3 rectangle, which means it could

apply to either the top two rows, or to the bottom two rows:

But the latter case, when we apply the clue to the two bottom rows, contradicts the first

clue’s requirement that a triangular piece should fit in the middle. Therefore we can rule

out that placement for the second clue. Proceeding with five pieces in place, we can see

there remains only one triangular piece for the center square,

We have one piece of each color remaining, and the bottom row of the first clue gives us

their final placements.

4



Figure 2 shows two more difficult problems, Candy Boxes (a) and (b). Box (a) has more

clues than the simple problem, but as with the initial problem’s right-hand clue, some of

them might be applicable to many places. For example, the fourth clue (bottom-right) says

that one of the brown pieces will have a red piece below and to its right, but there are four

possible positions where we could apply this requirement. Note also that, like the first clue

of the simple problem, many of the clues for Box (b) are silent as to some of the squares in

their grids. The upper-right clue calls for a slot containing a triangle (of unspecified color)

above and to the right of some other slot, but places no restrictions on the content of that

other slot. Finally, the most advanced example Candy Box (b) contains more clues than the

others, but most governing only some fragment of the overall grid, and most giving only a

partial requirement for the squares of its fragment.

Chocolate Fix as an assignment

We assigned Chocolate Fix as one question of an open-book take-home final exam ask-

ing students to design (but not implement) an agent for Chocolate Fix puzzles using the

techniques we studied over the semester, and to outline the steps the agent would take for

a small number of specific examples, at least one of which would have been labeled “ad-

vanced.” We asked the students to analyze their solutions in terms of the metrics we studied

for the techniques they chose, and to give some discussion of their agent’s computational

complexity.

It is fairly easy to see that Chocolate Fix puzzles are best modeled as CSPs. Moreover a

correct solution must address a number of subtle issues which make this game well-suited

to a long-form exam question. Chocolate Fix puzzles translate most naturally to CSPs with

two distinct variable types, one to assign pieces to slots, another to anchor partial-grid clues

in the overall result grid. The interactions among these constraints give a meaningful role

to consistency checking for pruning unassigned variables’ domains. The problems are also

rich enough to justify experimenting with the impact of variable and value orderings on

search efficiency. So while a Chocolate Fix agent does not necessarily require more than a

very simple CSP encoding, the assignment will allow the student with greater mastery of

more advanced techniques to demonstrate their progress.

In future semesters we would consider presenting this game as an implementation rather

than a design project. While a full implementation of a CSP solver for Chocolate Fix would

be a very reasonable assignment, as with Rushhour we could provide scaffolding code for

a generic CSP algorithm to allow students to focus more closely on experimentation with

optimizations to the search process.

5



(a) (b)

Figure 2: Two more advanced problems from Chocolate Fix.

Figure 3: Tsuro tiles.

4 Adversarial search in a multi-player game: Tsuro

Tsuro is a multiplayer game in which players build paths and advance along them by plac-

ing tiles on a board. Paths are printed on each tile; Figure 3 shows some example tiles. The

tiles are all the same size. Paths run to and from the same points on the edges of each tile,

but different tiles connect these points in different ways. When we place a new tile next to

tiles already on the grid, paths traced by the old tiles are extended with the new tile.

Each player is represented by a small stone, which will always be at the edge of one

of the paths. At the beginning of the game, a dealer shuffles the deck of tiles, and deals

three tiles to each player. Each player’s turn consists of two steps: first placing one tile

in the empty grid space next to their stone, and then drawing a new tile from the deck (if

any remain). When the player places a tile, it extends the path they are following, and the

player must immediately move their stone to the new endpoint of the path. For example,

Figure 4 shows the possible opening moves for Player Green: The leftmost of the pictures

shows Green in their starting position. The stone sits on a small white dash, Green’s tiny

initial path; similar possible starting paths are visible above and below Green. Each player

starts on a different starting path. In Green’s first turn, they will select one tile from their

hand, place it on the empty grid space next to the Green stone, and move their stone through

the new tile along the path. The middle picture shows the outcome of one possible way of

6



(a) (b) (c)

Figure 4: Opening moves for Player Green.

(a) (b) (c)

Figure 5: Eliminating another player when their path run off the edge of the board.

placing a tile by Green. Turn after turn, Green’s stone advances along its path as it grows.

The rightmost picture above shows Player Green’s position after three turns.

A player must always place a tile in the empty space adjacent to where their stone sits

at the end of its path. However, the player may choose to place any of the tiles in their

hand, and may orient the tile as they place it. If a newly-placed tile leads a player’s path

to the edge of the grid, then that player is eliminated from the game. So it important to

choose tiles and their rotation carefully. When all but one player has been eliminated, the

last remaining player wins.

The moves in Figure 4 have only one player in view, but all players’ stones sit at their

own positions on the same board. So it is possible — especially later in the game — that

one newly placed tile might extend the paths of several players, not just the player who

places the tile. Figure 5.a shows a position where Players Green and Blue are in such a

situation. When either player adds a tile to the empty corner space, both players’ paths will

grow, and each stone must move forward to the end of its path. Let us assume that Green

plays first, and makes the very wise choice of play shown in Figure 5.b. Then we see in

Figure 5.c how Green advances safely, but Blue’s path leads to the edge of the grid, so Blue

is eliminated.

When a player is eliminated, any tiles in their hand are returned to the draw pile. If

the draw pile had been empty, and other players have been waiting to draw tiles, then these

players draw from the refreshed pile in the order they had been waiting. When all players

but one have been eliminated, the survivor wins the game. If all remaining players are

7



eliminated by the same tile, then these players tie for the win. If more than one player is

still in the game after all tiles have been played, then again these players tie for the win.

Tsuro as an assignment

We assigned Tsuro as a project on adversarial search, asking the students to incorpo-

rate some form of the Minimax algorithm to drive their agents’ decisions. For an end-

of-semester amusement we conducted a tournament of the students’ agents, which many

found motivating and enjoyable even though the tournament aspect was not graded. As for

Rushhour we provided a common model of game elements. To facilitate multi-agent play

both for the tournament and for testing of agent versions, we also provided a game-running

module, plus sample agents whose behavior was largely random. The game runner imposed

time limits on agent initialization, processing of newly dealt tiles, and tile play decisions,

enforced with a forfeit for exceeding time limits. The size of the search tree required the

students to implement some form of evaluator for non-ending positions, and we encouraged

them to consider strategies such as varying search depth to reflect the significantly larger

branching factor at the beginning of games, identifying subproblems excluding some play-

ers or board areas, and some form of probabilistic reasoning based on the known unplayed

tiles (agents had access to the full deck of available tiles at the beginning of a game before

shuffling, but not to the subsequent assignment of tiles to other agents). The former two

techniques turned out to be generally fruitful approaches; the latter, less so. Their agents

were also expected to cope with any size of game board. The physical game is a 6 × 6

square of tile slots; for some rounds of the end-of-semester tournament we used a larger

board.

5 Conclusion and resources

A common aspect of all three of the games which we consider here is their minimalism.

Simple game mechanics allow the relevant AI technique to take a prominent role in an

exercise, and the limited role for random elements makes the link between an algorithm

and the game play clearer. As such the games are well-suited both for implementation and

for discussion on exams or in presentations linking game elements to AI algorithms and

techniques.

We finish with two further resources for instructors seeking ideas for games to be the

basis of class assignments. First, the Spiel des Jahres [5] is an annual series of three awards

by a group of German games critics and publishers recognizing excellence in game design

for over forty years. Although many of the games will not be suitable for an elementary AI

class (such as games based on word play, or requiring physical actions), there is nonetheless

a broad selection of good assignment candidates among the past winners, nominees, and

recommended games. Second, until recently we were not aware that many public libraries

keep an inventory of family- and child-friendly games available for checkout. We would

have tried many fewer games without this community asset!

8



Acknowledgments. It can be challenging to write clear instructions to a familiar game for

readers who may not have immediate access to the game and its pieces: my colleagues

Elliott Forbes, Thomas B. Gendreau and Samantha Foley provided detailed feedback on the

readability of the original assignments described in this paper. Jason Sauppe gave feedback

on a draft of this paper. And most of all, I am grateful to Jill Maraist and Marcel Maraist

for happy hours of participatory research on real-time strategies and tactics for these and

many other games.

References

[1] Noam Brown and Tuomas Sandholm. Superhuman AI for multiplayer poker. Science,

365(6456):885–890, 2019.

[2] Cameron B. Browne, Edward Powley, Daniel Whitehouse, Simon M. Lucas, Peter I.

Cowling, Philipp Rohlfshagen, Stephen Tavener, Diego Perez, Spyridon Samothrakis,

and Simon Colton. A survey of Monte Carlo tree search methods. IEEE Transactions

on Computational Intelligence and AI in games, 4(1):1–43, 2012.

[3] Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Pren-

tice Hall, 2010.

[4] Github repository https://github.com/jphmrst/AIGameAssignments, 2020. This

repository is private, but instructors are welcome to request access.

[5] Spiel des Jahres web site. https://www.spiel-des-jahres.de/spiele/.

9


