
Graph Traversal for Procedural Fantasy Map Generation
Kenny Hunt

khunt@ulwax.edu
The University of Wisconsin La Crosse

La Crosse, Wisconsin

Figure 1: Random fantasy map generated using graph-based generation.

ABSTRACT
This paper describes a novel application domain for teaching graphs,
graph traversal, and spanning tree algorithms. A technique for gen-
erating randomized fantasy maps backed by a randomized graph
data structure is presented. Terrain elevation is generated via bread-
first search, roads are generated using Prim’s minimum cost span-
ning tree, and continents are segmented from surrounding seas
using bread-first search as well.

CCS CONCEPTS
• Applied computing → Interactive learning environments;
• Social and professional topics→ Computer science educa-
tion; • Theory of computation→Graph algorithms analysis.

KEYWORDS
fantasy map, graph, graph traversal, spanning tree, computer sci-
ence education

1 INTRODUCTION
Common graph algorithms taught in either a CS2 or Analysis of
Algorithms course include breadth-first traversal, depth-first trav-
eral, and Prim’s minimum cost spanning tree algorithm. These
algorithms are typically motived by their application in computer
networks, the flow of water through a system of pipes [6], electronic
circuit design [1] and, more recently, map-based path-planning [4].
While these applications are extremely important within their field,
they tend to be difficult to engage with and visualize in a way that
captures the nature of the algorithms that they motivate. How is

the edge-cost of a resistor depicted, for example, when visualizing
the flow of electrons through a circuit; or how is the flow of water
through a piping system visualized in terms of volume? This paper
describes the use of graph traversal algorithms to generate random-
ized fantasy maps in such a way that the algorithmic data can be
more readily conveyed and that is likely more engaging to students
than the flow of petroleum through an oil refineries piping system.

2 TERRAIN GENERATIONWITH BREADTH
FIRST TRAVERSAL

We seek to generate a map of arbitrary width,W , and height, H ,
without concern for cartographical map projections. First, we out-
line how to generate a graph that serves as a model of the map.
We then describe how to traverse the graph in order to generate
elevation data.

2.1 Graph Generation
As a first step, we generate a set of N two-dimensional coordinates.
To ensure that later steps in the processing pipeline yield aesthen-
tically pleasing results, k << N of these points are distributed
uniformly on the bounding box of the mapping space and each
corner of the bounding box is explicitly represented. We then gen-
erate N − k random coordinates, uniformly distributed across the
mapping space.

These N coordinates are converted into a graph through Delau-
nay [1] triangulation. The vertices in this graph can be understood
as random locations in the world and the edges in the graph denote
line-of-sight connections to the closest locations in a variety of
directions. Each triangular region of the map represents a planar

approximation to the terrain assuming that each vertex is associ-
ated with an elevation. This graph serves as the foundational data
structure for the fantasy map.

(a) Point Cloud

(b) Delaunay Triangulation

Figure 2: Delaunay Triangulation

The random generation of vertices often results in regions of
the map being overly dense compared to others and so we perform
a relaxation of the map coordinatess. Towards this end we com-
pute the Voronois diagram [5] in order to obtain a set of polygons
such that each coordinate point is associated with a single poly-
gon. Several iterations of Loyd’s relaxation algorithm [2] is then
employed. Relaxation is a straightfoward algorithm that computes
the centroid of each polygon in the Voronois diagram and then
relocates the coordinate corresponding to that polygon to the cen-
troid. This produces more evenly sized regions of more uniform
spatial distribution throughout the map. In our process, the k edge
points are not included in this relaxation algorithm. If we allow
these points to move from their original location, the entire graph
tends to collapse inwards towards the map center and distort the
map edges.

We now have a Delaunay graph of N semi-randomly distributed
vertices formed by computing the Delaunay trianguation of those
vertices. This graph serves as the backing data structure for all of
the operations that follow.

(a) Voronoi Diagram

(b) After Relaxation

Figure 3: Relaxation

2.2 Terrain Elevation
For each vertex in our graph we generate an elevation such that
the elevation values are reasonable approximations to physically
real topographies. We generate the elevations by choosing a single
graph vertex and applying a generating function that originates
from that starting point and then performs a bread-first traversal
to modify the elevation settings of each visited vertex.

The algorithm of Algorithm 1 accepts a starting vertex and a
visitor function. The algorithm proceeds by applying the visitor
function to each vertex in the graph (at least each vertex to which
the function should be applied) such that vertices closer-to the
starting vertex are visited before vertices farther away. In this code,
proximity to the starting vertex is given not in Euclidean distance
but in the length of the path from root to vertex.

The visitor is given here as a function such that all logic related to
visiting a vertex is off-loaded into this visitor function. The visitor
function returns a boolean flag denoting whether the just-visited
vertex should be treated as a dead-end in the traversal or whether
graph traversal should continue. We also augment the breadth-
first search algorithm with a pruning mechanism that allows us to
ignore some vertices in the graph. This feature is implemented by a
predicate function,CanVisit .Wewill give an example in Section 4 of
how this predicate can be used to speed up certain map-processing
traversals.

2

Algorithm 1: BreadthFirstTraversal(Vstar t ,CanVisit ,Visitor)
let Q be a Queue;
let Visited be a Set;
let Parents be a Map;
Parents[Vstar t]← null;
Q.add(Vstar t);
while Q is not empty do

let Vcurrent be Q.remove();
let Pcurrent be Parents[Vcurrent];
Visited.add(Vcurrent);
let shouldContinue be Visitor(Vcurrent , Pcurrent);
if shouldContinue then

for let N of the neighbors of Vcurrent do
if CanVisit (N) and N is not in Visited and not in
Q then

Q .add(Vcurrent);
P[N]← Vcurrent ;

end
end

end
end

Algorithm 1 simply provides the traversal framework but doesn’t
describe what it means to visit a vertex. For our purpose, when a
vertex is visited, the elevation of the vertex is modified according
to a generating function. Our generating function creates a single,
randomized yet plausible region of terrain that is centered at a
starting location and then tapers off towards zero in a roughly
circular pattern. The generating function is parameterized on the
size, overall elevation, and roughness of the affected region. We
choose to model this terrain element as a radially symmetric (apart
from the arbitrary injection of randomness) exponentially decay.
Given the elements starting height Hstar t , ending height Hend ,
radius R, and variance V we define a function that generates a
sequence of elevations E such that the kth elevation is given as

Ek = Ek−1 × (1 +V × (
1
2 − rand ()) × FACTOR (1)

where

FACTOR = e
ln (Hend /Hstar t)

R (2)
This discrete function injects white noise riding atop a continu-

ous exponential decay function of the form Hstar t ∗ SLOPE
k . This

randomness is sufficient to generate plausibly realistic elevation
profiles of regions where, for example, a large starting height and
smaller radius will be seen as a mountain and smaller starting
heights with a large radius will be seen as a continent. Also, the
generator can be controlled via the variance, radius, height start
and height stop parameters to generate what might be considered
continents or smaller islands. Figure 4 compares a profile of our
noisy discrete terrain generator against a smooth exponential decay.
In this figure, Hstar t = 50, Hstop = 2, and R = 50.

Although beyond the scope of this paper, a more thorough map-
generating system will include data layers such as average annual

Figure 4: Terrain profile from 100 to 2 in 50 steps

temperature and average annual rainfall. These additional layers
would later be combined to generate appropriate biome classifica-
tions for map regions.

Figure 5 shows an elevation map that is the result of applying
several terrain generator functions layered atop each other.We have
selected several small-height, large-radius functions to model the
continental bodies while applying several large-height, small-radius
functions to model mountains. The blue regions have elevations
that fall beneath a user-selected sea-level elevation while lighter
grayscale regions denote the highest elevations and black denotes
the lowest above-sea-level elevations.

Figure 5: Elevation map

3 ROAD GENERATION
Having generated elevation data we now need to identify cities and
towns, connecting them with a plausible network of roads. These
roads should be realistic in the sense that they will not typically
ascend straight up mountainous slopes nor move through under-
water regions. Large cities should also tend to be central spokes
in any transportation network while smaller towns would likley
have correspondingly fewer road connections. This section briefly

3

describes the selection of city locations after which we describe the
use of Prim’s algorithm [3] for computing a plausible road network.

3.1 City Locations
We first assume that the graph contains layers of data that denote
properties such as elevation, average annual temperature, average
annual rainfall and, potentially, resource allocations such as mineral
wealth or fecundity. For each vertex having an elevation above some
arbitrarily chosen water-level, we assign a desirablity rating. The
desirablity rating takes into account rainfall, temperature, elevation
and even whether or not a vertex is adjacent to a body of water. The
vertices are then ranked by desirablity and filtered in such a way
that cities are not located overly close. The output of this process is
a ranked ordering, Cities , of vertices such that higher desirability
values denote larger cities.

3.2 Road Network
We now generate a plausible road network by iterating over every
vertex inCities in ranked order such that larger cities are processed
before smaller cities. For each city, we apply Prim’s algorithm for
finding a minimum spanning tree. However, with each of these
applications we do not seek to generate a minimum spanning tree
of the entire graph but proceed only until reaching a terminating
condition.

Prim’s algorithm, shown in Algorithm 2, is a greedy algorithm
that finds a minimum spanning tree for a weighted undirected
graph. Interpreted in the context of our mapping application, each
edge in the Delaunay graph is a potential road such that the weight
of that edge is determined by the difficulty of travel (described later).
Prims algorithm will then find the easiest way to get from a starting
city to every other vertex in the graph; a minimum cost spanning
tree. However, as noted earlier, we terminate the algorithm once
we generate a least-cost path between the starting city and some
other location of interest; either another city or an already-existing
road in our ever-growing road network.

In Algorithm 2, the Visited set holds all vertices for which there
is already a computed road from the Vstar t city. The Cost map is
keyed on vertices and holds the cost of traveling to that location
from theVstar t city.CostFn is a function that computes the cost of
moving between two vertices in the graph. The cost is a combination
of the length of the edge, the grade (slope) of the edge, and the
absolute elevation since mountainous roads are less desirable than
roads at lower elevations. PQ is a priority queue holding un-reached
vertices keyed on Cost . When selecting a path to extend we are
greedily selecting the least-cost path at every loop iteration.

The Visitor function accomplishes two objectives. First, it of-
floads any application specific work out of the generalized Prim’s
algorithm and into theVisitor function itself. Secondly, theVisitor
function is responsible for terminating Prim’s algorithm once a
sufficient number of sites have been explored. For our application,
the Visitor function keeps a network of roads along with unvis-
ited cities. Whenever any call to Prim’s algorithm visits a vertex
that is either an unvisited city or already on the road network, the
algorithm is signaled to terminate.

The tree itself is held in the local Parent map which is keyed on
graph vertices having values that are the parents of the keys. In

Algorithm 2: Prims(Vstar t , Visitor , CostFn)
Visited← new Set();
Parent← new Map();
Cost← new Map();
PQ← new PriorityQueue();

Parent[Vstar t]← null;
Cost[Vstar t]← 0;
PQ.add(Vstar t);

while PQ is not empty do
V ← PQ.remove();
Visited.add(V);
P ← Parents[V];
shouldContinue← Visitor(V , P);
if shouldContinue then

for let N of the neighbors of V do
if N is not in Visited and not in PQ then

Cost[N]← Cost[V] + CostFn(V , N);
PQ .add(V);
Parent[N]← V ;

end
end

else
return Parent

end
end
return Parent

this representation, a road can be generated by following a chain
of parents from the far end of the road back to the Vstar t city.

Figure 6 shows a low resolution continental map. The elevations
are given in grayscale where higher elevations are lighter and lower
elevations are darker. The cities have been connected via a road
network generated by repeated application of Prim’s algorithm. The
roads prefer to avoid steep terrain and also avoid high elevations.
In order to prevent roads from crossing through water, the CostFn
returns∞ if either one of an edges vertices are below sea level.

Figure 6: Road network for a low resolution continent

4

4 SEGMENTATIONWITH BREADTH FIRST
TRAVERSAL

We now seek to identify continents so that we can further segment
those land masses into larger sub-regions according to either geopo-
litical factors (i.e. nation-states) or geophysical factors (i.e. biomes).
We can accomplish this segmentation by using the breadth first
search traversal of Algorithm 1 and using the pruning predicate
CanVisit to filter out underwater vertices.

Algorithm 3: Continents(Vertices , Heiдhts)
Continents← new Array();
Visited← new Set();
CanVisit← (n) => Heiдhts (n) > 0;

for let V of Vertices do
if CanVisit(V) and V not in Visited then

Continent← new Set();
BreadthFirstTraversal(V , CanVisit , (n,p) => {

Continent.add(n);
Visited.add(n);
return true;

});
end

end

return Continents;

5 CONCLUSION
Students learning graph traversal will be able to visualize the output
of their work in an engaging manner that, while not as useful as
electrical circuit diagrams or piping designs, is better able to capture
the nature of the traversal algortihms themselves. The algorithms
described in this paper have been implemented in JavaScript and
have a reasonable real-time performance for graphs on the order
of |V| = 15,000.

While the output on graphs of such relatively low resolution
are not aesthetically pleasing, this work can be extended in a large
number of dimensions. The inclusion of geophysical properties,
geopolitical properties, as well as depth shading and color blending
modes will produce high quality maps. An example is given in Fig-
ure 1 at the beginning of this document. The image was generated
without human intervention.

REFERENCES
[1] Thomas H. Cormen, Clifford Stein, Ronald L. Rivest, and Charles E. Leiserson.

2001. Introduction to Algorithms (2nd ed.). McGraw-Hill Higher Education.
[2] S. Lloyd. 2006. Least squares quantization in PCM. TIT 28 (01 2006), 129–137.
[3] R.C. Prim. 1957. Shortest Connection Networks and Some Generalizations. Bell

Syst. Tech. J. 4 (01 1957), 53–57.
[4] James D. Teresco, Razieh Fathi, Lukasz Ziarek, MariaRose Bamundo, Arjol Pengu,

and Clarice F. Tarbay. 2018. Map-Based Algorithm Visualization with METAL
Highway Data. In Proceedings of the 49th ACM Technical Symposium on Computer
Science Education (SIGCSE âĂŹ18). Association for Computing Machinery, New
York, NY, USA, 550âĂŞ555. https://doi.org/10.1145/3159450.3159583

[5] G. Voronoi. 1908. Nouvelles Applications des ParamÃĺtres Continus Ãă La
ThÃľorie des Formes Quadratiques. Journal fÃĳr die Reine und Angewandte Math-
ematik 134 (01 1908).

[6] Mark Allen Weiss. 2005. Data Structures and Problem Solving Using Java (3rd
Edition). Addison-Wesley Longman Publishing Co., Inc., USA.

5

https://doi.org/10.1145/3159450.3159583

	Abstract
	1 Introduction
	2 Terrain Generation with Breadth First Traversal
	2.1 Graph Generation
	2.2 Terrain Elevation

	3 Road Generation
	3.1 City Locations
	3.2 Road Network

	4 Segmentation with Breadth First Traversal
	5 Conclusion
	References

