
dt: A High-level Assembler for RISC-V

Justin Severeid and Elliott Forbes
Department of Computer Science

University of Wisconsin-La Crosse
La Crosse, WI 54601

{severeid.justin, eforbes}@uwlax.edu

Abstract

The RISC-V instruction set is a modern RISC instruction set specification that has gained
attention from academics, hobbyists and even major industry players due to its open-source
license. Anyone can build simulation tools, and even full hardware designs, targeting the RISC-
V instruction set. During the early development stages of these tools and designs, it is important
to be able to exercise specific instruction sequences (micro-kernels) for testing corner-cases, to
expose difficult-to-reproduce bugs, or to characterize and verify performance estimates.

This paper describes a new programming language intended to make it easier to write micro-
kernels for the RISC-V instruction set. The programming model is strictly at the assembly level,
however there are high-level language constructs that are available to ease the programming
burden. The language is called DuctTape, or simply dt for short. This style of programming
enables the programmer to have complete control over the emitted instructions and memory
values without the burden of writing code entirely in assembly. The output of the dt high-level
assembler is either 1) a flat memory space file that can easily be integrated into processor
simulators or FPGA designs, or 2) the ELF64 format, suitable for executing on a RISC-V
Linux development platform.

1. Introduction

DuctTape (stylized as dt) is a programming language and assembler for the RISC-V instruction set. It
differs from standard assembly language and the GNU tools, however, by providing several syntactical
constructs borrowed from high-level programming languages such as symbolic operators, assignments,
loops and if-statements. The result is a hybrid language that is part assembly and part high-level
language.

The motivation for such a language and assembler was realized when trying to debug and verify Verilog
hardware implementations of full processors [14] both for correctness and for performance. The need
to carefully craft instruction sequences to either avoid known bugs or to explicitly exercise and test
corner-cases was evident, leading developers to write micro-kernels – simple, but specific sequences
of instructions. These same needs exist when developing a variety of machine-specific technologies,
including emulators, simulators, kernels, run-time environments and virtual machines.

The GNU compiler [10] (gcc) and C programming language can be used to write short test programs,
but the programmer does not have complete control over several aspects: the registers that the compiler
uses, the memory locations used, the types and order of instructions emitted, the format of the output
file, and so on. If library code is used, then these problems may be difficult to rectify – possibly requiring
library code to be recompiled. Additionally, it can be difficult to completely avoid all library code, since
code that executes before/after the main() function is automatically inserted.

The GNU assembler (gas) and assembly programming language can be used to regain control over some
aspects of the instructions produced. But some of the limitations listed for gcc above still persist. In
fact, assembly language and gas only provides the additional control over the registers used, and the
types and order of instructions emitted. Using gas also puts a greater burden on the programmer, for
example requiring setting up the equivalent of structured control statements by hand, and requiring the
programmer mentally keep track of which registers are used for which purposes.

Contrasting dt with gcc and gas, dt allows the programmer very tight control over the emitted code.
The programmer can write programs strictly using assembly language, but can also use several high-
level language constructs or even intermix assembly with high-level constructs. For example, dt language
allows the programmer to easily give names to both registers and memory locations, assign specific
addresses to data and instructions, use assignment statements with arithmetic/logic operators, use if-
statements and while-loops, and can even intermingle data among the program instructions. To keep
the instruction-level control over the emitted code, the high-level constructs provided were selected such
that they all result in deterministic instruction sequences with architecturally-visible side-effects.

These code constructs can drastically increase the productivity of the micro-kernel programmer, while
still giving them complete control of instructions and data. For developers of simulators, emulators
and run-time environments, hardware, virtual machines, and operating system kernels the dt language
and assembler can help in tracking down rare or specific bugs, and can help validate correctness and
performance characteristics.

Intended to be as flexible as possible in order to support all of these development efforts, the output file
format of dt comes in two main forms. First is a binary or text file with a flat memory image that can
easily be read directly into simulators or hardware designs – for example into simulation testbenches, or
into hardware block memories of Field Programmable Gate Arrays (FPGAs). The second possible output

of dt is a statically-linked ELF64 Linux executable file. For validating the output of dt itself, we used
the ELF64 executable output to run natively on the HiFive Unleashed development board [2].

The remainder of this paper covers many aspects of the dt toolchain and language. Section 2 provides
some background on RISC-V, the various tools targeting RISC-V, and prior art on high-level assemblers.
Section 3 outlines the basic structure of dt programs, the high-level language features it provides (in-
cluding a rationale for excluding other features), and how those high-level features produce deterministic
instruction sequences. Examples of subtle hardware bugs, and how dt can help avoid those bugs are
outlined in Section 4. Section 4 also shows how dt could be used to validate performance. We conclude
in Section 5, where we also outline the current status of dt, ideas for future work, and point out possible
use-cases for dt in an academic setting. A separate technical report [16] serves as a full language reference,
including the exact code that will be emitted for each of the high-level language constructs.

2. Background

RISC-V has steadily increased in popularity since its inception in 2011. This interest has come from many
players, academic and industry, all the way down to individual hobbyists. Much of this interest is due to
the open-source license. However, RISC-V is not a mere pet project by its founders, formal specifications
of the instruction set have been ratified by a consortium of participants. This section discusses some of
the background of RISC-V, the tools that use the RISC-V instruction set, and the prior art of high-level
assembly.

2.1. The RISC-V Instruction Set

The name RISC-V (risk-five) is a nod to the fact that the instruction set is a Reduced Instruction Set
Computer, in the same vein as MIPS, Alpha AXP, SPARC, ARM, and many others. These instruction
sets favor simple instructions that generally only carry out one task, which can be implemented very
efficiently in hardware. However, previous RISC implementations often had the support of a single
industry player, and therefore came with restrictions on intellectual property, and required payment of
royalties to implement designs of these ISAs. RISC-V, on the other hand, comes with a Creative Commons
license that allows royalty-free implementations. The ISA was named RISC-V to highlight that this is
the fifth generation of architectures to originate from the University of California at Berkeley.

The RISC-V instruction set definition requires a base integer instruction set in 32, 64, or 128-bits,
but permits a variety of optional extensions. This provides for a flexible instruction set that can serve
the needs of a wide variety of systems, from embedded systems up to server-class processors. The
variations in instruction set are denoted by a naming convention. The base instruction set (for example,
in 64-bit registers) is named RV64I. RV64M describes the optional support for hardware multiply and
divide instructions. RV64F describes the optional single-precision floating-point instructions. And several
other extensions exist for atomic operations, embedded instructions, vector instructions, and so on. The
extension provisions also allow individual parties to add custom extensions for which no formal definition
has been provided by the RISC-V Foundation.

There is history for open instruction sets. The PISA instruction set [12] was freely available for academic
use. A series of tools implementing the PISA instruction set was very popular for research in the late
1990s and early 2000s. However, PISA had limitations that resulted in waning interest. First, the tools
required royalties for industry use. Industry support is important for an instruction set to gain major,
and sustained, development interest. Other limitations of PISA was that it defined only a non-priviledged

instruction set, and also defined a relatively inefficient instruction encoding (64-bit instructions), intended
to allow a high number of custom opcodes for research purposes.

2.2. RISC-V Tools

Because of the industry support and open-source licence, there has been a large number of projects
that target the RISC-V instruction set. These tools run the gamut of instruction set emulators [6] [9],
processor simulators [7] [11], compilers [1] [7], operating systems [5], and virtual machines [4] [7]. But,
because of the royalty-free licensing, hardware vendors can also make processors that implement the
RISC-V instruction set. In fact, announcements from Qualcomm, NVIDIA, Microchip Technology, and
Google have shown support for developing RISC-V silicon. New companies have even started – SiFive
is a fabless semiconductor company who have developed two systems-on-chip (SoCs) that implement the
RISC-V instruction set. These SoCs can be purchased as part of two development platforms, the LoFive
and the HiFive [2], the former being a minimal embedded system platform and the latter being a more
fully-featured system. The BOOM project [13] also provides a hardware implementation of a RISC-V
processor, intended to be mapped to an FPGA.

Tools of this nature require a great deal of attention be paid to low-level details. During the development
of these tools, and of hardware designs, dt can help developers write programs that exercise these low-
level details, while still providing a language that allows increased productivity in high-level language
features. Thus, dt is complementary to existing RISC-V tools, rather than being in competition.

2.3. High-Level Assembly

The dt project implements a high-level assembler that targets the RISC-V instruction set. However,
there have been past efforts [3] [15] in high-level assembly languages. These past high-level assemblers
typically rely on assembler macros to provide some of the same high-level language features that are
native to dt. The goals of these high-level assemblers is similar to dt, but often require that assembly
programmers write the high-level language-like macros themselves. Furthermore, none of the existing
high-level assemblers target the RISC-V instruction set.

3. Language

This section serves as a brief outline of some of the language features of the dt language, and how
high-level language constructs produce deterministic machine code output. However, this section does
not describe the complete langage definition, interested readers can refer to [16] for a full language
reference.

3.1. dt Program Organization

Figure 1 shows the high-level organization of a dt program. Each dt program is composed of one or
more mem() blocks. The mem() blocks are used to encompass zero or more statements. A mem() block
must be supplied with an address, which will serve as the starting address for any statements which will
occupy memory in the output file (for instructions or data). dt allows for multiple mem() blocks to be
specified, and will determine the size, in bytes, of each mem() block and verify that no addresses overlap
and all starting addresses are correctly word-aligned.

Figure 1. Program organization of a complete dt program.

A single dt program can be split into multiple files. By convention, those files are named with an
extension of .dt. There are no restrictions on the number of mem() blocks or their locations for a
program targeted for the flat memory image output formats. Currently, for the ELF64 Linux executable,
there are restrictions that the program entry point address conforms to the Linux ABI.

The statements that appear within a mem() block can take one of several forms: comments, name
definitions, data values, assembly instructions, and high-level language constructs. The next subsections
describe each of these categories.

3.2. Comments and Definitions

Comments can appear anywhere within a dt program, both within a mem() block, or outside. Comments
start with a hash, and continue to the end of a line.

To increase the readability of a dt program, names can be defined for memory locations of instructions or
data by simply using alphanumeric labels followed by a colon, just like a traditional assembly program.
However, dt also allows labels to define names for registers. Once a label has been defined for a register,
that label name can be used anywhere a register identifier would have been used. Listing 1 shows an
example mem() block, using these constructs. Register $x8 is given the name count in this example,
and is used by an addi assembly instruction.

1 # Th i s i s a comment .
2 mem(0 x10000) {
3 # t h e f o l l o w i n g l i n e shows a r e g i s t e r d e f i n i t i o n
4 c o u n t : $x8
5
6 a d d i count , $x0 , 0 # i n i t i a l i z e c o u n t t o 0
7
8 # . . .
9 }

Listing 1. Code example of a comment and definitions

Once assembled, this example program will occupy four bytes of memory, for the addi instruction only.
The register definition does not occupy any memory in the final output. Specifically, the four bytes of
the addi instruction encoding will occupy addresses 0x10000 through 0x10003, in little-endian order.

All definitions have global scope, so registers and labelled memory locations can span multiple mem()
blocks, or even across multiple .dt source files.

3.3. Data Values

A programmer is free to put hard-coded literal values into any memory location. Several assembler
directives are defined, as shown in Table 1, to allow the programmer to control the amount of memory
as well as the format of the initial values.

Directive Size (in bytes) Data Format Example
.byte 1 Decimal or hex .byte 0xff
.half 2 Decimal or hex .half -1
.word 4 Decimal or hex .word 0xdeadbeef
.long 8 Decimal or hex .long 0
.float 4 Single precision IEEE 754 .float 3.14159
.double 8 Double precision IEEE 754 .double 6.022e23
.stringz variable ASCII encoded string .stringz "Hello world"

Table 1. Assembler directives for inserting data values into memory in dt programs

Data values can be intermixed with instructions, but it is up to the programmer to avoid executing data as
an instruction. These directives can be labelled with a definition so that the labels can be referenced by
instructions. In the final memory image output, the values that appear after these directives will simply
occupy the specified number of bytes. For the .stringz directive, there will be one byte per character,
plus a null-character that will be inserted at the end of the string. If instructions are listed within the
same mem() block after a directive, then those instructions will automatically be word-aligned in the
output memory image.

Note that it is possible to specify floating-point literals in a dt program, but currently there is no support
for floating point instructions or registers. The programmer can perform software floating-point, but the
intent of these directives is to also add hardware floating-point support in the future.

There is no specific support for setting aside blocks of memory addresses for run-time use of a program.
However, if a programmer requires blocks of memory, then the memory can be set aside by using one
or more of these directives and simply providing a bogus initial value (for example 0).

3.4. Assembly Instructions

Instructions can be specified by the usual assembly language syntax in the RISC-V ISA specification [8].
In general, this means an instruction mnemonic, followed by register, immediate value, or labelled
operands.

The instruction mnemonics permitted are those that are defined in the RV64I base integer instruction
set, and the RV64M extension for hardware multiply and divide instructions. The operands permitted
will depend on the instruction type. For register operands, dt permits registers to be specified using
assembler names, for example $ra for the return address register, $sp for the stack pointer, $t0 for the
first temporary register, and so on. However, numbered registers are also supported using registers $x0
through $x31. Immediate operands are specified using either decimal or hex notation, using the same

syntax as the C programming language.

Control transfer instructions require a target. This target can be specified using labels, where the target
instruction has a label definition. In this case, dt will calculate the PC-relative offset automatically.
Alternatively, the programmer can provide an immediate value, which should be PC-relative offset that
will be copied directly into the immediate field of the instruction encoding.

Memory instructions require a register operand (source register for stores, destination register for loads),
and a base register and offset operand pair. Square brackets are used to indicate the base register, which
should be preceded by an immediate value to indicate the offset.

Many of the pseudo-instructions defined by the RISC-V instruction set are also supported by dt. See the
technical reference [16] for a table that outline all supported instructions and pseudo-instructions.

1 mem (0 x10000) {
2 l u i $x3 , 0x40
3 lw $x5 , 0 [$x3]
4 beq $x5 , $x0 , t a r g e t
5 a d d i $x5 , $x5 , 1
6 t a r g e t :
7 sw $x5 , 4 [$x3]
8
9 i n f : j i n f

10 }
11
12 mem (0 x40000) {
13 . word 123
14 }

Listing 2. Code example of several assembly instructions

Listing 2 gives examples of several types of instructions. This example has two mem() blocks, one for
instructions, and another for data. The program starts with a load upper-immediate lui instruction that
forms a base address in register $x3. A load word reads memory, and in this case will put the value 123
into the destination register $x5. A branch instruction compares the loaded value with the value in $x0
(the sink register), which in this case will cause a not-taken branch, which will execute the fall-through
addi instruction that increments $x5. The store word saves the value of $x5 to the effective address
0x00040004. Since there is no way to otherwise halt this program, this dt program busy-spins by using
an infinite loop using a jump instruction that targets itself.

3.5. High-Level Language Syntax

While writing assembly programs is helpful for debugging low-level tools and simulators, the real strength
of dt is in its support for high-level language constructs. This section highlights many of these features,
and how they produce deterministic assembly output. These high-level constructs can be arbitrarily mixed
with assembly syntax, and can also take advantage of named register and memory definitions.

3.5.1. Assignments and Arithmetic Operators. Many common operations have an alternative shorthand
notation which is similar to the C set of operations. The general form is to list a destination register (or
named register), the assignment operator, and one of the operands and operators listed in Table 2. To
support predictable output, only a single operation can be done per assignment. Therefore, compound
expressions, or operations on three or more operands are not allowed. The reason behind this restriction
is that dt does not do register allocation nor a run-time stack to support spills and fills. The programmer

Operation Format Resulting Instruction
reg = reg + reg add
reg = reg + imm addi
reg = reg - reg sub
reg = reg - imm addi
reg = reg * reg mul
reg = reg / imm div
reg = reg addi
reg = imm See discussion
reg = -reg sub
reg = reg & reg and
reg = reg & imm andi
reg = reg | reg or
reg = reg | imm ori
reg = reg ˆreg xor
reg = reg ˆimm xori
reg = reg xori
reg = imm Not yet implemented
reg = reg << imm slli
reg = reg << reg sll
reg = reg >> imm srli
reg = reg >> reg srl
reg = reg < reg slt
reg = reg < imm slti
reg = reg > reg Not yet implemented
reg = reg > imm Not yet implemented
reg = reg <= reg Not yet implemented
reg = reg <= imm Not yet implemented
reg = reg >= reg Not yet implemented
reg = reg >= imm Not yet implemented
reg = reg == reg Not yet implemented
reg = reg == imm Not yet implemented
reg = reg != reg Not yet implemented
reg = reg != imm Not yet implemented
reg = @label See discussion (address-of operator)

Table 2. Assignment operations allowed by dt

must specify the registers or memory locations used to hold intermediate results of what would have
otherwise been compound expressions.

Some operations listed in Table 2 require more than one instruction, or require an instruction that may
differ from expectation. For example, assigning the negated value of a register to another register, dt will
use a sub where the first operand is the sink register $x0 and the second is the register on the right-
hand side of the assignment. When assigning an immediate value to a register, depending on the size of
the immediate, the operation may be done with a single ori, or may require an lui followed by an ori.

Several of the comparison operators have not yet been implemented. This is because RISC-V does not
have the single-instruction equivalent needed to perform the comparison. These operations will require
several instructions each, and is left for future work.

Listing 3 shows two mem() blocks with equivalent instructions. However, one mem() block is written
using assembly syntax, and the other is written using the high-level language assignment syntax. These

two mem() blocks will produce binary-equivalent instructions. Note that these mem() blocks can not
appear in the same program, since their memory regions overlap.

1 # code b l o c k (a)
2 mem (0 x10000) {
3 o r i $x1 , $x0 , 3
4 x o r i $x1 , $x1 , −1
5 and $x3 , $x2 , $x1
6 s l t $x4 , $x3 , $x0
7 }
8
9 # code b l o c k (b)

10 mem (0 x10000) {
11 z e r o : $x0
12 mask : $x1
13 v a l : $x2
14 r e s : $x3
15 cond : $x4
16
17 mask = 3
18 mask = ˜ mask
19 r e s = v a l & mask
20 cond = r e s < z e r o
21 }

Listing 3. Code example of equivalent instructions using (a) assembly syntax and (b) high-level
assignments
Another useful feature of dt is the support provided for an address-of operator, using the @ symbol. This
can be used to assign the address of any named memory address, whether it is a labelled instruction
definition or a data value. Listing 4 shows two different uses of the address-of operator – the first to
easily read a data value from memory, and the second to get the address of an instruction to be used as
the target of a jump.

1 mem (0 x10000) {
2 $ t 0 = @value # g e t t h e a d d r e s s o f l i t e r a l ” v a l u e ” 123
3 lw $t1 , 0 [$ t 0] # r e a d memory t o g e t t h e v a l u e
4 $ t 2 = @loop # g e t t h e a d d r e s s o f j r pseudo−i n s t r u c t i o n
5
6 l oop :
7 j r $ t 2 # i n f i n i t e l oop t o end program
8
9 v a l u e :

10 . word 123
11 }

Listing 4. Code example showing uses of the address-of operator

3.5.2. Structured Control Flow. The last group of syntatical constructs provide the high-level language
features of if-statements and loops. The syntax for each of these constructs is similar to the C pro-
gramming language. However, the major difference is that the condition must be a single register or
named register. This is because a complex condition requires a temporary register, and dt does not do
register allocation. This also eliminates the for loop from availability – the initial value and increment
amount could be handled, but the comparison to know when the loop should stop requires a temporary
register. The dt compiler also has no formal mechanism or syntatical construct for functions. This is
due to the several items that functions require – a run-time stack, the stack pointer, the return register,
function arguments, and so on. These requirements are against the intent behind dt to give all control to
the programmer. If the programmer requires functions, they need to set up a run-time stack manually,
and also manually carry out the ABI requirements for arguments, return values, callee vs. caller saved

registers, etc.

The constructs that are available, however, are: if-statements, if-else statements, while loops,
do...while loops, until loops, and do...until loops. These structured control flow code bodies can
contain instructions, definitions, data values, assignments, and other high-level control flow statements.
These code blocks can also be named themselves – simply provide a label definition followed by the
entire control flow statement. This will name the first instruction of the code block. The named instruction
might be an instruction in the body of the statement (for do...while and do...until loops), or it might
be an instruction that is not evident in the code but is part of the supporting code automatically emitted
by the block statement.

dt Syntax Assembly Produced
if (reg) {

code body
}

beq reg, $x0, label1
code body

label1:
if (reg) {

code body
}
else {

code body
}

beq reg, $x0, label2
code body
j label3

label2:
code body

label3:

while (reg) {
code body

}

beq reg, $x0, label4
label5:

code body
bne reg, $x0, label5

label4:

until (reg) {
code body

}

bne reg, $x0, label6
label7:

code body
beq reg, $x0, label7

label6:
do {

code body
} while (reg)

label8:
code body
bne reg, $x0, label8

do {
code body

} until (reg)

label9:
code body
bne reg, $x0, label9

Table 3. Structured control flow code blocks recognized by dt

The condition for each of the statements must be a register or label that corresponds to a register. The
meaning, however, is the same as in C – any non-zero value is considered true, and zero is considered
false. Curly brackets are always required, even if the body only requires a single instruction. Table 3
gives the syntax for each of the constructs and the code generated by dt. The labels used to support these
constructs are intenerally generated by dt and are random alphanumeric labels that will not conflict with
user-defined labels.

4. Example dt Programs

In this section, we highlight two example dt programs. These are examples that not only show the syntax
of programs, but also show how this tool can be useful in two different ways – for working around a

hardware bug, and for showing the performance of a design. These are real-world examples, based on
the past experiences [14] of an author of this paper.

The design being tested was a full hardware design of a dual-core out-of-order execution processor,
implemented in the Verilog Hardware Description Language. The processor cores in these hardware
designs were not implementing the RISC-V instruction set, but the examples highlighted in this section are
not ISA-dependent. The design was sent for fabrication twice – first as a lower-cost prototype that could
be tested for hardware bugs (of which there were several, despite the months of testing in simulation that
occurred before sending the design for fabrication), and the second was the full-cost demonstration [17]
of the actual research aspects of the design that incorporated fixes of the hardware bugs found in the first
phase.

4.1. Hardware Bug Work-around Example

This example shows how a particularly nasty hardware bug can be avoided with a little bit of clever
programming effort. After sending the first phase chip out for fabrication, it was discovered that the
simulation of the design had defined a pre-processor token that was including parts of the design in the
data cache. But when producing the design files for fabrication, that pre-processor token was not being
defined and parts of the data cache were not being included.

The effect of this bug was that whenever a load instruction queried the data cache, the cache would
always respond with a cache hit – whether the data was actually in the cache or not. If the load should
have missed, then whatever bogus data was in the cache block would be sent back to the pending load
instruction, to be errantly saved to its destination register. However, if the cache block had been previously
used by another instruction, then the cache block did have the correct data and execution could correctly
proceed with the cached data. This allowed for an opportunity for a work-around. We simply require that
all loads have their cache blocks prefetched with the correct data. The performance will always reflect
cache hits, and thus give an unfair advantage for performance estimations, but at least the system could
demonstrate functional correctness.

If gcc was our only tool for creating executables, then it would be nearly impossible to guarantee that
all load instructions had their data prefetched. This highlights a prime use-case for dt. To prefetch, we
simply need to execute load instructions (we’ll call them the prefetching loads) that use the correct block
addresses – these prefetching loads will obtain incorrect values, which we then simply discard. Later, we
can use other load instructions (we’ll call them the useful loads) that will hit with correct values. There
are a few other issues that also need careful consideration. First is that before executing useful loads,
we need to make sure that all of the prefetch loads have finished populating their cache blocks. This
requires a busy-wait loop after all prefetching loads. And second, the working set of data must fit within
the data cache. If the working set changes, then additional prefetch loads must be executed to populate
the cache with the new working set.

Listing 5 shows a simple dt program that sums the odd values of a short array. The array data is
incorporated as literal values in a separate mem() block – all of which fits in the data cache. A loop is
first used to prefetch the array data, followed by a busy-wait loop that ensures all data values have been
added to their cache blocks. The last loop carries out the intended program, each iteration of the loop
reads an element of the array, determines if it is odd or even valued, and adds the value to the running
total if the value was odd.

1 mem (0 x10000) {
2 i i : $x8 # g i v e n i c e names t o some of t h e r e g i s t e r s t o be used
3 s i z e : $x9
4 add r : $x10
5 cond : $x11
6 sum : $x16
7 v a l : $x17
8
9 i i = 0 # t h e p r e f e t c h loop

10 s i z e = 5
11 add r = @array
12 cond = i i < s i z e
13 w h i l e (cond) {
14 lw $x0 , 0 [add r]
15 add r = add r + 4
16 i i = i i + 1
17 cond = i i < s i z e
18 }
19
20 i i = 0 # busy−w a i t l oop
21 cond = i i < 100
22 w h i l e (cond) {
23 i i = i i + 1
24 cond = i i < 100
25 }
26
27 sum = 0 # loop t h a t sums on ly t h e odd v a l u e s o f t h e a r r a y
28 add r = @array
29 i i = 0
30 cond = i i < s i z e
31 w h i l e (cond) {
32 lw va l , 0 [add r] # r e a d t h e a r r a y e l e m e n t
33 cond = v a l & 0x1 # mask t h e l o w e s t b i t
34 i f (cond) { # odd v a l u e s w i l l have t h e l o w e s t b i t o f 1
35 sum = sum + v a l
36 }
37 add r = add r + 4
38 i i = i i + 1
39 cond = i i < s i z e
40 }
41
42 add r = @ r e s u l t # save t h e f i n a l r e s u l t
43 sw sum , 0 [add r]
44
45 i n f : # i n f i n i t e l oop t o end t h e program
46 j i n f
47 }
48
49 mem (0 x40000) {
50 a r r a y : # t h e a r r a y d a t a (5 e l e m e n t s)
51 . word 31
52 . word 82
53 . word 10
54 . word 65
55 . word 27
56 r e s u l t : # a memory l o c a t i o n t o ho ld t h e f i n a l sum
57 . word 0
58 }

Listing 5. Code example showing a hardware bug work-around

4.2. Performance Validation Example

It is also important to be able to show that performance targets are actually met by hardware designs.
A second use of dt can assist in this goal as well. The aforementioned dual-core processor design that
was fabricated in [14] consisted of heterogeneous cores – i.e. two different core microarchitectures. One

core was a 1-wide out-of-order design, and the other was a 2-wide out-of-order design. It was important
to show that these cores were able to achieve their peak instruction bandwidth, measured in instructions
per cycle (IPC).

The requirement for a processor core to reach its peak IPC is that there are 1) ample instructions, 2)
few true data dependencies, and 3) relatively few control transfer instructions. The first requirement is in
place to show sustained peak IPC. And the other requirements avoid cycles where fewer instructions are
completed than the width of the pipeline. If there are a lot of true dependencies, then it is possible to have
cycles where there are plenty of instructions that have been fetched, but too few that are ready to execute
simultaneously. And if there are a lot of control transfer instructions, then it is possible that bubbles are
introduced when trying to fetch instructions in the first place. These requirements are especially important
for the 2-wide core.

1 mem (0 x00010000) {
2 i i : $x8
3 s i z e : $x9
4 add r : $x10
5 cond : $x11
6 sum : $x16
7 v a l : $x17
8
9 s i z e = 100000

10 sum = 0
11 add r = @array
12 i i = 0
13 cond = i i < s i z e
14 w h i l e (cond) { # u n r o l l e d loop body
15 lw va l , 0 [add r]
16 sum = sum + v a l
17 lw va l , 4 [add r]
18 sum = sum + v a l
19 lw va l , 8 [add r]
20 sum = sum + v a l
21 lw va l , 12[add r]
22 sum = sum + v a l
23
24 add r = add r + 16
25 i i = i i + 4
26 cond = i i < s i z e
27 }
28 }

Listing 6. Code example with peak instruction bandwidth

Listing 6 is a modification of the array element-summation program. The prefetching and busy-waiting
loops have been omitted for clarity, as well as the mem() block of array data. The main loop that sums
array elements has been modified to sum all array elements – avoiding branch instructions within the
loop body to meet the third requirement from the previous paragraph. Also, the number of elements in
the array have been substantially increased to meet the first requirement – it’s during this loop that we
expect to achieve peak IPC. To reduce true data dependencies, we unrolled the loop body to sum four
array elements per iteration. Thus, the loads are all independent of each other, and only depend on the
address calculation. There is still a true dependence on the loop counter and condition check. If concerns
arise that too many true dependencies still exist, then the loop body can be unrolled to sum eight or
sixteen elements per iteration.

5. Conclusion and Future Work

The dt assembler is still a work in progress, and will continue development for the foreseeable future.
The scanner is written in flex, and consists of roughly 180 lines of code. The parser is written in bison,
and is roughly 3,000 lines of code. The assembler writes output to both flat memory image files, and
to statically-linked ELF64 Linux executables. Most testing of dt thus far has focused correctness of the
Linux executables. Those executables are run on an actual development board, the HiFive Unleashed [2]
by SiFive, which has a RV64GC quad core SoC capable of running a version of Debian Linux.

There are several features that are slated for future additions to dt. Currently dt does not support
compressed instructions. The compressed instructions are encoded into two bytes, rather than the base
instruction encodings that are four bytes. These can be easily added to make more efficient (in size)
executables.

Another possibility for future work is to add support for struct-like data types. Structs have a well-
defined memory layout, and thus would not counter the goal of dt to produce deterministic output.
Complex types were not included in this first instance of dt simply to confine the scope of project to
something manageable for a summer research project. But also, the inclusion of struct-like data types
will require careful consideration in the parser.

The output file formats of dt provide flexibility to users. The flat file formats can easily be read into
processors simulators, emulators, run-time environments, and virtual machines. However, there has been
no effort thus far to actually integrate into some of the popular tools [6] [9] [11] being used by the
research community. Future work will add additional output file formats that natively match the input
format (possibly including checkpoint support) of these popular tools.

The ELF64 output file format could also be modified to add creature comforts. For example, it is possible
to add a symbol table and debugging-related segments. This would then allow meaningful symbols to be
visible to gdb when debugging dt programs.

There are also uses of dt that could be advantageous in an academic setting. For example, the PI of
this project has noticed that undergraduate students occasionally have a disconnect in the distinction
between machine language and assembly language. Therefore, a possible use of dt in the classroom could
highlight this distinction by having assignments wherein students add new syntax to the dt grammar, or
have students re-implement the code to emit binary instruction encodings.

References

[1] “GNU Toolchain for RISC-V, Including GCC,” 2020, Code Repository. [Online]. Available: https:
//github.com/riscv/riscv-gnu-toolchain

[2] “HiFive Unleashed,” 2020, Product Brief. [Online]. Available: https://www.sifive.com/boards/hifive-unleashed

[3] “IBM High Level Assembler and Toolkit Feature,” 2020, Product Brief. [Online]. Available: https:
//www.ibm.com/us-en/marketplace/high-level-assembler-and-toolkit-feature

[4] “QEMU - The FAST! Processor Emulator,” 2020, Product Brief. [Online]. Available: https://www.qemu.org/

[5] “RISC-V - Debian Wiki,” 2020, Reference. [Online]. Available: https://wiki.debian.org/RISC-V

https://github.com/riscv/riscv-gnu-toolchain
https://github.com/riscv/riscv-gnu-toolchain
https://www.sifive.com/boards/hifive-unleashed
https://www.ibm.com/us-en/marketplace/high-level-assembler-and-toolkit-feature
https://www.ibm.com/us-en/marketplace/high-level-assembler-and-toolkit-feature
https://www.qemu.org/
https://wiki.debian.org/RISC-V

[6] “RISC-V Simulator for x86-64,” 2020, Reference. [Online]. Available: https://rv8.io/

[7] “selfie - An Educational Software System of a Tiny Self-compiling C Compiler, a Tiny Self-
executing RISC-V emulator, and a Tiny Self-hosting RISC-V Hypervisor,” 2020. [Online]. Available:
http://selfie.cs.uni-salzburg.at/

[8] “Specifications - RISC-V International,” 2020, Manual. [Online]. Available: https://riscv.org/specifications/

[9] “Spike, a RISC-V ISA Simulator,” 2020, Code Repository. [Online]. Available: https://github.com/riscv/
riscv-isa-sim

[10] “Using the GNU Compiler Collection (GCC),” 2020, Manual. [Online]. Available: https://gcc.gnu.org/
onlinedocs/gcc/

[11] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J. Hestness, D. R. Hower, T. Krishna,
S. Sardashti, R. Sen, K. Sewell, M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The gem5 Simulator,”
ACM SIGARCH Computer Architecture News, vol. 39, no. 2, pp. 1–7, May 2011.

[12] D. Burger and T. Austin, “The Simplescalar Tool Set, Version 2.0,” Computer Sciences Department, University
of Wisconsin - Madison, Tech. Rep. TR1342, 1997.

[13] C. Celio, “A Highly Productive Implementation of an Out-of-Order Processor Generator,” Ph.D. dissertation,
University of California Berkeley, December 2018.

[14] E. Forbes, R. B. R. Chowdhury, B. Dwiel, A. Kannepalli, V. Srinivasan, Z. Zhang, R. Widialaksono,
T. Belanger, S. Lipa, E. Rotenberg, W. R. Davis, and P. D. Franzon, “Experiences with Two FabScalar-
Based Chips,” in Proceedings of the 6th Workshop on Architectural Research Prototyping (held in conjunction
with ISCA-42), June 2015.

[15] R. Hyde, The Art of Assembly Language, 2nd ed. San Francisco, CA: No Starch Press, 2010.

[16] J. Severeid and E. Forbes, “Technical Reference for the dt Programming Language and Assembler,”
Department of Computer Science, University of Wisconsin-La Crosse, Tech. Rep. TR04032020, 2020.
[Online]. Available: https://cs.uwlax.edu/∼eforbes/dt/

[17] V. Srinivasan, R. B. R. Chowdhury, E. Forbes, R. Widialaksono, Z. Zhang, J. Schabel, S. Ku, S. Lipa,
E. Rotenberg, R. Davis, and P. Franzon, “H3 (Heterogeneity in 3D): A Logic-on-logic 3D-stacked Heteroge-
neous Multi-core Processor,” in Proceedings of the 35th IEEE International Conference on Computer Design,
November 2017, pp. 145–152.

https://rv8.io/
http://selfie.cs.uni-salzburg.at/
https://riscv.org/specifications/
https://github.com/riscv/riscv-isa-sim
https://github.com/riscv/riscv-isa-sim
https://gcc.gnu.org/onlinedocs/gcc/
https://gcc.gnu.org/onlinedocs/gcc/
https://cs.uwlax.edu/~eforbes/dt/

	Introduction
	Background
	The RISC-V Instruction Set
	RISC-V Tools
	High-Level Assembly

	Language
	dt Program Organization
	Comments and Definitions
	Data Values
	Assembly Instructions
	High-Level Language Syntax
	Assignments and Arithmetic Operators
	Structured Control Flow

	Example dt Programs
	Hardware Bug Work-around Example
	Performance Validation Example

	Conclusion and Future Work
	References

