
Midwest Instruction and Computing Symposium

Conference
Proceedings

41st Annual Conference
April 11th12th, 2008
La Crosse, Wisconsin

© Copyright 2008 by the Midwest Instruction and Computing Symposium

Copyright 2008 by the Midwest Instruction and Computing Symposium. Permission to
make printed or digital copies of all or part of this material for educational or personal
use is granted without fee provided that copies are not made or distributed for profit or
commercial advantage and that copies include this notice and the full citation on the first
page.

 i

Table of Contents

Undergraduate Research
• Interdisciplinary Undergraduate Research in the CS Curriculum1

D. Brown, D. Guster, B. Jansen (St. Cloud State University)

• Creating Visions for Computing Research ...13
K. Sutherland (Augsburg College)

 Pedagogical Techniques
• Using Clickers to Enhance Computer Science Classes

J. Morrison (University of Wiscon
 ..18

sin-Eau Claire)

• Grafting Technology onto Disciplinary Courses ..29
B. Bultman (University of Wisconsin-Fox Valley)

• The Root Causes of the Students’ Programs Quality Improvement in the TBC
Method ...42
Shawon Rahman (University of Wisconsin-Platteville)

Algorithms
• Randomly Generating Well-Formed Postfix Expressions ..54

A. Ng (University of Wisconsin-Parkside)

• Automated Process for Classifying Text Documents using K-Means and kNN64
ty) M. Evans, M. Lietzke, S. Huls, D. Svendsen (Saint John’s Universi

• Sectioning Points into Fixed-Size Sections ..79
D. Edwins, L. Schlather, O. Hall-Holt (St. Olaf College)

Computing Architectures
• Enhancing the Price/Performance for a Clustered Multiprocessor System84

J. Myre, D. Ernst (U. of Wisconsin-Eau Claire)

• Performance Evaluation of Java RMI in Parallel and Distributed Discrete

...109
hl, M. Dolfin, S. Rahman (University of Wisconsin-Platteville)

Event Simulation ...96
T. Gamage, A. Ramadani, D. Hamnes (St. Cloud State University)

• Securing the Border Gateway Protocol
M. Nickasch, J. Cavanaugh, M. Ko

Imaging and Video Processing
• Content-Aware Image Resizing ...125

K. Wienkes, K. Hunt (University of Wisconsin – La Crosse)

..145
Z. Oler, T. Urness (Drake University)

• Tracking a Rat in Three Dimensional Space using Stereo Cameras135
M. Meierpolys, M. Krahulec, D. Weibe, O. Hall-Holt, R. Price (St. Olaf College)

• Scientific Visualization of Magnetic Dipoles in a Lattice

 ii

Software Engineering
• Statistical Process Control of Software Process

M. Rowe (U. of Wisconsin-Platteville), E. F
es for Obtaining CMMI Level 5157

arver, T. Bragg, M. Kelley, C. Hale (AVISTA Inc.)

 178

• Introducing a Certificate in Software Testing for Non-Majors172
J. Drake (University of Northern Iowa)

• The Characterization and Identification of Object-Oriented Model Defects
M. Rowe, R. Hasker (University of Wisconsin-Platteville)

 Web Technologies
• Exploring the Web Programming Jungle ...193

C. Morrison (University of Wisconsin-Eau Claire)

Application Programming
• Transversal Homomorphism and Orthogonal within OR/MS/DS Tools into

B.NET 2005 ...208
y of Dubuque)

e Embedded Systems Programming Course229

..239

V
E. Tembe (Universit

• PID Control in a Real-Tim
J. Clifton (University of Wisconsin-Platteville)

• Simulation and Development of a Range Control Information Display System
for UAS Operations in North Dakota ...
R. Marsh, S. Buettner, K. Ogaard (U. of N. D.) , J. Nordlie (Regional Weather Information Center)

Algorithms
• An ANNTI (Artificial Neural Network Text Image) Spam Filter250

J. Barr, C. Ashbacher (Mount Mercy College)

• Reflections on a Classic Trio of Graph Problems ..265
orth Dakota) T. O’Neil (University of N

• Generative Programming Considerations for the Matrix-Chain Problem272
A. Anda (Saint Cloud State University)

Scientific Computation
• Simulation of Nitrogen Flow using the St. Olaf Beowulf Cluster280

..............285
A. Waldschmidt, R. Brown, J. Schade (St. Olaf College)

• The Player is Always Right ..
S. Marquis (Lawrence University)

Artificial Intelligence
• Chess AI ...291

J. Odom (University of Wisconsin-Parkside)

• Course Scheduling with Genetic Algorithms ...299
C. Davidson (Simpson College)

• A Learning Natural Language Parser ..312
D. McKee (Lawrence University)

 iii

Database and Information Retrieval

t/Relational Mapping Solutions.................326

• Application of BLAST-based Techniques for Musical Information Retrieval322
F. Korsakov (University of Northern Iowa)

• Mapping Application Attributes to Objec
K. Hawkins, E. Towell (Carroll College)

Software Tools
• Towards Musical Analysis Tools ...343

C. Hill, S. Hagen (Valley City State University)

• A Policy-Based Scheduling Tool for Networking Labs ...352
J. Yu (DePaul University)

Algorithms
• A Dynamic Algorithm for Computing Periodicities of Misère Impartial Games364

T. McConville (St. Olaf College)

• Dispersing Search and Rescue Robots ..373
Binod K.C., K. Sutherland (Augsburg College)

• An Exploration of Implementing the A* Algorithm Under Limited Resources
...382

in Lego Mindstorms
A. Horn (Graceland University)

Classroom Innovation and Management
• Customizing MediaWiki for Project-based Courses ...395

-Marathon County)

Superior)

O. Hall-Holt (St. Olaf College)

• Integration of CodeLab into Programming Courses ...401
M. Hall (University of Wisconsin

• The Capstone Experience: Learning to Manage Uncertainty and Ambiguity
in a Project Management Environment ..413
S. Lynch (University of Wisconsin-

Database and Information Retrieval
• An Algorithm to Restore Data Base Content to Past Dates in Real Time424

C. Brown, D. Guster, B. Jansen (St. Cloud State University)

• A Methodology for the Design, Development, and Implementation of a Data
Warehouse Project ..436
C. Azarbod, M. R. Farooq (Minnesota State University at Mankato)

Outreach and Recruitment
 Teaching a Short Summer Robotics Course for High School • An Experience in

Students ..451
A. Lopez, E. Machkasova (University of Minnesota, Morris)

Software Engineering and Ethics
• Lightweight Software Cost Estimation Model ...462

I. Alsmadi (North Dakota State University)

 iv

nhancing Test Coverage Using Constrained Random Tests468

f St. Benedict and St. John’s University)

• ISOMER: E
D. Kulp, D. Ernst (University of Wisconsin-Eau Claire)

• Detecting Source Code Plagiarism ..481
J. Degiovanni, I. Rahal (College o

Parallel and Distributed Computing
• Parallelizing the Computation of the SPT Statistic ...494

T. Fredrick (St. Olaf College)

• Applications of Beowulf Cluster Computing to Problems in Biology503
S. Debenport, R. Brown (St. Olaf College)

• Contemporary Technologies and Platforms for Electronic and Mobile
Commerce Systems ...508

.), A. Gopalakrishnan (U. of N.D.) W. Hu, Y. Zuo (U. of N.D.), L. Chen(Sam Houston State U

Software Tools
• A Live View of the World ...523

D. Hickok, M. Rowe (University of Wisconsin-Platteville)

• Computer Supported Collaborative Learning in the Geology Explorer532
O. Borchert, B. Slator, G. Hokanson, L. Daniels, J. Reber, D. Reetz, B Saini-Eidukat, D. Schwert, J.
Terpstra (North Dakota State University)

Pedagogical Issues in Programming
• The Role of Writing Efficient Programs in a Data Structures Course547

C. Hu (Carroll College)

• Effectively Apply Boundary Value Analysis Method in Student’s Program
Testing ..557
S. Rahman (U. of Wisconsin-Platteville)

Interdisciplinary Undergraduate Research in the CS
Curriculum

Richard Brown
Department of Mathematics, Statistics, and Computer Science

St. Olaf College
Northfield, MN 55057
rab@stolaf.edu

Abstract

Undergraduate research, in the strict sense, means student inquiry leading to an original
contribution to a discipline. We consider the processes associated with research at three
developmental stages: guided discovery; independent investigation; and scholarly inquiry.
Interdisciplinary research offers certain advantages for undergraduates, including acces-
sible, interesting problems for students. In order to extend the benefits associated with
research to a wide range of undergraduates, we provide interdisciplinary experiences at the
three developmental stages in appropriate CS courses, spanning all academic levels in our
curriculum.

We present examples of research-related activities in courses that represent six strategies
for bringing research-related activities into the undergraduate classroom, and discuss the
costs and benefits of those activities in terms of student learning and of human, curricular,
and physical resources.

MICS 2008 1

1 Introduction

Interest in undergraduate research has blossomed nationally on college campuses on an
unprecedented scale. From announcements of tenure-track openings to professional publi-
cations for college presidents and deans, evidence abounds that project-based independent
investigations has become an expectation for a strong undergraduate education, across the
sciences, and increasingly in social sciences, arts, and humanities.

Interdisciplinary projects can provide some of the most fruitful opportunities for undergrad-
uate research. In recent years, we have pursued interdisciplinary undergraduate research
and related activities in connection with our computer science courses. These activities
have increased the presence of undergraduate research in our CS program, enriched those
courses, and developed interest in collaborative projects, within the context of a profes-
sor’s teaching load (vs. independent research projects contributed by faculty outside of the
ordinary load). We will explore our choices and discuss trade-offs inherent in bringing
undergraduate research activities into the classroom.

2 Undergraduate research as a process

What should qualify as undergraduate research? The Council for Undergraduate Research
(CUR) defines the term as “An inquiry or investigation conducted by an undergraduate
student that makes an original intellectual or creative contribution to the discipline” [6].
Everyone agrees that independent work leading to publication in a professional journal
would qualify. But not every student can achieve this high standard, at least, not in ev-
ery discipline. Can something in the direction of undergraduate research but less than
professional-level publication nevertheless be worthwhile for students?

CUR identifies the following benefits of undergraduate research [6].

• Enhances student learning through mentoring relationships with faculty.

• Increases retention in the science, technology, engineering and mathematics (STEM)
pipeline.

• Increases enrollment in graduate education and provides effective career preparation.

• Develops critical thinking, creativity, problem solving and intellectual independence.

• Develops an understanding of research methodology.

• Promotes an innovation-oriented culture.

MICS 2008 2

Other sources point out additional benefits. For example, the 2003 Bio2010 report states
that students pursuing undergraduate research gain experience in working as part of a team,
and learn effective oral and written presentation of scientific results [11, Ch.5].

Observe that students can derive a measure of each of these benefits from inquiry-based
projects that do not result in publication at the professional level. Producing a peer-
reviewed publication and presenting at a national or international scientific meeting is a
unique and highly desirable experience in its own right, giving students an edifying sense
of satisfaction and accomplishment as well as a valuable credential. But efforts that do not
reach as far can still be worthwhile.

The Bio2010 report recognizes this by encouraging “independent investigation” experi-
ences for all students in the biological sciences, even if they cannot all “experience the
rewards and frustrations of original research.” Also,

While the richness of experience for the student likely will not be the same as
working in a research group, it also is possible to provide meaningful research ex-
periences for undergraduates in research-based courses or in teaching laboratories
that are designed to be open-ended and to encourage independent investigation [11,
Ch.5].

Therefore, we recognize a progression of developmental stages in undergraduate research
activity.

1. Structuredguided discoveryexercises develop problem-solving skills and provide
patterns for further investigations. These exercises can be included in even elemen-
tary courses.

2. Independent investigationprojects involve a student or team in producing results
that are new to them, using research methods, and in presenting those results in an
appropriate forum.

3. Scholarly inquiryprojects result in original contributions to a discipline, and public
presentation at a professional level.

The boundaries between these categories are somewhat fluid. For example, a guided dis-
covery exercise may include opportunities for open-ended pursuit of a question using (at
least some) research methods. A strong independent investigation may be almost indis-
tinguishable from scholarly inquiry, differing mostly in factors beyond a student’s direct
control, such as the significance of the result to professional researchers.

Projects in one of these categories may achieve the benefits of undergraduate research to a
greater or lesser degree. Even a project that results in a significant professional paper might
not span all the benefits; for example, a student might “get lucky” in finding a significant
result quickly, but miss the benefits of an extended mentoring relationship.

MICS 2008 3

Therefore, we will consider guided discovery, independent investigation, and scholarly in-
quiry as general stages in theundergraduate research process. Through this process, stu-
dents may benefit from attaining at least some of the benefits identified above, and progress
towards achieving more of those benefits—depending on the student’s effort and insight,
the choice of research problem, the influence of a research mentor (or mentors), and what-
ever happens to be discovered.

3 Interdisciplinary undergraduate research

Interdisciplinary problems offer many advantages for undergraduate research [10, p.2ff].

• By definition, interdisciplinary research involves two or more disciplines and a prob-
lem whose solution is beyond the scope of any one of those disciplines. Thus, if
a problem can be identified that does not require graduate-level depth in one of its
disciplines, an undergraduate in that discipline may well be capable of making a
valuable contribution toward significant original interdisciplinary research.

• Interdisciplinary research is “real-world,” representing the inherent complexity of
nature and society.

• Exploring problems that involve multiple disciplines is interesting, and may connect
with multiple interests of a student.

• Undergraduates are strongly attracted to interdisciplinary issues that have societal
relevance.

• Interdisciplinary research is typically collaborative, which helps to support and mo-
tivate students.

• New technologies help to drive interdisciplinary thinking, which provides added op-
portunities for CS students.

On the other hand, interdisciplinary research has its own set of challenges. For example,
identifying collaborators and suitable problems may be difficult. Also, working together
with people of disparate backgrounds may require extra time for building consensus and
for learning new methods, languages, and cultures. These issues may intensify if multiple
professors in different fields must co-supervise a project that neither fully understands.

In our experience, we have developed relationships over time with faculty members in other
disciplines, identified research problems that cross the boundaries of each of those disci-
plines while being accessible to undergraduates, and found students interested in working
on several of those research problems. Some key helps in bringing this about have been

MICS 2008 4

considerable patience, a mutual desire among the faculty members to make the collabora-
tion work, and tangible support and encouragement from department chairs and adminis-
trators.

4 Strategies for incorporating undergraduate research into
the CS curriculum

The following six general strategies indicate ways that undergraduate research or its prepa-
ration may find its way into courses. These strategies may represent any or a combination
of the three developmental stages for undergraduate research identified above. [3].

• Project-centered courses, in which a structured large project effectively organizes
much or all of a course.

• Project-accompanied courses, in which a semester-long serves as a reference through-
out a course.

• Interdisciplinary courses with projects, which may lead to new discoveries because
of their interdisciplinary nature.

• Team project courses, solely devoted to undergraduate research activities in teams.

• Individual project courses, including independent research with individual or multi-
ple students.

• Client courses, in which a course benefits from the results of undergraduate research
efforts, whether or not that course includes research activities itself.

We will indicate these strategies in the following examples of interdisciplinary undergrad-
uate research in the curriculum.

5 Examples

St. Olaf’s computer science major is relatively young (approved in 2002), which gave our
program an opportunity to incorporate interdisciplinary undergraduate research throughout
our curriculum as we created the new major.

MICS 2008 5

5.1 Earliest experiences

A locally developed programming environment used in our introductory course, CS 121
[4], provides an opportunity for cross-disciplinary guided discovery exercises and student-
motivated “entry level” independent investigations.

We have modified MediaWiki, the open-source wiki software created for Wikipedia, to pro-
cess additional languages besides wikitext for authoring pages, including Scheme, the CS
121 programming language [5]. We have also added features to support multimedia compu-
tation via Scheme, including production of XHTML pages represented as Scheme function
calls, processing of sound waves represented as Scheme lists, generation of music using a
MIDI-related protocol expressed in Scheme lists, rudimentary production and computation
with grayscale and RGBA images, and object-oriented animation using a Scheme repre-
sentation of the SVG standard. Students use these features in homework, as applications
of standard course concepts, from nested function calls and simple recursion to object-
oriented programming and project management. These are interdisciplinary applications:
for example, the sound-wave material is presented in terms of the Physics of wave forms,
with connections between musical overtones and harmonic frequencies; and elements of
art and motion graphics design arise in an animation project.

In addition, students typically carry out three team projects during CS 121. For example,
one project may call on students to create three or more contrasting sounds, whether by pro-
gramming with sound waves or using the MIDI-based system for producing melodies and
counter-melodies. The wording of the assignment invites teams to explore the possibilities
of the system, with grade incentives for doing so.

The final project, to create a multi-scene animation with sound track, directs students to
follow a staged development process, the first stages of which overlap with ongoing pre-
sentation of course material. In other words, this project is conducted as a guided discovery
exercise, with opportunities to exceed the basic assigned expectations. Since the system im-
plements the SVG standard, these beginning students are invited to learn more about that
standard and animation techniques than appears in the course syllabus. In fact, students’
independent discoveries in past projects have informed teams in later terms, creating new
thresholds that those later teams expect to surpass, and generally advancing the quality of
the results. Teams present to each other and their friends in informal symposia at the end
of the term, in a final open class period or an evening event.

Beyond team projects, we find each term that some students take on extracurricular inde-
pendent investigations of their own. For example, one recent student applied the MIDI
system (which supports arbitrary fractional pitch values) to explore the sonority of a non-
logarithmic scale system she discovered on the Internet, and also a multiple diminution-
stretto composition technique of her own invention. She did this work on her own initiative
outside of the regular coursework, during the first third of the term.

CS 121 represents the strategy of a “project-accompanied course.” It is also a “client

MICS 2008 6

course,” since undergraduate research has played a significant role in developing our spe-
cialized wiki.

5.2 Foundation courses

Further foundation courses in hardware and software design include guided discovery ex-
ercises designed to develop skills and methods that are useful in subsequent projects.

In particular, our second course CS 251 concludes with a multi-week team software devel-
opment project in C++ using a waterfall-model methodology. That methodology is care-
fully prescribed as a series of deliverable goals for students to meet. Some teams choose to
build interdisciplinary applications for their projects, although this is not required. Apart
from such an application, these projects seldom have the nature of independent investiga-
tions. However these students do present their work to each other and friends at the end
of the term (sometimes in a combined event with CS 121), a modest precursor to research
presentations.

The great value of the CS 251 project for undergraduate research is in providing a common
experience of carrying out a team software design project using a standard development
methodology. Our program does not go into software engineering in depth, but this early
exposure gives all students a baseline of design, implementation, and interpersonal skills
they will need for any software-development aspects of future projects.

One required aspect of the CS 251 project has a somewhat interdisciplinary nature. While
proposing, designing, and building their projects, students also conduct a simple formal
ethical analysis of their software, using concepts derived from the ImpactCS project [9].
Computing ethics belongs as a field in computer science, but the methods in this analysis
derive from the social sciences, and most of these students have never before associated
notions such as “stakeholders” and even “ethical issues” with the field of computer science.

CS 251 illustrates the strategy of a “project-centered course” in its final weeks.

5.3 Core courses

Students taking core computer science courses in areas such as operating systems, pro-
gramming languages, and ethical issues in computing carry out projects with a guided
discovery framework that offer opportunities for extension into independent investigation.
The subjects of these investigations are frequently interdisciplinary in nature.

We will consider two examples of such courses, both of which represent the “project-
accompanied course” strategy.

MICS 2008 7

• Our course in ethical issues, CS 263 [8], expands on the interdisciplinary theme in
computing ethics begun in CS 251. Rather than keeping an abstract aloofness from
applications, CS 263 focuses on ethics in the context of practical applications and
professionalism. To make this emphasis concrete, the course requires a semester-
long applied team project to perform ethical analysis of an actual system, in a service-
learning context. Subject systems for ethical analysis have included the college reg-
istrar’s electronic information system, computing plans for a new science center, and
a web-based system used by a local high school for distributing assignments and
managing grades. These systems are analyzed broadly asSocio-Technical Systems,
consisting of computing hardware and software, people, facilities, and other context.

Traditional social-science methods are presented in the course and used as tools for
analysis. The applied ethical analysis project provides a natural connection and con-
text for the other course content, and represents guided discovery with an opportunity
for independent investigation in an interdisciplinary setting.

• Our operating systems course, CS 273, uses Linux as a primary example for illus-
trating operating system principles and their implementation. One of the projects
involves modifying the Linux kernel in order to add one or more new system calls, or
entry points into the operating system. The documentation describing requirements
and procedures for this project provides a guided discovery framework for learning
how system calls are implemented, and how to modify a large, complex code that
one hasn’t written and which one can’t thoroughly understand.

The assignment is open-ended: a required system call must demonstrably extend the
features of the kernel, but imaginative extensions receive an incentive in grading.
This open-ended quality has led many students to delve deep into implementation is-
sues, armed only with their conceptual understanding of operating systems principles
and whatever experience they gain as they go. In one example, such an independent
investigation led to a subsequent team undergraduate research project that explored
a strategy for creating a more secure kernel [1].

• When a combinatorics researcher presented a problem in partition theory to our al-
gorithms course CS 253 last Fall, students collaborated to create an algorithm that
yielded significant new results in that mathematical field. By parallelizing that al-
gorithm and implementing it on a Beowulf cluster, one student was able to achieve
significant performance improvements. [7]

In terms of strategies for research, CS 253 is both a “project-accompanied course”
and a “client course,” benefiting from resources developed by the Beowulf research
team.

These two courses illustrate the strategy of “project-accompanied courses.”

MICS 2008 8

5.4 Research courses

Some courses, e.g., a regularly offered advanced team project course, focus explicitly
on independent investigation, typically into interdisciplinary questions, and work in those
courses sometimes qualifies as true scholarly inquiry.

We offer two courses in this vein:

• The senior capstone seminar, CS 390, presents a one-semester experience in which
every CS major participates in conducting a (brief) investigation into some aspect of
an interdisciplinary research project, reads from the literature, performs a team ethi-
cal analysis of their project, documents their work, writes up their findings in a paper,
and delivers those findings in a public presentation. This constitutes a model for the
phases of research. Although a work of scholarly significance has yet to emerge
from these one-semester forays into research, the results have local significance, and
over time past investigations feed into other investigations taking place in the course
(similar to the passing on of animation techniques in CS 121).

All CS majors, including weaker students, carry out CS 390 projects. When sum-
mer researchers and others with their own prior research projects take the course, CS
390 requirements adapt to the needs of that student. For example, one recent stu-
dent completed work begun in a prior term and wrote up computing aspects of his
interdisciplinary results [13].

CS 390 students collaborate on ethical analysis and may collaborate on other ele-
ments of the course, but their contributions to their project are accounted individu-
ally, and they write individual papers. Thus, this capstone primarily represents the
strategy of an “individual project course.”

CS 390 also illustrates the “client course” strategy, in that most projects undertaken
in the course arise from prior undergraduate research. Some of the most effective
projects in CS 390 either complete some aspect of an earlier research project or
extend one in some useful way.

• CS 350 is an applied team project course. Its purpose is to collect multiple team
research projects so they can take place in a single course, providing students with
a research community and increased access to mentoring, and providing a professor
with course credit [2]. Most of the projects have had an interdisciplinary nature, and
projects have ranged from guided discovery to scholarly inquiry, depending on the
abilities and experience of the team and on the problem they tackle.

Besides illustrating the “team project course” strategy, CS 350 can also represent
a “client course” that follows up on prior research. Some projects in CS 350 may
produce results that other “client” courses can use. For example, St. Olaf’s first
Beowulf cluster was constructed as a CS 350 project, and clusters deriving from that
first system have served several “client courses.”

MICS 2008 9

5.5 Interdisciplinary courses

Interdisciplinary courses with projects can offer a wealth of possibilities for undergraduate
research activities. Some of these activities may produce original results.

Our course in bioinformatics, CS 315, requires students to read and present a research
paper, then to undertake implementation projects applying CS to questions of concern to
biologists. While these small-team implementation projects may be modest in scope, when
selected by a bioinformatics specialist, they may represent original and useful small appli-
cations in bioinformatics. At the very least, they represent independent investigations that
are new to the students.

6 Resources

This incorporation of interdisciplinary research throughout the curriculum requires re-
sources of various kinds.

• Faculty time and effortmust be an early consideration, since mentoring is so essen-
tial for successful undergraduate research. Effective mentoring requires time and
effort of its own, for example, background research so that a mentor will have the
information he or she needs in order to recommend research problems and strategies.
Interdisciplinary projects typically require more preparation time, as a mentor must
learn about another discipline (or other disciplines).

Longer term collaborations between individual faculty in different disciplines can
significantly reduce the time for mentor background preparation. This typically nar-
rows the range of knowledge needed for the collaboration: knowing about riparian
plants may be enough; one needs study all of environmental science. Of course,
background acquired for one shared project will often apply to other shared projects
with the same collaborating mentor.

• Course allocationin a department must allow for scheduling research-rich classes.
A sustainable and scalable effort cannot depend for long on overload activities, such
as independent research without teaching credit. Integrating research into courses
makes it part of a professor’s teaching load. But scheduling such courses usually
represents a trade-off, in which something else isn’t scheduled.

St. Olaf’s CS major was introduced recently (2002), and research-related courses
were part of the original major proposal. Starting with a clean slate doubtless made
this course allocation issue much easier to address than starting with a full curriculum
of existing courses, as is the case for an established major.

• For established courses,syllabus timeis usually a premium commodity. The prospect
of dropping or curtailing the treatment of standard topics in favor of a lengthy re-

MICS 2008 10

search project may be quite daunting, and even prohibitive, for example, in core
courses.

However, activities at lower stages in the undergraduate research process may re-
quire less syllabus time. For example, a guided discovery exercise might replace
another project assignment in a lower level course; or, an invitation to independent
investigation may be added to an intermediate project, as an opportunity for a higher
grade.

This approach was taken in the introductory course CS 121 with it’s wiki-based ap-
plications. With the help of this convenient and accessible development environment,
we have been able to preserve all but a small number of peripheral topics in the prior
course plan, a trade-off we have gladly made in exchange for the effectiveness and
student interest in project-based activities.

Incremental syllabus modifications may not serve in courses pursuing more mature
research activities. curricular debate about standard topics vs. new pedagogical ap-
proaches can be healthy from time to time, for any academic program.

• Suitableresearch platforms and infrastructure, e.g, specialized software or a Be-
owulf cluster, provide an environment for study and may offer capabilities that attract
interdisciplinary collaborations. Some such resources, e.g., acquiring a GIS system,
may require an initial investment of funds from a grant or institutional sources.

Other times, student efforts can effectively substitute for purchases. For example, St.
Olaf’s first Beowulf cluster [12] was built as an undergraduate research project from
computers and network switches that the college had retired from regular use.

• Summer research supportfor students feeds the cycle of interaction with interdisci-
plinary research in an undergraduate curriculum. While research activities in courses
need not depend on the existence of summer research, an extended period of investi-
gation by a strong student or two can energize the work done on a series of problems.
This effect is mutual: course-related research can also spur on summer research.

7 Conclusion

We have examined the nature and benefits of interdisciplinary undergraduate research, and
described three stages in the development of research skills: guided discovery; independent
investigation; and scholarly inquiry. We have also identified six types of course situations
that offer strategic opportunities for including one or more of those developmental stages.

Several examples of interdisciplinary undergraduate research activity in courses were pre-
sented and discussed relative to the three stages and six strategic types of courses. These
examples range from the early days of the introductory course to the senior capstone sem-
inar. Resource issues concerning faculty time and effort, course allocation, syllabus time,
equipment, and summer research support were considered.

MICS 2008 11

References

[1] BONGARD, M., ENGLE, T., GERBER, A., HANDLEY, M., JOHNSON, T., AND

BROWN, R. A. Secure Linux project. St. Olaf College, 2002–03.

[2] BROWN, R. The advanced team project course, or how to manage a six-ring circus.
In Proceedings of the Midwest Instruction and Computing Symposium(April 2006).

[3] BROWN, R., ALLEN , R., HUFF, C., AND RUTHERFORD, R. Six strategies for merg-
ing computer science undergraduate research into the classroom. Poster presented at
the Tenth CUR National Conference, June 2004.

[4] BROWN, R., AND HALL -HOLT, O. CS 121, Principles of Computer Sci-
ence. Retrieved March, 2008 fromhttp://www.stolaf.edu/depts/cs/
academics/courses/list.html#CS1, 2008. Online description of introduc-
tory course in CS.

[5] BROWN, R. A., AND HALL -HOLT, O. Teaching computer science using a wiki with
a general-purpose authoring language. InProceedings of the Midwest Instruction and
Computing Symposium(April 2007).

[6] COUNCIL ON UNDERGRADUATE RESEARCH. CUR At-A-Glance. Retrieved March,
2008 fromhttp://www.cur.org/factsheet.html, 2008.

[7] FREDERICK, T. Parallelizing the computation of the spt statistic. InProceedings of
the Midwest Instruction and Computing Symposium(April 2008).

[8] HUFF, C. CS 263, Ethical Issues in Software Design. Retrieved March,
2008 fromhttp://www.stolaf.edu/depts/cs/academics/courses/
list.html#ESD, 2008.

[9] HUFF, C. W.,AND MARTIN , D. Computing consequences : A framework for teach-
ing ethical computing.Communications of the ACM 38, 12 (December 1995), 75–84.

[10] NATIONAL ACADEMIES. Facilitating Undergraduate Research. National Academies
Press, Washington, DC 20001, 2004.

[11] NATIONAL RESEARCH COUNCIL OF THE NATIONAL ACADEMIES. Bio2010:
Transforming undergraduate education for future research biologists. National
Academies Press, Washington, DC 20055, 2003.

[12] ST. OLAF COLLEGE BEOWULF TEAM. The St. Olaf Beowulf Project. Retrieved
March, 2008 fromhttp://devel.cs.stolaf.edu/projects/bw/, 2008.
Wiki for project documentation.

[13] WALDSCHMIDT, T. Simulation of nitrogen flow using the st. olaf beowulf cluster. In
Proceedings of the Midwest Instruction and Computing Symposium(April 2008).

MICS 2008 12

Creating Visions for Computing Research

Karen T. Sutherland
Department of Computer Science

Augsburg College
Minneapolis, MN 55454

suther@navigation.augsburg.edu

Abstract

A new organization, the Computing Community Consortium (CCC) has recently been
funded by the National Science Foundation through the Computing Research Association
(CRA). The purpose of this organization is to encourage the development of new visions
for all areas of computing research.

One goal of the CCC is to get undergraduates excited about studying computer science
and thinking about major research issues by involving them in the visioning process. For
that reason, the CCC is sponsoring undergraduate poster contests at each regional meeting
of the Consortium for Computing Sciences in Colleges (CCSC) as well as at the Midwest
Instructional Computing Symposium (MICS).

This paper and the accompanying session will explore additional ways of involving under-
graduate institutions in this development.

MICS 2008 13

1 Introduction

The Computing Community Consortium (CCC) has recently been funded by the National
Science Foundation through the Computing Research Association (CRA) with a goal of
encouraging the development of new visions in computing research.

The research institutions which are involved in CCC projects will be holding “Crystalliza-
tion Workshops” to involve more scientists and students in their project planning. CCC
would like to see undergraduate faculty representation at these workshops and the projects
infused at the beginning of the planning stage with ideas on how undergraduates can be
involved.

As CCC supported projects begin to apply for external funding, they will be strongly en-
couraged to use the ideas gleaned during previous stages of development to involve the
undergraduate community in a meaningful way. This could be in terms of collaborative
grant proposals with undergraduate institutions, using REU supplements, exploiting op-
portunities to fund undergraduate researchers that are already written into calls for pro-
posals, or actively engaging undergraduates in testing project results. The goal is to make
undergraduate involvement an integral part of each project.

The CCC Web site will eventually have a page of links to opportunities for undergraduate
students, faculty and institutions that have been created by CCC supported projects.

The purpose of this paper and session is to gain MICS attendee input on the poster contest,
Crystallization Workshop participation and good ideas for undergraduate participation in
these major projects. We are on the cutting edge of the development of the CCC’s mis-
sion and have an opportunity to influence outcomes that will have a major effect on the
undergraduate computer science community.

2 What is a “Vision” in computing research?

Visions tend to run deep and broad. They involve fundamental questions in the field. They
tightly integrate technological innovations with societal needs. They are often termed “au-
dacious.” As an example, Jeannette Wing, the Assistant Director of the Computer and
Information Science and Engineering Directorate (CISE) of the National Science Founda-
tion has challenged the research community to articulate a research agenda to answer one
of computing’s fundamental questions [7]:

“Is there a science for understanding the complexity of our networks such that we can
engineer them to have predictable behavior?”

She defines networks broadly, including the physical layer at the bottom, the multiple ar-
chitectural and protocol layers in the middle and the top layer of people and organizations.
She argues that there are fundamental basic research questions underlying the scientific
questions, technological innovations and societal demands that drive all areas of comput-
ing. The complexity of large-scale networks should be understood. New architectures

MICS 2008 14

should be developed to manage future networks. New applications should insure security
and privacy.

Webster defines “audacious” as daring or bold. It is not difficult to agree with Wing’s claim
that “the vision for understanding the complexity of networked systems is audacious.”

Based on this vision, she calls on the research community to develop a compelling research
agenda for the science and engineering of evolving, complex networks.

3 CCC Funded Projects

The CCC is currently funding the following projects:

• The Global Environment for Network Innovations (GENI):

At the age of three years, GENI existed before the CCC was formed but is now under
its auspices. The GENI project’s goal is to build an experimental facility designed
to allow experiments on a wide variety of problems in communications, network-
ing, distributed systems, cyber-security, and networked services and applications.
Researchers will have the opportunity to experiment at a large scale with real user
populations [1]. The GENI project is addressing the vision articulated by Jeannette
Wing in Section 2.

• Big-Data Computing:

The Big-Data Computing project held two CCC sponsored study groups in March
2008 to explore opportunities for research in high-performance, data-intensive com-
puting systems. Applications range from astronomy to machine translation.

• Robotics:

The goal of this project is to provide a comprehensive view of the use of robotics
today and in the future, and to identify the necessary key competencies which need
to be developed in order for the field to progress. Applications range from robotic
surgery to planetary exploration to cars that park themselves.

• Theoretical Computer Science:

The Theoretical Computer Science (TCS) group will be holding a CCC sponsored
workshop in May 2008 with the following goals: “Identify broad research themes
within theoretical computer science that have potential for a major impact in the
future.” and “Distill these research directions into compelling ‘nuggets’ that can
quickly convey their importance to a layperson.” The underlying goal of the project is
to understand the capabilities and limitations of efficient computation. Applications
range from public-key cryptography to quantum computation.

More can be read about all of these projects on the CCC Web page: www.cra.org/ccc.

MICS 2008 15

4 Undergraduate Institutional Involvement

Knowing how important undergraduate education is to the computer science community,
including the research community, both the National Science Foundation and the CCC are
committed to involving undergraduate students and faculty in this new initiative. They
would like our input as to exactly how we could best both contribute to and gain from this
opportunity.

The poster contest that the CCC is sponsoring at MICS is a first step. The rationale for
the contest was that the posting of the regional winning posters on the CCC Web page
would raise awareness in the research community of the bright, talented undergraduates in
our programs and raise awareness among our students of the cutting edge projects being
undertaken which will affect not only the academic community, but all of society. It is
hoped that knowledge of the societal impact that this research could have will help erase
some of the negative stereotypes associated with our field, particularly for those students
from underrepresented groups [2, 3, 4, 5, 6].

If the research institutions with CCC supported projects are going to be encouraged by the
CCC to incorporate undergraduate participation into their projects, they need specific ideas
as to how they could do so.

Some ideas for involvement, which we will discuss and augment in this session include:

• writing collaborative grant proposals with undergraduate institutions.

• encouragement to incorporate REU supplements into projects.

• providing support for undergraduate researchers from undergraduate institutions.

• providing collaborative summer research opportunities for faculty from undergradu-
ate institutions.

• actively engaging undergraduates in testing project results.

While the above involvement is currently included in many NSF funded research projects,
there remain many projects which include no such opportunities only because the proposers
never thought of doing so, or thought of it but did not know how to approach it. Our goal
should be to change this scenario.

As was stated above, the poster contest is only a first step. A window has been opened
up for us to state our views to an audience that is eager to hear what we have to say.
The vision of there being a single computer science community rather than there being
“the research community” and “the CS undergraduate educational community” may be the
biggest, boldest vision of all.

MICS 2008 16

References

[1] Global Environment for Network Innovations. http://www.geni.net.

[2] FISHER, A., MARGOLIS, J., AND M ILLER , F. Undergraduate women in computer
science: Experience, motivation, and culture. InProc. of the SIGSCE Technical Sympo-
sium on Computer Science Education(Feb. 1997), pp. 106–110. Published in SIGSCE
Bulletin, Vol. 29, N. 1, March 1997.

[3] GARCIA , O. N., AND GILES, R. Research foundations for improving the represen-
tation of underrepresented minorities in the information technology workforce, June
2000. www.cise.nsf.gov/itminorities/itminoritiesfinal report.pdf.

[4] HALIBURTON , W. Gender differences in personality components of computer science
students: A test of Holland’s congruence hypothesis. InProc. of the SIGSCE Technical
Symposium on Computer Science Education(Feb. 1998), pp. 77–81. Published in
SIGSCE Bulletin, Vol. 30, N. 1, March 1998.

[5] M ANNIX , M. Getting IT right.Prism(Mar. 2001), 15–20.

[6] SACKROWITZ, M. G. An unlevel playing field: Women in the introductory computer
science courses. InProc. of the SIGSCE Technical Symposium on Computer Science
Education(Feb. 1996), pp. 37–41. Published in SIGSCE Bulletin, Vol. 29, N. 1, March
1996.

[7] W ING, J. Network Science and Engineering: A Research Agenda.
http://www.cra.org/ccc/NSE.ppt.pdf.

MICS 2008 17

Using Clickers to Enhance

Computer Science Classes

Joline Morrison

Department of Computer Science

University of Wisconsin-Eau Claire

Eau Claire, WI 54702

morrisjp@uwec.edu

Abstract

Research on learning approaches indicates that active and cooperative learning

techniques improve educational processes and outcomes. One way to implement these

techniques involves student response systems (clickers). This paper explores different

knowledge types and learning approaches and argues that clickers can be used to aid the

learning process with minimal risks. It provides examples of questions and techniques

that can be used to enhance learning processes in computer science classes, and prevents

survey results of student attitudes towards clicker use in a CS 1 class. It also provides

recommendations for effective clicker use.

MICS 2008 18

Introduction

The lecture is the mainstay of the college classroom. Lectures often degrade into

instructor-led monologues with minimal interaction between the students and the

instructor or among the students. Research on educational techniques (e.g., (1), (2), (3))

indicates that techniques such as active and cooperative learning improve educational

processes and outcomes. One way to implement these approaches in the college

classroom is by using student response systems, which are commonly referred to as

“clickers.” The purpose of this paper is to explore how to use clickers to support

different knowledge objectives and learning processes with minimal risk for both

instructors and students, and to provide computer science-related examples. It also

presents student attitudes towards clicker use in a CS 1 course, and provides

recommendations for introducing clickers into your computer science classroom.

Learning Processes, Approaches, and Risks

Learning Processes

In 1956, Benjamin Bloom proposed a taxonomy of cognitive thinking to guide

instructional pedagogy. Bloom’s taxonomy (1) consists of the following components:

1. Basic knowledge, which involves memorizing facts, figures, and base processes;

2. Secondary comprehension, which involves organizing, comparing, translating,

interpreting, giving descriptions, and stating main ideas;

3. Application, which involves generalizing the facts or processes to other contexts

and situations;

4. Analysis, which involves examining and breaking information into parts by

identifying motives or causes, and then making inferences and finding evidence to

support generalizations;

5. Synthesis, which involves compiling information together in different ways by

combining elements in new patterns or

proposing alternative solutions;

6. Evaluation, which involves presenting and

defending opinions by making judgments

about information, validity of ideas, or

quality of work based on a set of criteria.

The first three items in this taxonomy are

hierarchical: basic knowledge must be presented

to gain comprehension, and comprehension must

be attained before application can occur. The final

three items are considered higher-order skills that

cannot be attained before the first three are

mastered. Figure 1 illustrates this hierarchy. The

MICS 2008 19

next section explores different learning approaches that can be used to achieve these

objectives.

Learning Approaches

Instructor lectures are the cornerstone of the college learning experience, but research

(e.g., (2), p. 9) has shown that monologue lectures produce minimal learning gains. In

response, educators have proposed techniques to help engage students and facilitate

achieving educational objectives. One technique is active learning, which involves

having students participate in activities beyond simply listening. A subset of active

learning is cooperative learning, which occurs when teaching emphasizes social

interactions between the instructor and students or among student groups (e.g., (3), (4)).

The combination of active and cooperative learning is called engaged learning (5).

The most common and least risky approach to achieve engaged learning is to pose a

question to the class and wait for a response. Unfortunately, one or two reliable students

usually answer these questions, and the rest remain quiet, unengaged, and confident that

the answer will be provided by one of their reliable colleagues. The "fast responders"

enable the other students to remain quiet and unengaged, and might even prevent the

other students from having time to think about the question and form an answer (6). To

avoid this pitfall, the instructor might present alternate choices and then require all

students to make a selection by raising their hands. This approach also has limited

effectiveness: an unsure or unengaged student can still abstain from voting, and can

easily alter his or her vote if it appears to be unpopular.

Math and science courses often involve require learning problem solving approaches or

techniques. An engaged learning approach for this type of knowledge is for the instructor

to first explain and illustrate the problem solving approach, and then have the students

apply the approach to a different but similar problem on their own. After everyone is

finished, the instructor and students discuss the solution as a group. This approach can be

extended to cooperative learning by having students develop problem solutions in small

groups, whereby a learning advantage is achieved by having students teach and learn

from one another (7). This approach has been extensively used in computer science

courses (e.g., (8)).

A more avant-garde engaged learning approach involves kinesthetic learning activities

(KLAs), which force students to physically act out an activity in a way that teaches or

reinforces the material (4). For example, a computer science instructor might teach

students the difference between passing parameters by reference or by value using a note

card with a value written on it to represent the parameter. The instructor passes the actual

note card to represent passing by reference, and passes a copy of the note card to

represent passing by value. In another example, the instructor might have students come

to the front of the room and actually represent linked list nodes or values in a sorting

algorithm.

MICS 2008 20

Student response systems (“clickers”) have emerged as a popular approach to enable

engaged learning. Clickers are similar to TV or stereo remote controls, and have

numbered buttons that allow the student to select a response to a multiple choice question

(1-5, A-E, etc.). Typically, the instructor displays a multiple choice question on the front

screen, and students press clicker buttons to transmit their responses using an infrared or

radio frequency. Responses are received by a base unit that relays them to the

instructor’s computer, from which the aggregate results are displayed. The data is

generally stored for later analysis. Responses can be anonymous or associated with a

specific student (9).

Engaged Learning: Rewards and Risks

Previous studies suggest that engaged learning techniques have a positive impact on

educational outcomes, including improved student interest, involvement, confidence,

retention, and higher order thinking (4). One source of these benefits involves student

attention spans: multiple studies on student concentration levels indicate that

concentration peaks at about 10-15 minutes into a lecture, but declines significantly

thereafter [e.g., (10), (11)]. Engaged learning techniques improve classroom energy

levels and give students the opportunity to synthesize, critically assess, and apply the

concepts that the instructor presents. Furthermore, they allow the instructor to determine

whether he or she has successfully conveyed target concepts (5). Studies specifically

addressing the use of clickers suggest that these devices positively impact factors such as

attendance, advance preparation for class, attentiveness, enthusiasm, in-class

participation, and student confidence (e.g., (12), (13)).

McConnell (6) analyzes risk levels of engaged learning activities based on a variety of

dimensions, as shown in Table 1.

Dimension Low Risk High Risk

Class time Short Long

Amount of structure More Less

Amount of planning Careful Spontaneous

Controversy potential Low High

Student subject

knowledge

Strong Weak

Instructor experience with

pedagogy

High Low

Interaction type Student – Instructor Student - Student

Table 1 – Levels of risk for engaged learning activities

This analysis asserts that carefully planned and highly structured activities that take

shorter amounts of class time and rely solely on student/instructor interaction pose less

risk than less structured activities that take longer and require interaction among students.

Hence, an instructor asking students a pre-planned question is a low-risk strategy, while

group activities and KLAs involve more risk. Low risk learning activities are more

suited to the lower-level learning activities on Bloom’s hierarchy (e.g., conveying basic

MICS 2008 21

knowledge and assessing secondary comprehension). Higher-level learning involving

analysis, synthesis, and evaluation seem more suited to the higher risk activities such as

group activities and KLAs. The higher-risk techniques can result in superb educational

experiences or, if things don’t go well, negative experiences and reluctant, confused,

embarrassed, and/or disgruntled students.

Clicker technology involves minimal risk in the sense that it involves instructor-student

interaction and is fairly structured. It certainly has the potential to enhance lower-level

learning approaches involving instructor-student questioning and polling. When used

with ingenuity and creativity, however, it also has the potential to enhance the higher-

level processes while still minimizing the risks. The remainder of this paper describes

approaches for using clickers effectively to enhance different learning at all levels within

the domain of computer science.

Using Clickers to Achieve Engaged Learning

Learning to operate clicker technology in your classroom is fairly easy. Using clickers

effectively to enhance student learning is more challenging. The most obvious clicker

use is to obtain survey knowledge, which asks for responses about existing knowledge

(True/False: I have written computer programs using Java), experiences ("Which Web

browser do you use?") or opinions/attitudes ("Which Web browser do you think most

people use?"). This is especially useful when teaching freshmen, non-majors, or other

groups that have diverse backgrounds or experiences.

Beatty et. al (14) propose that non-survey classroom clicker questions should address one

of the following pedagogical goals:

1. Content, which involves presenting irrefutable facts that students must memorize

and learn by rote.

2. Process, which involves teaching a cognitive process for solving a problem. This

includes recognizing which process is applicable to a given situation, and

identifying the information that is required to perform the process.

3. Metacognitive, which involves applying content and process knowledge to

identify alternative solutions to problems with multiple competing solutions.

This requires cost/benefit/risk analysis and viewing a problem from multiple

viewpoints.

Beatty et. al (14) emphasize the importance of employing a “question cycle” that involves

posing, pondering, answering and discussing. The following paragraphs describe

strategies for using clicker technology to achieve these pedagogical goals both in terms of

question types and how to manage the question cycle.

Content Knowledge

During a lecture, the instructor attempts to convey and illuminate multiple points.

Clickers can help students gain basic content knowledge by simply asking the students to

MICS 2008 22

restate an idea. They can also be used to gain secondary comprehension by forcing

students to summarize and synthesize a series of ideas. Figure 2 shows examples of

content knowledge questions. Question 2(a) tests recall of rote facts, 2(b) requires

students to consolidate multiple ideas to form a definition, and 2(c) requires students to

apply previous-presented knowledge to a new situation.

Content knowledge questions for rote facts are usually answered fairly quickly (within a

minute or so), and mainly serve as a wake-up call to gain student attention and ensure

that notes are complete and correct. As a result, the question cycle is straight-forward:

the instructor displays the question, waits until a high percentage of the students have

answered, and then displays the answer distribution. These questions usually result in a

high percentage of correct answers: For a question such as shown in Figure 2(a), you can

simply state “The correct answer is b, 8 bits”, and then move on.

The standard size of a RAM
memory cell is:

a. 7 bits
b. 8 bits
c. It depends on the kind of

RAM memory
d. Either a or b
e. None of the above

Database drivers:

a. Contain code that enables a database
to communicate with a program
b. Are associated with a specific DBMS
c. Are associated with a specific
programming language (such as Java or
C++)
d. All of the above
e. Both a and b

Figure 2: Examples of concept knowledge questions

(a) Basic knowledge (b) Secondary comprehension

Is the Circle class immutable?

a. Yes
b. No
c. You can’t tell from
the information given
d. I don’t know

Circle

+ : public
- : private
No modifier: package-
accessible

- radius: double
numberOfObjects: int

- Circle()
- Circle(newRadius: double)
getArea(): double
+ getNumberOfObjects(): int

(c) Application

The secondary comprehension question in Figure 2(b) and the knowledge application

question in Figure 2(c) require more thought, and often result in some incorrect

responses. You can use different approaches for managing the question cycle. When the

percentage of incorrect answers is fairly low (less than about 25%), an effective approach

for clearing the confusion of the minority is to state the correct answer, and then ask a

volunteer to describe why he or she chose the correct answer rather than one of the

incorrect ones (14). This tactic reinforces the correct answer for the correct responders

while posing minimal risk for the incorrect ones.

When the percentage of incorrect answers approaches 50%, an effective management

approach is to require students to compare their answer with their neighbors and then re-

vote. This utilizes cooperative learning: it benefits the students who know the correct

answer by forcing them to state their reasoning to convince their peers. Likewise, it

benefits the students who do not know the answer by having it explained to them in a

different way by their peers. It poses minimal risks to the unsure or incorrect students

because no one is certain of the answer at this point, and the correct students must defend

their reasoning.

It is useful to include a “None of the above” selection in most questions (14) because it

provides insight into student reasoning that is unanticipated (and often correct!).

MICS 2008 23

However, it should be the correct and intended answer often enough so as to be

unpredictable.

Process Knowledge

Computer science classes often require students to understand a series of steps for

completing a task, such as converting a decimal number to binary, or writing program

code to create a specific type of loop to complete a task. Usually, these processes are too

complex to be reinforced or synthesized with a single clicker question. An alternative is

to use a clicker question to reinforce a single step within the process. Figure 3(a)

illustrates this approach: in this case, the process involves representing a floating point

number using the binary numbering system, and the question reinforces the concept of

normalizing a number using exponential notation.

What is the normalized
representation of .00010012?:

a. 1.001 * 24

b. .1001 * 2-3

c. .1001 * 23

d. 1.001 * 2-4

e. None of the above

Figure 3: Example process knowledge questions

What is the output of the
following code?

a. 0 0 0 1 1 0 1 1
b. 0 0 1 1
c. 0 0 1 1 0 1 1
d. None of the above

for (int i = 0; i < 2; i++){

for (int j = 0; j < 2; j++) {

System.out.print(i + " " + j + " ");

}

}

(a) Reinforcing a single step of a process (b) Prediction question

• Convert -4.12510 to a
binary 32-bit floating point
number representation

• Click any button (a-e)
when you are done

(c) Monitoring when students finish a

process

Class Exercise

Another approach for reinforcing process knowledge is to use prediction questions such

as the one shown in Figure 3(b). These questions are very effective for helping students

understand programming concepts and program execution, and computer science students

seem to enjoy their challenge. The question management cycle approach described in the

previous section again applies: if the incorrect answers number 25% or less, ask a

volunteer to describe the process that to their answer. If the incorrect answers approach

50%, ask students to describe their process to their neighbors and then re-vote.

Figure 3(c) illustrates how to use clickers to monitor student progress for performing all

of the steps in a complex process. The instructor can monitor how many students have

completed the process and judge when to discuss the solution. If the process solution is

taking an undue amount of time, the instructor can modify the instructions and tell the

students to signal when they have completed a portion of the problem, and then discuss

the part of the solution that is causing the difficulty.

Metacognitive Knowledge

Metacognitive knowledge involves applying content and process knowledge to identify

alternative solutions to problems with multiple competing solutions. It encompasses the

analysis, synthesis, and evaluation components in Bloom’s hierarchy. At first glance, it

MICS 2008 24

might seem that multiple choice questions are not compatible with these higher

knowledge levels. However, it is possible to use clicker questions to spur discussions and

higher-level thinking. Figure 4 shows three different approaches.

Figure 4: Examples of metacognitive knowledge questions

Why do I need to know the SQL
CREATE and DROP commands
when I can use the GUI in Oracle
Developer to do these tasks?
a.
b.
c.
d.
e. None of the above

(b) Open-answered question

What kind of number encoding
approach do you think Oracle
uses for the NUMBER data type?

a. Floating point
b. Signed integer
c. Unsigned integer
d. Either a or c, depending on the value
e. None of the above

(a) Question to stimulate discussion

The question in Figure 4(a) occurs after defining the Oracle NUMBER data type, and

requires students to connect how an Oracle database defines different types of numbers

with previous knowledge on how computers encode number data in general. Students

will first vote, and then will be asked to defend their choices. The question in 4(b)

requires students to generate alternative, multiple defensible responses to a question. The

instructor adds the alternatives on the fly, allows the students to vote, and then leads a

class discussion on the results.

Rewards, Drawbacks, and Best Practices

Studies on clicker use in science courses (e.g., (2), (13), (15)) suggest that students

respond in a generally positive manner to clicker use in terms in making them feel more

involved and engaged in a course. Clickers also tend to motivate students to come to

class when attendance or answers contributed to their course grades.

Few (if any) studies have evaluated clicker effectiveness in computer science courses.

Figure 5 shows survey results of clicker attitudes from approximately 40 students in a CS

1 course during the Fall 2007 semester. (Complete survey questions are shown in the

appendix of this paper.)

MICS 2008 25

Figure 5: Survey data results

These results are similar to the ones seen in published studies in terms of clickers aiding

student attention and understanding. Students were least enthusiastic concerning whether

the cost of the clickers was worth their benefit. (At our bookstore, students purchase

clickers for approximately $35, and can resell them for $20 at the end of the semester. I

also advise students that they can purchase their clickers on EBay for a reduced amount.)

Overall, clickers seem to be an effective educational tool in the college classroom, and

this includes the computer science classroom as well.

0 5 10 15 20 25

I liked using the clickers in this course

The clickers were fun to use

I would like to use the clickers in more of
my courses

Using the clickers helped me to better
understand concepts in the course

The clickers helped me to pay attention
during lecture

The clickers were used too much in this
course

Using the clickers takes too much time
away from the lecture presentation

It was easy to remember to bring the
clicker to class

I feel the cost of the clickers was worth it

Receiving credit just for answering made
me more likely to participate

If I received additional credit for the
right answer, it would make me try …

Discussions with other students during
the clicker questions were helpful in …

I do not feel that the clickers were an
effective educational tool

Using the clickers were more trouble
than they were worth

Strongly Disagree

Disagree

Neutral

Agree

Strongly Agree

MICS 2008 26

As a result of a literature survey, personal experiences, and conversations with other

instructors who are using clickers in the classroom, here is a list of recommendations to

help make your transition to clickers successful:

1. Connect with other instructors at your institution who are using or are interested

in using clickers, and agree upon a single vendor. This way, students can

purchase a single clicker and use it in multiple classes.

2. Select a clicker type that minimizes the cost to the student.

3. Use the clickers regularly in every class. A common complaint among students is

that they were forced to purchase the clicker and then used it sporadically or not

at all during the semester.

4. Provide “loaner” clickers to lend to students who invariably forget to bring their

clickers to class. Students complain if they don’t get credit for coming to class

just because they forgot their clicker.

5. Use a variety of question types and question cycle techniques. Using the clickers

for the same types of questions and in the same way becomes boring.

6. Avoid placing a lot of emphasis (more than 5%) on grades for getting the correct

answer. This adds to student anxiety, especially among students who take longer

to grasp new concepts.

Acknowledgement
The author would like to thank Dr. Matt Evans of the Department of Physics and

Astronomy at the University of Wisconsin-Eau Claire for his efforts in bringing clickers

to the classroom at UW-Eau Claire, and for his insight and suggestions for improving this

paper.

References

1. Bloom, Benjamin S. Taxonomy of educational objectives: Cognitive domain. New

York : David McKay and Company, 1956.

2. Duncan, Douglas. Clickers in the Classroom. San Francisco, CA : Pearson Education,

Inc., 2005.

3. A Systematic Approach to Active and Cooperative Learning in CS1 and its effects on

CS2. Gonzalez, Graciela. Houston, TX : ACM, 2006. SIGCSE 06. pp. 133-137.

4. McConnell, Jeffrey J. Active and Cooperative Learning: Tips and Tricks (Part I).

Inroads - The SIGCSE Bulletin. June, 2005, Vol. 37, 2.

5. Lazar, Alina. Engaged Learning in a Computer Science Course. Journal of Computing

Sciences in Colleges . October, 2007, Vol. 23, 1.

6. McConnell, Jeffrey J. Active and Cooperative Learning: More Tips and Tricks (Part

II). Inroads - The SIGCSE Bulletin. December, 2005, Vol. 37, 4.

7. Johnson, D.W., Johnson, R. T. and Smith, K. A. Learning: Cooperation in the

College Classroom. s.l. : Interaction Book Company, 1991.

8. Cooperative Learning Techniques in CS1: Design and Experimental Evaluation. Beck,

Leland L., Chizhik, Alexander W. and McElroy, Amy C. St. Louis : SIGCSE 2005,

2005.

MICS 2008 27

9. Herreid, Clyde Freeman. "Clicker" Cases: Introducing Case Study Teaching Into

Large Classrooms. Journal of College Science Teaching. October, 2006.

10. Stuart, John and Rutherford, R.J. Medical student concentration during lectures.

The Lancet. September 2, 1978.

11. Thomas, E. J. The variation of memory with time for information appearing during a

lecture. Studies in Adult Education. April, 1972, Vol. 4, 1.

12. Bullock, D.W., et al. Enhancing the student-instructor interaction frequency. Phys.

Teacher. 2002, Vol. 40, 535-541.

13. Suchman, Erica, et al. Evaluating the Impact of a Classroom Response System in a

Microbiology Course. Microbiology Education. May, 2006, Vol. 7, 5.

14. Beatty, Ian D., et al. Designing effective questions for classroom response system

teaching. Am. J. Phys. January 2006, 2006, Vol. 74, 1.

15. Trees, April R. and Jackson, Michael R. The learning environment in clicker

classrooms: student processes of learning and involvement in large university-level

courses using student response systems. Learning, Media and Technology. 1, 2007, Vol.

32, March 2007.

Appendix – Student Response System Clicker Attitude Survey

(a) Strongly Agree (b) Agree (c) Neutral (d) Disagree (e) Strongly Disagree

1. I liked using the clickers in this course.

2. The clickers were fun to use.

3. I would like to use the clickers in more of my courses.

4. Using the clickers helped me to better understand concepts in the course.

5. The clickers helped me to pay attention during lecture.

6. The clickers were used too much in this course.

7. Using the clickers takes too much time away from the lecture presentation.

8. It was easy to remember to bring the clicker to class.

9. I feel the cost of the clickers was worth it.

10. Receiving credit just for answering made me more likely to participate

in using the clickers.

11. If I received additional credit for the right answer, it would make me try

harder to get the right answer.

12. Discussions with other students during the clicker questions were

helpful in understanding the concepts in this course.

13. I do not feel that the clickers were an effective educational tool.

14. Using the clickers were more trouble than they were worth.

MICS 2008 28

Grafting Technology onto Disciplinary Courses

William Bultman
Department of Computer Science

University of Wisconsin-Fox Valley
Menasha, WI 54952

bill.bultman@uwc.edu

Abstract

We describe a novel course to teach students the technology skills they need to succeed
in another linked disciplinary course outside of computer science. We believed that
students would learn the technology skills better by having a context in which to apply
them. They would also benefit in the linked course from the ability to immediately use
these skills.

A one-credit course was developed with assistance from instructors in various disciplines
to determine the skills that they felt would be useful in their courses. Two sections were
offered each semester for four semesters, each linked to a different cluster of disciplinary
courses.

Along with improving technology skills, the course also sought to increase students’
engagement in the university and improve their ability to work in groups. We measured
the level of success in achieving each of these goals with pre-and post-semester surveys,
and report the results of that assessment.

MICS 2008 29

1 Inspiration

The UW-Fox Valley is one of the two-year transfer institutions of the University of
Wisconsin System. The Computer Science department has had a cluster of one-credit
computer applications courses that have remained relatively unchanged for two decades.
With Evelyn Li from the Instructional Technology department, I set out to design a
course that addressed changes to the student population over that time.

We attempted to address three needs in particular, based on our experience with today’s
students. First, students learn skills much more easily when they can see an immediate
application of the material in the context of a “real” use for it. Second, students need to
be guided into engagement, both with the course material and with the university overall.
Third, students are increasingly asked to use software and hardware to create group term
projects and larger presentations that they are unprepared to accomplish.

1.1 Technology Skills Applied in Context

The first of these needs ended up being the inspiration for the title of our course:
Technology Skills Applied in Context. Students want to learn material on a need-to-know
basis. A typical student would be one who completed a spreadsheets course, but only has
that “Aha Moment” after applying a particular skill in an accounting course later. The
standard courses attempt to weave in “real world” applications, but without the larger
context they are still disconnected.

To address this need, we wanted our course to be linked to a non-computer science
disciplinary course such as speech, business, or laboratory sciences. For clarity in this
paper, we will refer to this course as the “linked course” and ours as the “technology
course.” Each offering of the technology course would teach students the particular skills
they needed to succeed in that linked course.

This goal of teaching in context leads to another aspect that turned out to be fundamental
to the nature of our course. Since different disciplines require different skills, we needed
to find a manageable way to custom tailor the skills in each section of the technology
course to those needed by the linked course. The instructor in the linked course should
have an easy way to have significant influence on the topics covered in our technology
course.

MICS 2008 30

1.2 Increase Student Engagement

A second need that we hoped to addresses was a general decrease in engagement with the
university on the part of incoming freshmen. This was in part inspired by an initiative that
the university was undertaking at the time, and we hoped that this course could make a
contribution toward that goal. That initiative also brought with it grant opportunities, and
we received a $2,000 grant to support the development of the course.

One of the most difficult aspects of the course inspiration was trying to get practical
about what is meant by “engagement.” Various dictionaries define it as “holding the
attention of or interest in,” “involvement in activity,” or “emotional involvement or
commitment.” We worked toward two aspects with the course: engagement in the
classroom and engagement in the university.

In the classroom we focused mainly on the “activity” and “attention” aspects of the
definitions. We would encourage active participation during class time, avoiding
traditional lectures as much as possible. We would try to introduce nontraditional but
relevant hardware (e.g., digital cameras) and software (e.g., video editing) along with the
traditional application software topics, in hopes of engaging students’ interest.

Outside of the classroom we focused on the “involvement” and “commitment” aspect of
the definitions. We would create small group activities to promote bonding between
students. We would incorporate extracurricular activities such as noncredit technology
workshops into the grading structure of the course. We would require participation in an
online discussion forum.

1.3 Group Dynamics and Presentation

The third need that we hoped to address was driven by increasing technology
expectations for group projects and presentations. This was actually requested by the
potential instructors we chatted with in preliminary discussions about the course.

Due to time constraints, most courses with projects and presentations do not provide
instruction on how to use the technology. They assume that most students could figure it
out on their own or get assistance from technology staff, which is true to some extent. But
even those adept with the mechanics of technology often have little understanding of the
principles of the systems. Most of us can recall PowerPoint presentations that attest to the
difference between ability to use a tool and understanding of how to use the tool. We
would give instruction targeted at both aspects: mechanics and principles.

Another need related to projects and presentations is that most students have little
training in how to effectively work in groups. We would give instruction to students in
how to effectively work together in groups. We would assign practice group projects as
part of our technology course. When the linked course itself included projects or
presentations, we would incorporate a separate assessment of their work from the point of
view of technology and group work for the technology course.

MICS 2008 31

2 Development

The course details were developed primarily during the 2005-06 academic year. For
practical considerations of instructor and student workload we limited ourselves to a one-
credit course. Initial queries yielded nine instructors who were potentially interested in
linking to the course, and we relied extensively on their input throughout the
development process.

For mechanical and somewhat political reasons we decided to develop the course outside
of the computer science department. The course fit fairly nicely into an existing course
called a Lecture Forum, LEC 104: Course Supplement. However, this decision led to
some problems that we will discuss in Section 3.3.

2.1 Linked Course Selection

The typical model for linking courses at our university is to have a one-to-one
correspondence between pairs of courses: students enroll in either both courses or neither.
However, we wanted participation in the technology course to be optional, supplementing
the linked course for those that wanted technology help. This implied that if we wanted to
fully enroll our course, we needed to link multiple sections of linked courses to the same
technology course section.

It was determined that the department would run only two sections per semester during
the pilot stage of the course. Thus, even clustering several linked course sections
together, we could not handle as many linked sections as we had interested instructors.
We interviewed potential instructors for the types of technology skills needed, projects or
presentations expected, and in the end chose two or three sections to link to each
technology course section.

2.2 Topic Selection

The process of interviewing the instructors for compatibility with the course actually
yielded an unexpected harvest: a list of potential topics that we needed to cover. We
compiled the complete list of potential topics, homogenized their descriptions, and
analyzed them for commonality. We made a second pass with the instructors selected for
participation, asking them to prioritize the topics for their linked course.

One goal for the design of the technology course was to keep the content manageable for
instructors. We didn’t want to burden them with designing the technology course totally
from scratch for each new linked course section. We hoped to design the course once,
and allow it to be implemented easily many times.

MICS 2008 32

ZOO
101

CHE
145

BUS
101

COM
103

BIO
109

GEO
106

Windows Basics
 File Management 1 1 1 1
 Internet Searching 1 2 2 1 1 1
Spreadsheet
 Data Manipulation 1 1 1 1 1
 Formatting 2 1 1 1 1
 Graphing/Charting 1 1 1 1 1
 Analysis/Statistics 2 2 1 1 1
Presentation
 Basic Presentations 1 1 1 1 1 1
 Dynamic Slide Show 1 1 2 2 1 1
 Presentation Skills 1 1 1 1 1 1

R
eq

ui
re

d
T

op
ic

s (
al

l)

 Group Dynamics 1 2 1 2 1 1
Database
 Database Structures 2 2 1
 Queries 2 2 1
 Reports/Forms 1 1 1
Desktop Publishing
 Poster Making 1 1
Multimedia
 Scanning 1 3 1 2
 Video Editing 2 1 3 2
 Digital Cameras 2 3 2
 Image Manipulation 2 3 2 2
 Audio Editing 2 2 3 2
Web Page Publishing
 Page Formatting 3 3

Su
pp

le
m

en
ta

l T
op

ic
s (

ch
oo

se
)

 Publishing 3 3

Table 1: Chinese Menu of Topics with Priorities

What we ended up with was the list of Required Topics and Supplemental Topics shown
in Table 1 that we affectionately refer to as the Chinese Menu. Required topics were
those that appeared as a high priority (marked with 1 in the table) for most of the linked
courses. These topics would make up 60% of the course. Though they would be given a
disciplinary focus depending on the linked course, they would provide a welcome core of
stability for the technology instructors. Linked instructors would also be given the
opportunity to add their own supplemental topics.

MICS 2008 33

3 Implementation

As mentioned, one of the goals of the development process was that we would perform
the complicated job of developing the course once, but make the job of implementing a
particular section of the course relatively straightforward. To that end, we staffed one of
the two sections each semester with a member of the development team, while the second
section was staffed by an instructor did not participate in the development process. We
felt that the feedback from that improvised course preparation would give us insight on
the wider applicability of this model. In this section we describe that process as it works
now, after three semesters and several evolutionary changes.

3.1 Constructing a Section

The process begins by selecting a group of course sections to cluster together that have
similar needs. The instructor in each potential linked course would prioritize the items on
the Chinese Menu, as illustrated above. If there are enough sections of a single course,
this is a good candidate, but the individual instructors from those sections should still
prioritize their needs, since use of technology differs widely between instructors in some
disciplines.

The first time this is implemented at a location, we recommend casting a wide net
initially and selecting out a cluster of courses with similar needs based on the topic
selection. We found some clusters that are not intuitive, e.g., the cluster of Concepts of
Biology with Geographic Information Systems would not have occurred to us without this
analysis.

3.2 Materials Required

The most important materials are the hardware and software needed by students in the
course. Though most classes were held in the standard instructional computer lab, we
relied heavily on a Media Lab available to all students for instruction in some of the
higher end topics. You will need to consider the technology facilities available at your
location and either adapt the course to them or budget in advance for the necessary
upgrades of equipment.

Though the Media Lab has fairly advanced technology, we tried where practical to use
hardware and software that the students would have access to after leaving our university.
For example, we taught video editing with Windows Movie Maker rather than Vegas Pro
used by Com Arts courses, and allowed students to bring in their own digital cameras if
they had them.

MICS 2008 34

We were not able to find a single textbook that met all of the needs of this course. Yet,
being a one-credit course, it would have been unreasonable to force the students to
purchase two textbooks. In the end, we selected a “brief” edition of a Microsoft Office
and Windows textbook. It was still both too much (400 pages, ~$60) and too little
(missing topics). But it gave the students a security blanket for much of the course
material.

Supplemental materials need to be obtained in advance for any topics not covered by the
textbook. In our case, handouts were available from the IT department for some topics.
Other materials were obtained directly from Microsoft or from sources on the Web, used
with permission.

The final sort of “materials” requirements that you need to take into consideration is
instructor expertise. Just as with the computer hardware, if the staff is not sufficient to the
needs of the course, you will either need to adapt the content of the course to them or
budget for the necessary upgrades (training) of the equipment.

3.3 Enrollment

Enrollment history for the LEC 104 technology course is indicated in Figure 1. As you
can see, the course has never been enrolled to its full potential of 30 seats (the computer
lab size). Also as indicated, several of the sections had such low enrollment that they
were cancelled before the semester started up.

12

9

1 2

14

9

3
5

0

5

10

15

20

25

30

F06-1 F06-2 S07-1 S07-2 F07-1 F07-2 S08-1 S08-2

Semester / Section

In
iti

al
 E

nr
ol

lm
en

t

Figure 1: LEC 104 Enrollment History

MICS 2008 35

Causes for the low enrollment remain unclear. As we show in Section 5, the course is
well received by linked instructors and well reviewed by students. We show in Section 4
that the course is succeeding in most of its goals. It has been “advertised” to advisors who
register students. Linked course instructors have encouraged their students to add the
course on the first class day of the semester.

In the second year of the course we attempted to address the low enrollment by
“widening the net” considerably, i.e., increasing the number in each cluster of linked
courses. Section one was linked to any science course with a laboratory component (~15
courses) and section two linked to any business course (~10 courses).

As you saw from Figure 1, that alone did not improve enrollments. But just as
importantly, we felt a philosophical disconnect with the inspiration for the course. By
linking to so many possible sections we are severely encumbered in the ability to custom
tailor the content to the needs of the linked course.

Our current best hypothesis for the cause of the continued low enrollment is confusion
over the existence and purpose of the course. Since it is not listed in the computer science
section of the print or online course schedule, students and advisors just do not think of it
when advising. Cross references have been added to the course schedule in all linked
courses to increase awareness. The course is also listed in the section with the mandatory
freshman seminar course, LEC 100, which adds to the confusion about the course.

4 Assessment

One of our goals in developing the course was to be able to quantitatively assess whether
this course is meeting the goals we set for it. We did not want to just add another ordinary
computer applications course to the assortment.

As indicated in Section 1, there were three primary goals for the course: technology
skills, student engagement, and group dynamics. Thus, the questions in our assessment
focused on those three aspects. Most quantitative measures were gathered on a five-point
Likert scale and normalized where necessary.

4.1 Measuring Improvement

Determining the effectiveness of the course could not be done on an absolute scale like
grades, because they do not take into account the student’s skill level before entering the
course. What we needed was a way to measure the increase in skill over time.

Furthermore, we could not measure only the increase in LEC 104 students’ skills, since in
general students’ skills increase just by virtue of their other class work. Thus we needed a
control group of students in the same linked courses but not in LEC 104. So what we
really needed was a way to measure that increase in skill relative to the control group.

MICS 2008 36

We also wanted to use the demographic data to see whether there were any populations
of students who were better served by such a course. In order to do so, we needed to
collect relevant demographic data such as age, sex, and experience level.

We developed pre- and post-semester surveys that we would administer to students in the
linked courses, both those in LEC 104 and those not. The surveys were administered via
e-mail and a Web site. They included 30-40 questions with demographic data, previous
experience and future intentions, and self-assessment of skills and attitudes. The full
survey is available on request. We set a goal of at least 5% improvement in each area in
order to consider the course a success (marked with a ☺ below).

4.2 Sample Size

Before giving any results, we should emphasize that with the relatively low enrollment in
LEC 104 and only partial participation from those few students, the sample size on all of
these statistics is relatively low.

We received survey results from 267 different students. Unfortunately, only 111 of them
responded to both the pre- and post-semester survey, so only those could really be used
for our intended analysis. Of those, 25 were enrolled in LEC 104, while 86 were only
enrolled in the linked course. Though the number of LEC 104 responses was quite low, it
does represent about 2/3 of the students who completed the course.

4.3 Technology Skills Results

The assessment of the effect of LEC 104 on students’ technology skills was a clear win
across the board. Technology skills were assessed both overall and individually for the
six possible computer applications components of the course shown in Table 2. As you
can see, students’ self-assessment of skill level in all areas increased by more than 5%.

Did LEC 104 course increase students’
self-assessment of computer skill in… Control LEC 104 Difference

word processing +1% +7% +6% ☺

spreadsheets +1% +18% +17% ☺

database -3% +17% +20% ☺

presentation software +5% +22% +17% ☺

audio/video editing -1% +14% +15% ☺

desktop publishing -1% +19% +20% ☺

technology skill overall +0% +7% +7% ☺

Table 2: Improvement in Technology Skills

MICS 2008 37

4.4 Student Engagement Results

Student engagement was measured indirectly through several of our best attempts to
indicate engagement in terms that the students could comfortably quantify. They included
the various measures shown in Table 3. As you can see, the assessment was a mixed bag
on individual items, but is judged a positive result overall.

Did the LEC 104 course increase student
engagement, as measured by… Control LEC 104 Difference

willingness to approach instructor +8% +4% -4%
interest in joining student clubs -7% +4% +11% ☺

participation in campus workshops -5% -2% +3%
plans to remain at UW-Fox next year -3% +4% +7% ☺

interest level in their linked course -10% -17% -7% '

Table 3: Improvement in Student Engagement

4.5 Group Dynamics Results

Group dynamics was measured directly by their self-assessment of the two factors shown
in Table 4. In the first year’s survey, a weak positive result was indicated, but with
additional second year data, the overall results are weakly negative. This variability may
be a real difference in instruction between the two semesters, or just statistical variability
due to the small sample size. Either way, the results cannot be considered positive.

Did LEC 104 improve students’ ability to
work in groups, as measured by… Control LEC 104 Difference

their comfort in working in groups +1% -7% -8% '
their self-assessed skill level +8% +10% +2%

Table 4: Improvement in Group Dynamics

4.6 Demographic Differences

Finally, the results in Table 5 create meta-measures of the three primary goals above by
averaging the “Difference” column for various focused subgroups of students. So
effectively each single number entry in the table below represents an amalgamation of all
rows and columns in one of the three tables above, but restricted to only the students in
the LEC 104 and Control groups that are in the subgroup indicated on the left.

MICS 2008 38

The data in this table is complicated to read, so an example might be useful. Take the
 -6% ' entry in near the bottom right of the table. This course appears to have increased
the computer skills of first semester freshmen 6% less than those who did not even take
the course. (This is not quite as discouraging as it might seem; in fact both actually
improved, but those in LEC 104 improved less.) Compare this to the +11% entry at the
top of the column that indicates that in general LEC 104 students improved by 11% more
than students who did not take the course. Overall then, what this indicates is that the
course is doing a significantly worse job (by 17%) helping first semester freshmen than
students in general.

Each subgroup listed is one that before the course began we predicted would be better
served by this course, mostly based on intuition. So the fact that we were doing
significantly worse in assisting first semester freshmen is at least counterintuitive to us,
and perhaps even disappointing. Each such negative entry deserves closer consideration
to see how we might improve delivery to those subgroups.

As you can see, the sample sizes on such restricted populations of students are very
small, sometimes to the point of rendering the results completely unreliable. Sample sizes
are represented by (n=#L/#C) where #L indicates the size of the LEC 104 sample and #C
indicates the size of the Control sample.

Did students in LEC 104 in groups
below Ø increase more or less than

control in goal to right? Ö
student

engagement
group work

ability
computer

skill
all LEC 104 (n=25/86) +2% -3% +11%

more previous experience (n=2/22) +9% ☺ -20% ' +16%

female (n=17/56) +1% -1% +11%

over 23 (n=5/16) +4% -8% ' +23% ☺

having their own computer (n=10/60) +3% -8% ' +12%

first semester freshmen (n=15/34) +4% +0% -6% '
no declared major (n=6/32) +0% +0% +9%

Table 5: Improvement by Focused Populations

5 Feedback

We obtained systematic but subjective feedback from three sources: the post-semester
survey of students mentioned previously, the standard student course evaluations, and a
survey of linked course instructors.

MICS 2008 39

5.1 Student Feedback

One question on the post-semester survey of LEC 104 students was particularly relevant
to overall feedback. There were 26 responses, but a fair representative sample is collected
below.

Q: What aspects of LEC 104 helped you the most in the linked course?

• Learning more about powerpoints, and how to present them in class.

• It is a good class, but requires a lot of time and work for 1 credit course.

• Learning research techniques and how to use the different office products better

• The Excel because we had to use Excel for our labs

• Although it is a nice refresher on stuff I already knew, I knew almost all of it.

The second source of student feedback is the standard Student Survey of Instruction
instrument used by the university to evaluate instructors. The overall student evaluation
numeric data were good, on par with other computer applications courses. One free
response question asks students to talk about the overall course. This feedback was
almost universally positive, as represented by the samples below.

Q: What did you like best about the course?

• Ask[ed] our opinions. Tailored class to BUS 101.

• I like how we learned all different skills on the computer and the group work.

• The business related material.

• It helped me understand how to make graphs a lot better.

• We learned how to solve for formulas on Excel and learned how to make movies
with audio and pictures.

5.2 Instructor Feedback

We asked a sequence of eight free response questions of the linked course instructors
after they had completed the semester. The purpose was mainly for improvement of the
next course offering, and many addressed specific issues with the courses. But two
questions addressed overall evaluation of the course.

Q: Did those students perform any differently than the other students?

• With respect to their grades, they did above the class average. However, I would
like to point out that, especially in terms of lab work, they were much more
proficient with the software we used (in particular, Excel) than most of the other
students.

MICS 2008 40

• The stock project required a display and presentation which these students seemed
to do a little better. It was hard to say for sure and what they would have done
without LEC 104, but I believe it made a difference.

• Their semester projects were more sophisticated and creative than the students who
did not participate. For instance, they had more photos of their river sites, they used
more graphics, they were more creative, and one student did a video!! It was
awesome by the way.

Q: Would you choose to link your course to LEC 104 if it were an option in the future?

• I think all the CHE 145 students would benefit from this course. The less time I
have to spend teaching them how to use the software, the more we can focus on the
concepts and results of experimentation.

• Yes, definitely.

• I hope to continue to link it if that option is possible. I spent much less time giving
personal tutorials on Excel. For instance, because some of the students knew how to
use it, and showed other students. I was lucky in that all the students in thee LEC
104 linked to Zoology were also in my lab class, and they did not need any special
help from me to learn the technology of D2L, or other Microsoft programs.

6 Conclusion

In the end, we feel confident that we have developed a model that achieves most of the
goals we set out to accomplish. It succeeds most strongly in increasing students’
technology skills in a variety of key areas directly applicable to the courses in which the
students are enrolled. It also succeeds, though less strongly, in increasing student
engagement in the university. The course did not succeed in improving students’ skills in
group dynamics, which is an area we will seek to improve in future offerings.

Along the way, we developed a framework that can be used to create another “link” with
minimal effort on the part of the instructors. The course can be customized to the linked
course without overburdening the technology instructors. We hope that the techniques we
used and the lessons we learned can be applied in a different context, and would be
interested to hear of any such efforts.

In the end, however, we are left disappointed and befuddled by one important factor: lack
of student enrollment. In the end, it is possible that this will doom this course. We built
it… but they did not come.

MICS 2008 41

The Root Causes of the Students’ Programs Quality
Improvement in the TBC Method

Syed (Shawon) M. Rahman, Ph. D.
 Assistant Professor, Dept. of Computer Science & Software Engineering

University of Wisconsin – Platteville
1 University Plaza, Platteville, WI 53818, USA
Phone: (608) 342-1625, Fax: (608) 342-1965

Email: Rahmans@uwplatt.edu

Abstract

In our research, we have introduced and implemented a new software development
method, Testing Before Coding (TBC), to bring in the benefits of using light-weight
software development lifecycle in introductory computer programming courses. TBC
improves students’ programs quality and makes testing as a fundamental part of
programming practice and students’ prior knowledge in software lifecycle are not
expected. In this paper, we have discussed the root causes or activities that we
believe play roles in improving students’ program quality.

MICS 2008 42

1.0 Introduction

Testing Before Coding (TBC) method is a Light-weight Software Development
method (such as Test-driven Development) and it has been applied in several
introductory programming courses to improve students’ program quality. We have
published the TBC method’s experimental procedure and results in other papers
before (such as [1, 2, 3]). In this paper, we have briefly explained different phases of
the TBC method. The TBC method introduces several additional activities or phases
compared to the classical (Waterfall) or the XP (eXtreme Programming) methods.
We believe these activities play a significant role in improving students’ programs
quality. In other papers before[1, 2, 3] we have explained how the TBC method has
been exercised in five different programming courses and has improved students’
programs quality by at least 24%, in terms of black-box testing.

The TBC method introduced the following activities that Waterfall or XP does not
acknowledge or to which it pays very little attention:

 Specify the input and output values of the program; identify boundary values
and data types.

 Create black-box test cases before coding; writing test cases before coding
forces the students to understand the requirements better.

 Students are forced to execute the test suite and test their codes; make testing
as an integral part of the program development.

 During testing phase, students create similar more test cases if any test case
fails and execute the whole test suite again to make sure that the recent
changes in the codes do not break the program somewhere else.

 Refactor codes to combine them and apply a couple of iterations that keep
the codes as simple as possible and make the program ready for any change
that comes along.

 Create a “working” prototype quickly; the prototype provides a clear
indication about the final product.

 Provide an easy framework and do not need any significant training or a new
learning curve for students.

Later in this paper, we have discussed briefly regarding the above activities.

2.0 TBC software development method

The TBC method does not require prior knowledge of the software development
lifecycle; knowledge of any specific application software or design syntax and
semantics; or domain-specific expertise to apply TBC in the program development
and improve program quality.

MICS 2008 43

In this section, we have introduced the TBC method and explained its different
phases. The TBC method is divided into a number of framework activities or phases
(Figure 1). We can classify the TBC method in the following seven phases:

 Gather and analyze requirements.
 High-level design.
 Data modeling and data specifications.
 Generate test cases and create a test suite.
 Develop the program.
 Execute the test suite and test the program.
 QA and customer evaluations.

2.1. Gather and analyze requirements

During the requirements gathering phase, the developers attempts to identify what
information is to be processed, what functions or performances are desired, what
system behavior can be expected, what interfaces are to be established, what design
constraints exists, and what validation criteria are required to define a successful
system. The key requirements of the system need to be identified [4].

If there is any customer involvement in the process, the TBC method requires
effective communications between customer and developer. The requirements
gathering process is emphasized and alerted specifically on software. To understand
the nature of the program(s) to be built, the software engineer must understand the
information domain for the software, as well as required functions, behavior,
performance, and interface [4]. Requirements must be reviewed with the customer.
The requirements document should be clear, unambiguous, understandable,
consistent, and complete.

2.2. Draw high-level design diagrams

The developers in the TBC method draw a few high-level design diagrams. The
developers make a list of everyone who will interact with the system, what output
they will receive, and what input they will provide. They draw the high-level design
or context diagram, show all the inputs and outputs in the system, and ignore the
inside detail of the system. The developers identify the overall program objectives,
available resources, and ultimate product.

MICS 2008 44

Gather and analyze
the requirements

Draw high-level
design diagram

Data modeling and
data specifications

Generate test cases
and create test suite

Develop the program

Execute the test suite
and test the program

Passed all test cases

If any test
cases fail

Customer communication
or add new requirements

QA and Customer
evaluation

Add new
requirements

Place in production

Identify any faults or
failure

Add more similar
test cases

 Figure1. The TBC software development lifecycle.

The design phase should discover requirement inconsistencies, missing system
components, and unexpected development needs. The TBC model does not spend
much time on initial or detailed design phase. However, it focuses on creating test
suites, developing codes, executing test suite, and overall testing process.

MICS 2008 45

2.3. Data modeling and data specifications

The TBC method defines data modeling and data specifications. If we get the data
model and data specification wrong, our application might not do what users need,
might be unreliable, and might fill the database with garbage.

In the data modeling and data specification cycle, the developer answers a few
general questions, such as what are the input or output data types, data ranges,
boundary values, and maximum or minimum values. The developer checks if there
are any possibilities for integer division, division by zero, blank values, or any other
exceptional situations. In order to perform data specification or data modeling, the
developer must understand the requirements and the system properly. It is an
extremely important phase for creating a test suite.

2.4. Generate test cases and create a test suite

The TBC model emphasizes the testing cycles. In the TBC model, the testing process
begins before writing code; developers generate test cases and create test suites
before writing code. Each developer follows the requirements document, data model,
and data specifications to write test cases.

The developer creates the test cases including both normal/valid and
abnormal/invalid conditions. The developer intentionally attempts to make things go
wrong to determine if things happen when they shouldn't or things don't happen
when they should. The test cases make sure that the program can handle any
unavoidable or exceptional situations.

2.5. Develop the program

The requirements and high-level design diagrams must be translated into a machine-
readable form. The developer writes code to develop the required software or
program. The programmers of the TBC model also conduct both the functional and
non-functional testing. Developers make sure that their programs are doing what
they expected the programs would do, but also that the programs are producing the
correct output and a complied version of the code.

2.6. Execute the test suite and test the program

In the TBC model, the developer tests the program extensively and makes sure it
passes every single test case before it is released into the production. The developer

MICS 2008 46

executes the program, feeds every test case in the test suite, and records the
corresponding test results.

If any test case fails, i.e., the expected output of the program and the actual output
are different, the developer goes back to previous steps where he or she generates
more related test cases and fixes the program. Once the program is fixed, the
developer executes the entire test suite again, including the newly generated test
cases used to fix the known bug. The developer also makes sure that the recent
changes do not create any more faults or failures in the program.

2.7. Quality assurance and customer evaluations

 Once the program passes the test suite, the program is passed to the quality
assurance (QA) team. The QA team evaluates the program and makes sure that the
program satisfies the customer requirements. The customers, or stakeholders, also
evaluate the program before it is placed into production.

If the customer finds any missing requirements or he/she would like to add a new
one, the developer takes the program in the initial state where the requirements
would be analyzed and reviewed. The developer would follow the entire process by
iteration.

3.0 Activities that leads to develop higher-quality product

In Section 2, we discussed how the TBC method acknowledged software different
activities in the development lifecycle. The TBC method acknowledged the classical
or traditional development method activities, such as requirement gathering and
analysis, design, implementation, or coding and testing. However, the TBC method
introduced several additional phases that we believe play a significant role in
improving software quality and producing higher-quality software at a lower cost.

We introduced the following activities in the TBC method that the Waterfall method
does not acknowledge or to which it pays very little attention:

 Specify the input and output values and identify extreme cases.
 Create test cases before coding.
 Developers execute the test suite and tests their codes.
 Create similar more test cases if any test case fails.
 Refactor the code and apply a few iterations.
 Create a “working” prototype quickly.
 Provide an easy framework and do not need any training.
 Constant customers’ involvement in the project.

MICS 2008 47

3.1 Specify the data and identify the extreme cases

In the data modeling and data specification cycle in the TBC method, the developer
answers a few general questions, such as what are the data type, data range, and the
maximum and minimum values. The developer checks whether there is any
possibility of integer division, division by zero, blank values, or any other
exceptional situations. In order to do data specifications or data modeling, the
developers must understand the requirements and the system properly.

Data specifications and identifying the extreme values in the database force the
developer to know the system better. Understanding the problem better would be
helpful while writing the program and the developers would produce better quality
programs. Data specification is also extremely important for creating a test suite.
Developers generate test cases for the extreme values and other exceptional cases,
such as boundary conditions, outside boundary values, blank input, or no input, etc.

3.2. Create test cases before coding

One of the unique requirements in the TBC method is creating test cases before
writing the code. These test cases primarily follow functional black-box testing
technique and unit testing technique. The developer follows the requirements
documents, context diagram, data model, and data specifications to write test cases
for both valid and invalid conditions and creates a test suite. The TBC model
emphasizes testing cycles and the developers generate test cases and test suites
before writing the codes.

Writing test cases before coding cycle forces the developers to understand the
requirements better and to be aware of exceptional values or extreme points where
the software would usually fail. Spending more time up front writing the test cases
would pay off in the later phases of the development. The developers would develop
the program quickly. While developing the program, they would know the
requirements and exceptional situations that lead them to create high quality
software.

After developing the codes, the testing phase is shorter than traditional development
methods. Tester teams would have a complete test suite to test their codes; however,
in the industry, the tester teams would further test their codes. We recommend using
automated tools in the testing phase, such as JUnit, XUnit, BlueJ, etc. Besides these
open source tools, there are many other commercial tools, also available in the
market, that industry could use.

MICS 2008 48

3.3. Developers execute the test suite and test their codes

 The TBC method forces developers to test their code. Developers are responsible for
both white-box and black-box testing. Developers test their code and make sure that
their codes are doing what they expected it to do. They execute the test suite, create
more similar test cases, and fix the codes. They execute all test cases again until all
test cases pass to make sure there are no faults and that the changes do not break the
code somewhere else.

After the codes implementation, the codes are transferred to the testing team. Testers
in the testing team execute the predefined test suites and perform other testing. For
small projects, sometimes the developers who implemented the code and the tester
could be the same person. In the testing phase, the main goal would be trying to
break the code, making sure that the program can handle any possible odd situation.
Other studies found that developers are not very good testers for their own code; they
could misunderstand the problem in the first place or not try to break their own
codes. A different person might see the problem in different ways and might find
new faults in the programs. The testing team can also use some automated testing
tools, such as JUnit, XUnit, etc. Besides these free tools, there are many other
commercial tools available in the market that industry could use.

Software testing phase in the TBC method is shorter than the traditional or classical
software development method. Chaplin [9] expressed that, in the test-driven
development, the testing phase would be one-tenth of the traditional method. We do
not have any exact data to support our claim; however, we predict that the testing
phase will not be as long as Waterfall and that it would be similar to TDD or longer
than TDD, but not as long as Waterfall. In the TBC method, the tester will have a
complete set of test suites that will be very helpful to the tester team. The code will
be less faulty as the process iterates several times and constant customer involvement
in the team clarifies the requirements and the problem domain better than the
classical development method.

3.4. Create similar test cases if any test case fails

 In the TBC method, the developers create a few similar test cases, if any test case
fails. It would find the similar problem in the code, if one exists. The developers fix
the code and execute the complete test suite once again to make sure that the recent
changes in the codes do not break the program somewhere else. In the Waterfall
method, the developers are generally reluctant to make any changes in their code;
they fear that making changes in one place would break the code in other places.
Even if it does break, in the TBC method, the developer would know the exact test
case that failed and would fix the program quickly. This process boosts the
developers’ confidence about their programs correctness and works as a driving
force to go forward.
In each of the iterations in the development cycle, the developers execute the entire
test suite. If any test case fails, the developers go back to the previous phase where

MICS 2008 49

they generate more similar test cases and fix the code and execute the entire test suite
again. The reasons are to find similar bugs in the code and make sure that the
program does not break somewhere else.

3.5. Refactor the code and apply a few iterations

When we find two methods that look the same, we refactor the code to combine
them. When we find two objects with common functionality, we refactor to make
sure there is just one. Refactoring reduces the code volume and cleans up the
unnecessary code from the program. Refactoring keeps the codes as simple as
possible and ready for any change that comes along. William Wake wrote in his
book that through refactoring the codes become clearer, better designed, and of
higher-quality [6].

Fowler [5] explained that the entire point of the engineering-based approach is to
say, if we get the design right, we won't need to refactor because our code will be
just hunky-dory. In reality, of course, it's hard to come up with a design that good. In
general, the Waterfall method follows a similar concept that make the “design is
right” and implements the software based on the design. But in reality there are many
reasons the design could go wrong. For example, the developers could have
misunderstood the requirements, or customers could fail to explain in first place, etc.
However, refactoring can work with any methodology. There are many developers
who use refactoring with the Waterfall-style approach. Whenever we have a
substandard body of code that we need to improve, refactoring is a technique to
consider [5].

Developers in the TBC method do a few iterations for developing any software and
refactor their code. The main goal of refactoring in the TBC method is to improve
the internal structures of the code. We can refactor anytime as needed, however,
there are three cases we must refactor [5]:

 If there is duplication.
 If we perceive that the code and/or its intent is not clear.
 If we detect problems in the code, whether subtle or not so subtle, that

may indicate that there is a problem. It could be a design issue or
something else.

The coupling in TBC would be less than in Waterfall, as the requirements in the
TBC method are more clear and simplified than in the Waterfall method. The TBC
demands frequent customer communications and iterates the cycles that verify or
simplify the requirements. We also predict that the TBC code would be highly
cohesive, because the TBC method forces the developers to understand the
requirements and problems better and would reduce the scattered use of other
methods or actions in the code.

MICS 2008 50

As results of this refactoring process, constant customer communications, writing
test suites before coding, etc., makes the code cleaner, simpler, highly cohesive, and
maintains loose coupling between classes.

3.6. Constant customer involvements in the project

Customer involvement or customer communications is one of the main focuses in the
TBC method. Customers engage in different activities with members of the
development team. One of the main complaints in the Waterfall method is that the
final product might not be the product that the customer wanted. In the Waterfall
method, the customer cannot see a prototype or get a clear idea until the project is
close to being finished. There is always a risk that the developers did not understand
the customer requirements or that the customer couldn’t properly explain their needs
in the first place. If this were the case, the team could produce something that might
not be suitable or different than the customers’ expectations.

In the TBC method, customers and developers’ frequent communications overcome
this problem. Both party’s involvement make sure that the developers “develop the
product right.” Customers are involved in different activities in the development and
work side by side with developers verifying the requirements, creating test cases,
testing the application, etc. It would be very helpful if the customers had knowledge
about the problem domain and a clear idea about the application’s requirements.
Sometimes the TBC method includes marketing personnel in the requirements
analysis phase to obtain a better understanding the requirements and the market
demands.

Customer and developer roles are different in the TBC method. They are in the same
team, but need to make different decisions. At the early stage of the development, in
the requirements phase, the customers provide the requirements and choose the
priority of the requirements while developers estimate the work and analyze the
requirements. Later in the development phase the developers write the code while the
customers write test cases for functional or acceptance testing and answer
developers’ questions.

The roles of customers and developers in the TBC method would be similar to the
XP roles, as Kent Beck [7, 8] and William Wake [6] listed in their books: The
customers decide scope (what the system must do), priority (what is most important),
composition of releases (what must be in a release for it to be useful), and dates of
releases (when the release is needed). On the other hand, the developers decide
estimated time (how long it will take to add a feature) technical consequences
(developers explains the consequences of technical choice, but the customers make
the decision), process (how the team will work), and detailed schedule (when parts
will be completed within an iteration).

MICS 2008 51

3.7. Create a “working” prototype quickly

In the TBC method, developers create a quick prototype in their earlier iteration
which is verified by the customers. In many cases customers cannot really
understand the process or the requirements until they see something workable. The
prototype provides a clear indication to the customers about their final products, and
developers and customers get an opportunity to make adjustments. However, in the
Waterfall method, the customers cannot see a prototype until the project is in very
close to being finished and then it is very late to make any adjustments. There is
always a risk that the developers would develop software that was different than the
customers’ needs. To make any change the developers may need to redo the entire
development process.
Another potential danger in the Waterfall method is that the developers won’t know
if the solution is successful until very close to launch, leaving little time and room
for correction. Oversights and flawed design work can seriously affect the launch
date.

Changes in the requirements in the later stages could be very expensive and in some
cases the reason for failing the entire project. However, if we develop software
following the TBC method, the developers or customers would see a working
prototype in an earlier iteration and have enough time to adjust the project or
requirements, if necessary. The next topic in this section, we discuss more about the
change of requirements cost activities.

4.0 Conclusions

We have introduced and implemented the Testing Before Coding method that is a
subset of eXtreme Programming. Our research has concluded and presented
experimental results that the TBC method improves students’ program quality and it
brings many other benefits. In this paper, we have discussed the reasons why TBC
makes a difference compare to Waterfall and XP in terms of students’ program
quality. We have pinpointed those reasons in our research and explained briefly in
this paper.

There are several reasons or activities that play a significant role on applying the
TBC method for developing students’ programs and improving quality such as
students forced to write test cases before writing code which help students
understanding the requirements better; make testing as an integral part of
development process; and help students while writing the program.

During testing phase, students write similar more test cases, if one test case fails and
execute the whole test suite to make sure that fixing one bug did not create more
bugs in the program. Students refactor their codes and create a prototype quickly that
provide an indication about their final product and it helps for gathering or adjusting
requirements.

MICS 2008 52

In our research, we have also measured these activities using software several
metrics that play role in improving programming quality and produce higher-quality
product.

References

1. Rahman, Syed; “Applying the TBC Method in Introductory Programming
Courses”; IEEE Computer Society and ASEE sponsored conference, The
2007 Frontiers in Education Conference (FIE 2007), Milwaukee, Wisconsin,
October 10–13, 2007.

2. Rahman, Syed and Juell, Paul; ‘Applying Software Development Lifecycles
in Teaching Introductory Programming Courses’; IEEE Computer Society
and ACM SIGSOFT conference, 19th Conference on Software Engineering
Education and Training, April 19-21, 2006, Hawaii, USA.

3. Rahman, Syed and Juell, Paul; “Testing Before Coding: A cultural change
approach for teaching and developing computer programs”, Association for
the Advancement of Computing in Education (AACE) conference; World
Conference on Educational Multimedia, Hypermedia & Telecommunications
(EdMedia 2006), June 26-June 30, 2006, Orlando, Florida.

4. Pressman, R., S.: Software Engineering: a Practitioner’s Approach, 6th Ed,
McGraw Hill, NY, 2005, Pages 467-594.

5. Fowler, M.: “Agile development: what, who, how, and whether,”
http://www.fawcette.com/resources/managingdev/interviews/fowler, web
retrieve on April 24, 2007.

6. Wake, W.: eXtreme programming explored, Addison-Wesley, NY, 2002,
Pages: 28, 134-152.

7. Beck, K.: Test-driven development: by example, Pearson Education, Inc., NJ,
2003, Pages: 27, 123-125, 178.

8. Beck, K.: eXtreme programming explained: embrace change, Addison-
Wesley, NY, 2000, Pages: 27, 131-133.

9. Chaplin, D.: “Test driven development,” Wednesday, December 17, 2003,
http://www.byte-vision.com/TestDrivenDevelopmentArticle.aspx, web
retrieve on March 6, 2008.

MICS 2008 53

http://www.aace.org/conf/Cities/Orlando/default.htm

RANDOMLY GENERATING WELL-
FORMED POSTFIX EXPRESSIONS

applying biological processes to computer
programming

Allen Ng
Computer Science Department

University of Wisconsin--Parkside
Kenosha, WI 53141

ng@cs.uwp.edu

ABSTRACT
A model of biological inheritance is applied to develop a random
search algorithm which yields an optimal solution. The underlying
biology is presented, and application is made to the design of the
software. The genetic algorithm's search speed is compared to a
purely random search and shown to be much faster at producing
well-formed solutions despite having no information on the criteria
for correctness.

MICS 2008 54

1.0 INTRODUCTION AND BACKGROUND

Of all systems in existence, none are as optimized and efficient as those found in nature.
Indeed, the human genome is so advanced that even with all our efforts we have only
been able to observe and record it; no method to exactly duplicate its functionality has
been discovered as yet. While human cloning may still be the stuff of science fiction,
there are some observations to be made that can be applied to the technology of today.
First, a brief primer on the underlying biology.

1.1 Chromosomes

Until recently, the young science of genetics was virtually unheard of outside the domain
of a few, highly specialized scientists. Today, some high-school students can tell you
that the chromosomes contained in cells are the building blocks of life. Chromosomes
are made up primarily of Deoxyribonucleic Acid, or DNA. The nucleic acid portion of
DNA comes in the form of nucleotide bases that encode the information for making the
proteins necessary for life.

1.2 Mutation and Synapsis

As cells reproduce, they must obviously make more DNA. Our bodies contain trillions of
cells and, though at any one time only a portion of them are reproducing, the amount of
DNA being replicated at any one time is still enormous. With so much activity going on
in a system so complex, mistakes are inevitable. As car salesmen are fond of pointing out
(usually while having you apply for extended warranties): if you make 100,000 copies of
anything, a lemon is bound to slip through.

DNA is no exception and can be damaged or in other ways altered by many factors most
often while replicating. It is important to note that the exact location of these alterations
within the chromosome is totally random. As a result, the effects of these alterations are
highly unpredictable. Because of redundancies within the DNA sequence, many changes
can occur that go unnoticed as they have no net effect. Given that life depends so heavily
on the enzymatic action of proteins and that DNA encodes the instructions for producing
those proteins, alterations to the DNA sequence that do produce an effect are usually
lethal. From time to time however, by chance, an alteration to the DNA sequence, or
mutation, can result in a beneficial effect.

These mutations are important as they provide variety within a species. If DNA were
always replicated exactly and with no errors and no variation, then every organism within
a species would be identical. More important than the damping effect this would have on
social gatherings, this would equate to placing all of one's genetic eggs in one

MICS 2008 55

environmental basket. Anything in the environment that affects one of them, affects all
of them. This is a recipe for extinction.

So important are these sequence mutations, that organisms frequently do it on purpose.
Organisms that reproduce sexually produce sex cells, called gametes, during a process
called meiosis. The gametes contain the parent's genetic contribution to their offspring.
During meiosis, an event called synapsis occurs which partially re-arranges the DNA
sequence within the gametes resulting in a wide variety of DNA sequences that could be
passed on to offspring.

1.3 Survival of the fittest

It is the DNA that is passed on to offspring that determines the offspring's traits. Though
previously stated, it is important enough to reiterate: without mutation or synapsis, an
organism's offspring would only contain those traits present in itself. It is these
alterations in the DNA sequence that allow for occasional improvements to occur. Be it a
beak that is more suited to nut cracking or bacteria that are more resistant to toxins (or
medicines, depending on your point of view), DNA mutations that help rather than hinder
an organism, help to ensure the survival of the organism so that it may reproduce and
pass on the mutation to further generations. This weeding out of weaknesses and
preserving of strengths is known as survival of the fittest.

2.0 APPLICATION AND DEVELOPMENT

Our goal here will be to apply the genetic model to a computer program in order to
develop an algorithm which yields an optimal solution. For simplicity, we will use
randomly generated, arithmetic expressions with the intent of generating well-formed,
postfix expressions (if you are unfamiliar with postfix notation, see note at end).

2.1 Solution encoding

First, a method of representing the solution as a linear sequence, or chromosome, must be
found. Postfix expressions are linear, the methods of manipulating them are well
understood, and most importantly, it is very easy to assign a numerical value to them;
namely, by evaluating them. Therefore they are well suited to this task. For our
purposes, we will deal with expressions containing the digits 0-9 and the arithmetic
operations of addition (+), subtraction (-), multiplication (*), division (/), and taking a
modulus (%). In an organism's DNA sequence, there is typically a large percentage of
the sequence that does not contain information for protein production. These are referred
to as non-coding sequences. Non-coding characters are also allowed in our expressions
and, as we have chosen arithmetic expressions to model a chromosome, the letters A-Z

MICS 2008 56

will be used as non-coding characters. It should be noted that a digit or operation could
conceivably be a non-coding character as well, if it doesn’t make sense in the expression.
For instance:

+ 2 2 + *

contains two non-coding characters (namely, the first “+” and the “*”) neither of which is
a letter.

It is important to note that since we are randomly generating the initial expressions, our
evaluation of these expressions needs to be very fault tolerant. In other words, the
presence of non-coding characters will not deter us from evaluating the expression and
assigning it a value. Non-coding characters will simply be ignored.

2.2 Random variation and cross-over

The choice of using arithmetic expressions as our chromosome is of benefit here since
making random mutations to the sequence is almost trivial. When the sequence is cloned,
there is a chance that a mutation will occur, resulting in a random character (a digit,
operation, or letter) being substituted into the sequence. Two expressions are also
allowed to "mate" to generate a new expression consisting of randomly selected sub-
sequences from each of the parent's sequences. This process is analogous to the synapsis
that takes place during meiosis.

2.3 Solution evaluation and fitness testing

Survival of the fittest predicts that those organisms that are the most fit, or have the most
advantages, have a higher probability of surviving long enough to reproduce. By
reproducing, an organism is able to pass on its traits which, in turn, gives future
generations the same advantages and allows the cycle to repeat. However, not all traits
are advantageous; only those traits that help an organism to better adapt to its
environment represent true advantages.

In order to weed out the weak and preserve the strong, some method is needed to rank our
expressions and determine which will pass on their strengths to further generations. An
obvious approach is to rank the expressions according to their evaluated value. This does
not quite work, however, as a bit of thought reveals that expressions with a large value
are not necessarily well-formed (and that is our ultimate goal). We need an environment
that does not reward simply ever larger values. To that end, we will define an
expression's fitness to be its evaluated value divided by the length of time it took to
process the expression.

expression value / time to evaluate

MICS 2008 57

Each chromosome is also examined to determine how well-formed it is. A chromosome's
correctness score is calculated by:

of operands / # of operations+1

A well-formed expression will have 1 more operand than operation giving a correctness
score of 1. Each non-coding character encountered during expression processing is
deducted from either the number of operands or operations as appropriate.

Our choice of a correctness score also reinforces our choice of a fitness score. While
proof of this is outside the scope of this paper, it is intuitively obvious that a well-formed
expression should have a higher fitness score than a mal-formed one. This is evidenced
by the observation that a non-coding character will add to the expression's processing
time while not adding to the expression's value (recall how we defined fitness).

Only the most fit of the candidates in each generation are allowed to reproduce (no, this
isn't 1984 or Handmaid's Tale...they're only arithmetic sequences). The expressions in
the top 25% produce 4 offspring each: 1 from mating with a randomly generated
chromosome and 3 from mating with the next fit-ordered chromosome.

It is tempting to want to combine the correctness score into the overall fitness score, but
not doing so turns out to be more appropriate. Our goal is to use a model of biological
inheritance to guide a random search for an optimal solution. We do not wish to simply
compare randomly generated expressions until we match a predefined pattern. By
leaving the correctness score out of the fitness calculation, we are assured that this is so.

Figure 3.1.1 Fitness scores for successive generations of randomly generated postfix expressions

MICS 2008 58

3.0 ANALYSIS AND SUMMARY

3.1 Results

Using the genetic model as defined above, successive generations of inherited
expressions are observed alongside a control group of expressions generated randomly
(without inheritance). The figures shown display a plot of value vs. number of
generations, with the fitness associated with a particular generation being the highest
fitness observed up to that generation.

Figure 3.1.2 Fitness scores for successive generations of inherited postfix expressions

3.2 Observations

3.2.1 Fitness scores of inherited expressions compared to random expressions

The most obvious observation is to note that the comparison of fitness scores from
randomly generated expressions to those from inherited expressions shows a drastic
disparity after fewer than 600 generations. In fact, it takes the randomly generated
expressions over 10,000 generations to reach the fitness level of inherited expressions
from around 400 generations.

Most importantly however is to note that inherited expressions tend toward being well-
formed. Figure 3.1.3 shows that even as the fitness scores of randomly generated
expressions increase, their correctness scores do not necessarily follow suit. Figure 3.1.4

MICS 2008 59

shows that inherited expressions do indeed tend towards being well-formed (see section
3.2.3).

Figure 3.1.3 Correctness scores for successive generations of randomly generated postfix expressions

Figure 3.1.4 Correctness scores for successive generations of inherited postfix expressions

MICS 2008 60

3.2.2 Emergence of recurring sub-expression sequences within a population

Examining the actual sequences from successive generations shows recurring sub-
sequences being passed on from generation to generation. This appeals to a sense of
symmetry with the biological model, but more importantly shows that sub-sequences that
improve overall fitness are more likely to get passed on and sub-sequences that detract
from fitness are more likely to get passed over.

3.2.3 Slight alterations in configuration lead to drastic variations in patterns

Some of the primary parameters of the program (and their values used for this study)
include:
• sequence length (100 characters)
• mutation rate (1%)
• cross-over frequency (40%)
These parameters have shown to be very sensitive in that slight alterations in value can
lead to drastic variations in output. This is a hallmark of chaotic systems, a subject
worthy of treatment in itself.

One example is mutation rate. It was noted that inherited expressions tended towards
being well-formed. This observation requires qualification however, as this property
seems to depend on a low, but still greater than 0%, mutation rate. For instance, if the
mutation rate is changed to 10% or 0%, the inherited expressions no longer tend toward
correctness.

3.3 Summary

Our aim here was to show how the application of a biological model to computer
programming can produce a random algorithm that yields an optimal solution (or at least
tends to one). This problem was intentionally simple so that focus could be given to the
process. The way is now clear to apply the process to more complex situations.

As with all science, this success leads to more questions.
1. What types of problems are suitable for a genetic inheritance approach?
2. What is the relationship between mutation rate and form convergence?
3. Are genetic algorithms more efficient than purely random searches? Than hard-

coded techniques? What are the trade-offs?

MICS 2008 61

3.4 Further reading

• Goldberg, David. Genetic Algorithms in Search, Optimization, and Machine

Learning. Boston: Addison Wesley, 1989.
• Moriarty, David and Risto Miikkulainen. "Discovering Complex Othello Strategies

Through Evolutionary Neural Networks."
<http://nn.cs.utexas.edu/downloads/papers/moriarty.discovering.pdf>.

A NOTE ON THE DATA

The reader may have noted a potential loss of precision due to our comparison of
floating-point numbers. The software for this research was written in Java. Java’s
double provides around 16 decimal digits of precision. The lengths of the expressions
used in this research generate values on the order of 1017. This enables us to resolve
values that differ by at least a factor of 10. Observation of the raw data suggests that
values in the range used in this research are not greatly affected by this.

Further, the graph in figure 3.1.2 seems to suggest that the inherited expressions improve
at an exponential rate. This requires a bit of clarification. The data points included in the
graph were the highest fitness scores observed up to that generation. The last point on the
graph is merely the highest fitness score observed from all generations.

MICS 2008 62

POSTFIX NOTATION

 The following arithmetic expression should be familiar to most:

5 – 2

This expression uses what is called infix notation, where the operation is in-between the
operands. Postfix notation is nothing more than swapping the position of the operator so
that it appears post-expression like so:

5 2 –

The advantage of using postfix rather than infix on a computer is that postfix needs no
parenthesis. As an example, take:

5 – 2 * 4

Depending on which operation you wanted to do first, parenthesis might be required as
in:

(5 – 2) * 4

With postfix, no such ambiguity exists. If the subtraction is to be performed first, we
have:

5 2 – 4 *

and if the multiplication is to be performed first, we likewise have:

5 2 4 * -

Just like infix, postfix can become malformed. For example:

2 + 3 4

contains too many operands and so is not well-formed infix. Likewise:

+ 2 2 + *

is not well-formed postfix. In general, for a postfix expression to be considered well-
formed, it must contain 1 more operand than operation and there must be two operands
prior to any operation.

MICS 2008 63

Automated Process for Classifying Text Documents Using

K-Means and kNN

Mike Evans, Matt Lietzke, Stephanie Huls, Doug Svendsen

Computer Science Department

Saint John’s University

Peter Engel 209, SJU campus

Computer Science Department

Collegeville MN 56321

irahal@csbsju.edu

Monday, May 07, 2007

MICS 2008 64

ABSTRACT

Correctly classifying text documents among a set number of topics is a difficult task. We

will present an automated system using text mining techniques to do just that. This paper

presents analysis on documents describing aircraft malfunctions. We investigate the

effectiveness of classifying these documents utilizing variations of kNN. The variations

of kNN consist of Euclidean Distance and Cosine Similarity for distance metrics.

Preprocessing techniques, such as Doc2Mat and IDFs, are used to format the data.

Clustering, using K-Means, on the formatted data is used to identify class labels utilized

by kNN. Our results showed that both variations of kNN classified the airline documents

accurately. Cosine Similarity showed slightly better results. We concluded that our text

mining classification system can be used to accurately classify any dataset of text

documents.

MICS 2008 65

BACKGROUND

Text mining is a special subset of data mining; instead of the non-trivial extraction of

previously unknown interesting facts from a set of data, text mining extracts these facts

from a collection of documents. The key element in text mining is the linking together of

the extracted information. This information can be used to form facts or hypotheses to be

used or tested by other forms of experimentation. The difference between regular data

mining and text mining is text mining patterns are extracted from a natural language text

rather than from structured databases of facts, which are designed for programs to process

automatically whereas text is written for people to read.

Text mining basically originated from attempts in the fifties to understand the

information processing capabilities of the human brain and to model these capabilities.

Original approaches analyzed text at the level of individual sentences in order to create a

semantic representation of the sentence by using relations between the important words

of the sentence. A corresponding semantic construction was associated with each

individual sentence. This did provide a good way to understand the meaning of the text.

However, there are many different ways an English sentence can be constructed, which

led to a list of constructions that grew large very rapidly. As a result, this approach

works well only for a limited subset of natural language texts.

A person must keep in mind that text mining is not the same as information extraction.

An example of information extraction is a program that reads resumes and extracts out

people’s names, addresses, job skills, etc. Generally these programs have 80+ percent

accuracies. The people’s names, addresses, etc are not new pieces of information.

However, some related approaches that pull out information from documents can be

turned into data mining, such as finding overall trends in textual data such as looking at

crime scene statistics or pulling out key terms in police reports to find overall trends in

car theft.

Turning information extraction into text mining is relatively simple. We can extract

names of people and companies in texts surrounding the topic of wireless technology to

try to conclude who the top participants are in that field. These facts must be interesting

and this poses a problem for some approaches where it is difficult to recognize which

relationships are truly interesting. People who are familiar with the wireless technology

field are more than likely already aware of key players; which makes this information

previously known.

Text mining can even be applied to biosciences. For example, researchers in the

biosciences are looking for indirect links in different subsets of literature in biosciences

to try to come to a hypothesis of the causes of rare diseases. Also it can be used to help

discover which proteins interact with other proteins in genomics. In this type of research,

text mining is used to try to look for words that co-occur in articles about protein in order

to predict interactions. Text mining does not look for direct mentions of pairs, but rather

looks for articles that mention the proteins’ individual names, record of other words that

MICS 2008 66

occur in articles, and search for other articles containing the same sets of words.

However the meanings of the texts and findings are interpreted by humans; not by

machines.

Hospitals can also benefit from text mining. Text mining can be used on patient’s charts

from hospitals in order to discover ways to improve patient outcomes. The University of

Louisville in Kentucky has done just this. They have found that some medications

prescribed and taken during hospital stays can prolong the hospital stays for patients,

especially diabetic patients. Diabetic’s blood sugar levels can be altered by certain

medications. If the diabetic patient’s sugar levels vary, their risk of infection after

cardiac surgery increases. A draw back to cases like these, and many other text mining

applications, is that each individual hospital records their patient information differently

and the application for one hospital’s data has to be tweaked or drastically changed to be

used on another hospital.

There are limitations of what text mining can do. One of the major limitations of text

mining is that we are currently unable to write programs that fully interpret text like what

the human mind is capable of doing. Also, the information needed in some cases is not

recorded in a textual format. Some needed information may be in the format of spoken

conversations, radio shows, television, etc. Characteristics of text mining also pose

various problems. Text mining has to deal with very high dimensionality because each

word is usually considered a dimension. There is high dependency in text documents.

Dependency results from words having a different meaning as a result from the various

words used with it and relevant information is usually a complex conjunction of words

and phrases. Ambiguity, such as word and semantic ambiguity, is a difficult obstacle has

been proven hard to solve even today. Word ambiguity refers to pronouns, such as he

and she, synonyms, such as buy and purchase, and words with multiple meanings, such as

bat (mammal/baseball bat). Semantic ambiguity refers to sentences that may have

multiple meanings such as “The chicken is ready to eat.” Noisy data poses another

obstacle. Spelling mistakes, abbreviations, slang, and acronyms are examples of noisy

data. Also, very informal texts such as emails, “R u available?” are problematic.

Mining of historical texts poses its own set of problems. Most text mining tools focus on

present-day English and the natural language of many historical text documents are

dependent upon when and where they were created.

Some of the overall goals of text mining are improved document classification, automatic

semantic explanation of documents, improved searches by semantic and concepts, and

improved clustering of documents by concept. [2]

PROBLEM DESCRIPTION

The idea for this project was obtained from the Seventh Annual Data Mining Conference

put on by the Society for Industrial and Applied Mathematics (SIAM), which we decided

to “non-officially” participate in. In this project, aviation safety reports are being

analyzed and the overall goal is to group together the reports depending upon the

MICS 2008 67

problem(s) they describe. Some of the documents describe more than one problem,

therefore, having the potential to belong to more than one class; however, no class labels

are given.

The dataset obtained contains 21,519 records, with one report per record. All of these

reports are in one file, which is the standard text mining format. Each document is about

a paragraph long. Refer to Figure 1 for a sample of the dataset.

Unfortunately, the dataset repeatedly had words that ran together, such as “loudnoise” or

“engineindicationandcrewalertingsystem.” This posed a huge preprocessing problem.

With the frequency of this problem suggests that it is too common for simple typos and

may have been introduced by the SIAM for competition. These 'words' were treated as

one attribute and eventually were thrown out since they had little frequency of

occurrence.

To begin, we will preprocess our data using Doc2Mat, to take care of the errors with the

dataset and to format the data so the K-Means algorithm could be used to cluster the

documents and to identify the class labels on the training set. These processes will be

discussed in further detail later in the preprocessing section of the paper.

Next the classification algorithm K-Nearest Neighbors (kNN) will be used to identify the

problem(s) each document in the data refers to and to classify the documents using the

class labels produced by K-Means.[1]

Finally we use the results obtained from the training process on the test documents. At

this point, the precision, accuracy, recall, and F-1 measurements will be computed so the

performance of the classification results can be analyzed.

MICS 2008 68

Figure 1: Sample Dataset

APPROACH

Figure 2: Process Flowchart

Preprocessing

In our text mining experiment, preprocessing was essential. Our data set contained a

high volume of noise with added terms and non relevant data. The preprocessing

initiative was a complex set of issues that we dealt with in turn. The first issue was to

represent our data as a mathematical model in order to work with frequency and

occurrence counts. In doing so, we can reduce the noise produced from common, useless

terms. The next step is to normalize our data with respect to each document and adjust for

over saturation of relevant terms. This is accomplished by working with Inverse

Document Frequency terms. Finally, we must cluster these terms together to discover key

words which would describe the dataset as “class” labels.

Doc2Mat

Doc2mat was the first tool used for preprocessing. This tool transforms our twenty

thousand documents into a matrix of documents by term frequency counts. The program

starts with the first document and counts the words present; it then marks the appropriate

term frequencies. Then, the program proceeds to the following document, updating the

first document with empty columns for the new terms discovered. This matrix uses

document number as a row reference and the term number for the column heading. The

program uses a stop-list which is a built in list of words that are to be excluded from

counting. This stop list consists of common words in the English language. Filtering out

these words is a common practice for text mining. The process of establishing term

frequencies allows the data to be represented as a statistical model. The process for this

tool is as follows:

MICS 2008 69

Algorithm of Doc2Mat

1. Gather user inputs for stop list creation and filename

2. Tokenize text documents and maintain term counts

3. Output results of term frequencies by document

The output contained 20,000 rows which represent documents and approximately 10,000

terms which represent keywords. Each cell value then is the term frequency for that

specific document.

Java IDF

The output from Doc2Mat is the first overall step for preprocessing our data. However,

this output, (Term Frequency), is inadequate for analysis and modeling. These terms need

to be normalized with respect to the overall dataset. We accomplished this objective by

converting term frequencies into Inverse Document Frequency (IDF) values. These

values then are again normalized using a sum of squared formula. This section of the

preprocessing is done by our own Java IDF calculator.

Algorithm of Doc2Mat

1. Parse through vector output from Doc2mat and create internal Matrix

2. For each term frequency tj in a document dk

a. Apply IDF Calculation for each term in document.

IDF = log(DocNum/TermCard) * tj

3. For each IDF value ij in a document dk

a. Apply Normalization Formula

ij / Σ k (tj)
^2

b. Store Normalized IDF Value

DocNum is the number of documents in the dataset, and TermCard is the cardinality (or

total number of documents in which the term occurs). tj is the term frequency for that

entry j.

At this point, our data is generalized for all documents and is the appropriate normalized

IDF value. There were several issues operating on this data set. The experiment hardware

supplied was inadequate for running our program successfully. We employed the use of

the Saint John’s Melchior cluster in order to accomplish this goal (See Hardware

Section). This data is ready to be clustered for class label extraction.

MICS 2008 70

KMeans Clustering

With the dataset ready to be clustered, we chose the KMeans clustering algorithm to use

on our dataset. The KMeans algorithm “defines a prototype in terms of a centroid, which

is usually the mean of a group of points, and is typically applied to objects in a

continuous n-dimensional space.”[1] Since our data is normalized and is generally

uniform and continuous, this algorithm suited our needs best. The algorithm for KMeans

is as follows:

Algorithm of KMeans

1. Establish K number of points and initialize them randomly

2. Do

a. Parse through input points and assign each to a specific cluster based on distance

metric

b. Reset each centroid based on relevant points contained in cluster

3. While centroids do not move

In our implementation, we use a random number generator to establish the attributes for

our initial centroid values. This process of selecting random start points can potentially

lead to misinformation as centroid selection is key to useable output. Therefore we ran

this aspect of the preprocessing data several times and correlated the extracted data to

better our clustering model output. Also, after our initial calculations using Euclidian

distance measure, we decided to implement cosine similarity COSINE SIMILARITY

since our vectors were similar. This algorithm on such a large dataset took several hours

to per run. We used nine tenths of our data set for training for our K nearest Neighbors

algorithm. [5]

EXPERIMENTATION

After our data had been pre-processed, we were able to perform the actual classification.

Our last step of preprocessing, clustering with K-Means, gave us two files to run through

the kNN classification algorithm. Unfortunately, there is no way to know if those class

labels derived through K-Means are completely accurate, aside from manually checking.

However, this is somewhat typical for real world data. On that note, we used kNN to

give us our final results, outputting metrics for analysis.

Our K-Means algorithm, described in the preprocessing section, outputted a file

consisting of documents and their cluster labels to be used for training and another

similar, yet 1/10 the size, file to be used for testing. We decided not to use the test

dataset given by the competition simply because it was easier to take in one dataset and

MICS 2008 71

split it apart into a training and test set than make two datasets work together. This had to

do with the output of doc2mat and the fact that we would have needed to align the words

from one dataset to the other in order to do our distance equations on them.

For all of our preprocessing and processing we used a computer with two dual core

AMD Opteron 275 processor’s clocked at 2.1 gigahertz along with 8GB of physical

memory (RAM). Our programs were all single threaded so they utilized one core on one

processor, allowing us to run multiple trials at once.

To do the actual classification, we used the K-Nearest Neighbors algorithm. kNN takes a

training set and plots each entry on an n-degree plane. It then takes test entries one at a

time and computes the distance from the test entry to every other entry in the plane. Then

the average label from the k nearest entries is assigned to the test entry as its

classification. We implemented this algorithm ourselves using both cosine similarity and

Euclidian distance for our distance measures. Euclidian distance needs no explanation,

but cosine similarity may be less familiar. Cosine similarity is a distance metric that in

essence turns the two entries to be compared into vectors and measuring the cosine of the

angle between them. Cosine Similarity is frequently used as a distance metric between

text documents, due to the unique properties of the matrices created by them.

P1 = Document 1

P2 = Document 2

i = One attribute

Euclidean Distance = √∑ (P1 i – P2 i)
 2

Cosine Similarity = ∑ P1i * P2i / √(∑ P1i
2
 * ∑P2i

2
)

Algorithm of KNN

1. Let K be the number of nearest neighbors and D be the set of training examples

2. For each test example z =(x,y), do

a. Compute the distance between z and every point in D

b. Establish subset of D as nearest neighbors

c. Establish class labels based on relevant K Nearest Neighbors[1]

Our kNN algorithm takes in two files, one training and one testing. It then outputs

various metrics about how the test entries were classified. These metrics are accuracy,

precision, recall and F1 measure. Accuracy is the percentage of correct classification

predictions. Precision is the percentage of correct positive predictions. Recall is the

percentage of positive entries that were classified. Finally, F1 measure is a combination

of precision and recall. While these metrics show that will show that our results are

good, with this method, we are completely dependant on the clustering from K-Means,

which is not certain to give us good results.

MICS 2008 72

Lastly, we decided to create two datasets from our main dataset, one large and one small.

The small dataset was 1/5 of the size of the main dataset, so roughly four thousand

documents. The large dataset was 1/2 the main dataset, or roughly ten thousand

documents. We did this due to memory and time constraints. We then created random

centers, one set for each dataset. Next, we ran kNN with a variety of k values, which will

be described in the next session.

RESULTS

Overall, our results seem promising. Our K-Means implementation gave us clusters that

seemed to be well separated, and kNN gave us class labels with decent consistency, as we

will show. Assuming that K-Means with Cosine Similarity gave us clusters of truly

similar documents; we have achieved a reliable way of automatically classifying text

documents.

Our K-Means program was given an input of k = 20, or 20 clusters to be made. We ran it

multiple times and chose the run that appeared to be an average run in terms of the spread

of documents across the clusters. We originally had K-Means run using a Euclidean

distance metric, but this gave us poor results. Out of the twenty asked for clusters, we on

average got less than three clusters. When we implemented Cosine Similarity, a part of

our enhancements to the program, our clusters became much more diverse. K-Means

took on average an hour to run on the large dataset, twenty minutes on the small one.

One run of K-Means on the large dataset:

Cluster 0 count: 710

Cluster 1 count: 770

Cluster 2 count: 385

Cluster 3 count: 587

Cluster 4 count: 531

Cluster 5 count: 899

Cluster 6 count: 296

Cluster 7 count: 486

Cluster 8 count: 398

Cluster 9 count: 197

Cluster 10 count: 579

Cluster 11 count: 676

Cluster 12 count: 329

Cluster 13 count: 666

Cluster 14 count: 127

Cluster 15 count: 358

Cluster 16 count: 881

Cluster 17 count: 240

Cluster 18 count: 244

Cluster 19 count: 359

MICS 2008 73

The goal of our project was to accurately classify text documents. We implemented kNN

for this. We ran kNN with both the large and small datasets outputted from K-Means,

along with their corresponding test datasets also output from there. We implemented

both Euclidean Distance and Cosine Similarity for comparison reasons. In each distance

metric, we printed out accuracy, precision, recall and F1 metrics for each cluster, along

with their confusion matrices. The attached graphs show the comparisons of both

distance metrics at various k’s. Surprisingly, both distance metrics achieved strikingly

similar results, but of note, not exactly the same results. Cosine Similarity was a percent

or two better in almost all instances. These results are somewhat surprising; we expected

the Euclidean classification to perform much worse than Cosine Similarity. Either way,

our results were quite good. Below are some graph comparisons using differing values of

k.

Euclidean Distance

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Cluster #

F
1
 %

K10

K20

K30

K40

K100

Figure 3: Euclidian Distance Calculations

Figure 3 is a comparison of the F1 measures in each of the clusters for the 5 runs

of kNN we preformed using Euclidean Distance. The measure kept getting better with

increasing K’s, signaling that the clusters were most likely well separated. Each cluster

in the dataset used on this had at least a hundred documents in it, but computation time

restraints kept us from running a higher K.

MICS 2008 74

Figure 4: Cosine Similarity Distance

Figure 4 also shows a comparison among the various runs using F1 measure, only this

time it is with Cosine Similarity. Again, on average, scores got better as k values went

up. Next up is a comparison of the two different distance metrics.

Euclidean vs Cosine

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Cluster #

F
1
 %

Cos K 100

Euc K 100

Euc K 10

Cos K 10

Figure 5: Euclidian vs Cosine

In this comparison chart, Figure 5, you can see that both metrics came up with similar

results. We found this to be fairly surprising, as we had heard that Cosine Similarity

would function much better than Euclidean Distance. It is probable that through our

preprocessing we derived clusters that were well-separated enough to reduce the

differences between the two metrics.

Lastly, this next figure, Figure 6, is a comparison of the two distance metrics on a dataset

that was twice as large as the original. This chart cannot be compared to the others, since

the clusters for this run are different than the ones for the smaller dataset run.

Cosine Similarity

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Cluster #

F1

%
K10
K20
K30
K40
K100

MICS 2008 75

The clustering with this larger dataset worked very well when compared to the smaller.

Only one cluster had an F1 measure of 0, where there were many of those in the previous

dataset. The average F1 measure over all clusters was higher. This was most likely the

case due to the larger model that was created, which, if the documents were well

separated, would only help our kNN. We believe we could have had even better results

on this dataset if we increased the k to 200 or 300, since each cluster had over 250

documents in it. However this would take prohibitively long to compute.

Euclidean VS Cosine Large Dataset

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Cluster #

F
1
 %

Euc K 30

Cos K 30

Euc K 100

Cos K 100

Figure 6: Large Dataset Distances Comparison

MODIFICATIONS

Our team decided to modify our text mining experiment by changing our distance metric.

We began by using Euclidean distance to measure the distance between vectors in our

implementation of K-Means. Using Euclidean distance did not yield very good results, so

we decided to implement Cosine Similarity as well. Through using Cosine Similarity we

were able to cluster documents slightly more accurately.

In addition to utilizing a different distance metric, we also chose to implement our own

clustering algorithm to identify class labels for our data, rather than utilizing the external

Weka software. By doing this the entire process could be automated from preprocessing

to classification using kNN. This allowed our team to run tests quicker and free of

potential human error.

FUTURE WORK

Future work on this data set could utilize additional distance metrics, beyond Euclidean

Distance and Cosine Similarity. For example, Chebyshev Distance and Manhattan

Distance could both be implemented. Chebyshev Distance defined as max |pk-qk| returns

the maximum difference between two attributes of a vector. When applied to the text

dataset studied in this experiment Chebyshev would produce the maximum difference a

MICS 2008 76

word appears between two documents. The results using Chebyshev Distance would be

resistant to outliers. Outlier resistance is important in text mining, because words carry

meaning with them. The difference of one word between two documents could change

their entire meanings. The goal is to find neighbors to a document which have similar

symptoms leading to a problem. An outlier word could potentially cause an incorrect

classification.

In addition to Chevbyshev Distance, Manhattan Distance could be implemented. In this

metric, the absolute value of difference of all corresponding attributes between two

vectors is summed. This metric is also resistant to outlier. This metric may be helpful in

finding correct classifications, because the distance will be significantly increased when a

document has words which are not found in the document it is being compared with.

Again, this is important because the existence of a word in a document can change its

meaning.

Research which could extend directly from the implementation in this study would be to

add an implementation of the Shared Nearest Neighbors (SNN) clustering algorithm.

SNN involves finding the number of nearest neighbors two vectors have. This first step in

the SNN algorithm is to find the k-nearest neighbors of all points. Since we implement

kNN in our study, the extension to SNN merely involves finding the number of nearest

neighbors two vectors share if they are among the k-nearest neighbors of one another and

assigning that value to an edge between those two vectors. If the vectors are not nearest

neighbors of one another, then a 0 is assigned to an edge between them. Vectors can then

be clustered together based upon a threshold number of shared nearest neighbors. These

clusters could be based upon the class labels identified in kNN. SNN can be useful,

because it works well to find clusters datasets of varying densities. This could potentially

give further insight into the dataset.[1]

CONCLUSION

In this project, we created an application which classifies documents about aviation

problem(s). After preprocessing the data using Doc2Mat and finding the IDF values

for each word in the document, class labels were identified by clustering the document on

these values. Our clustering algorithm was an implementation of K-Means. Once the

class labels were found, classification could be run on the given dataset. The

classification algorithm implemented was kNN. Two distance metrics were used in the

implementation of kNN: Cosine Similarity and Euclidean Distance. Both distance

metrics gave similar results; however, Cosine Similarity produced slightly more accurate

results. From these results we can conclude that our algorithms correctly classified the

documents. We now have a completely automated process for classifying taking a

dataset of text documents given no class labels.

MICS 2008 77

REFERENCES

[1] Introduction to Data Mining by PN Tan, M Steinbach and V Kumar (ISBN 0-321-32136-7)

[2] Fan, Weiguo, Linda Wallace, Stephanie Rich, and Zhongju Zhang. “Tapping the Power of Text

Mining.” Communictions of the ACM 49.9 (2006) : 76 - 82

[3] Arora, Ritu, and Purushotham Bangalore. "Text Mining: Classification \& Clustering of Articles

Related to Sports." ACM-SE 43: Proceedings of the 43rd Annual Southeast Regional Conference.

Kennesaw, Georgia, .

[4] Hotho, Andreas, Andreas Nürnberger, and Gerhard Paaß. "A Brief Survey of Text Mining." LDV

Forum - GLDV Journal for Computational Linguistics and Language Technology 20.1 (2005): 19-62.

[5] Raymond Y.K. Lau. “Context-sensitive text mining and belief revision for intelligent information

retrieval on the web.” Centre for Information Technology Innovation, Faculty of Information Technology,

Queensland University of Technology, GPO Box 2434, Brisbane, Qld 4001, Australia

[6] Larsen, Bjornar, and Chinatsu Aone. "Fast and Effective Text Mining using Linear-Time Document

Clustering." KDD '99: Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining. San Diego, California, United States,

MICS 2008 78

Sectioning points into fixed-size sections

Daniel Edwins
MSCS Department

St. Olaf College
Northfield, MN 55057
edwinsd@stolaf.edu

Luke Schlather
MSCS Department

St. Olaf College
Northfield, MN 55057
schlathe@stolaf.edu

Olaf Hall-Holt
MSCS Department

St. Olaf College
Northfield, MN 55057

olaf@stolaf.edu

Abstract
The Minnesota State High School League needs an effective method to separate schools
in a given athletic division into a fixed number of sections. This problem is different from
other clustering problems because of the fixed number of sections. Currently, these sec-
tions are chosen by hand. Certain schools are greatly disadvantaged, having to travel much
farther than their neighbors. In our research, we have devised a method to minimize the
traveling distance in each section, which in turn, minimizes the total traveling distance for
the division as a whole. Through this research we propose a sectioning based on this metric.

Although clustering problems like this are NP-hard, we are confident that we have found
the global minimum with our polynomial time algorithm. If needed, we can test each sec-
tioning with our objective function, which returns the best sectioning based on our metric.

MICS 2008 79

1 Background
Most sectioning algorithms tend to focus on creating good sections of whatever size the
program deems appropriate. Our algorithm, in contrast, requires that all groups maintain
a fixed size. For this general situation, many algorithms rely on a fixed point to use as
a mediod or centroid for the cluster. Other algorithms, such as the DBSCAN (Density-
Based Spatial Clustering of Applications with Noise) algorithm, require that each point has
a certain number of other points within a certain radius [2] [3]. Our algorithm takes a novel
approach, and analyzes all distances involved in each cluster.

2 Quality
Our research began with a search for an objective measure for the quality of a given graph.
For our purposes, we sought to minimize the total driving done by the sports teams at the
various schools. Given an objective value representing the cost of the graph, we can deter-
mine, if nothing else, which of a group of sectionings is most practical.

For the purposes of the Minnesota League, we looked at 96 schools in a division, and how
to divide them into eight sections. To compute the distance, we used the schools’ geo-
graphic coordinates, and computed the distance between them by the difference between
their geographic coordinates as if the coordinates were in a cartesian plane. Our current
system uses T. Vincenty’s formula for the computation of distances in an ellipsoidal model
of the earth [4]. A more accurate system might query Google Maps or Mapquest to find
the distance by road between the schools, or even compare driving times. In any event, the
particulars of determining distances are not radically difficult to implement. The algorithm
described in this paper assumes a matrix exists providing the distance between any two
given points in the graph to be sectioned.

Given this matrix, we analyzed two methods to determine a value to describe the total
amount of driving a sectioning requires as compared to other sectionings. One followed
the K-means approach, minimizing the distance to a centroid [1]. The second used the com-
plete graph of each cluster, adding the distances between every point in a section together.
The K-means approach, though initially attractive for efficiency, proved less effective, and
also less efficient over the course of the algorithm.

Therefore, the quality dg for an individual section is defined as the sum of the lengths of all
of the edges in a graph representing the distances between a group of points. Computing
this value takes quadratic time with respect to the number of points in a section p, given
that the number of edges between p points, given a graph showing all possible edges, is
quadratic with respect to p. To determine a total quality dG for a given sectioning of a
graph, we then sum the individual qualities d1 +d2 + ...+dg = dG for g sections. Given this
equation, combined with the quadratic nature of finding an individual d, the total quality
dG for a graph of n points may be found in time Θ(n2

g
).

MICS 2008 80

dG = d1 + d2 + ...+ dg (1)

3 Proposed Algorithm
This quality function forms the basis of our proposed sectioning algorithm. Suppose we
are going to section p points into g sections. First, each point is randomly assigned to a
section. Then through a two-point rotation (i.e. a swap), these two points trade sections. If
point p1 was originally assigned section g1 and p2 was assigned g2, after the rotation, p1 is
assigned section g2 and p2 is assigned section g1. This process is continued exhaustively.
Our algorithm swaps every point with every other point until we reach a local minimum.
To see how this is done, refer to Algorithm 1.

Algorithm 1 exhaustiveSwap()
dGi

= quality() {initial quality}
dGc = 0 {current quality}
while dGc < dGi

do
for all p1 ∈ P do

for all p2 ∈ P do
swap(φ(p1), φ(p2))

end for
end for
dGc = quality()

end while

In our test runs, the two-point rotation function gives a wide spread of local minima. To
“jump” out of these local minima, we decided to allow more rotations, such as three-point
rotations. In practice, rotations of more than three points become unfeasible. The new pro-
cess performs all possible two-point rotations, then all possible three-point rotations and
repeats these two steps until a local minimum is reached.

This algorithm does the following (refer to Algorithm 2). Assign every point a random sec-
tion. Store the initial quality as calculated by the quality function. Set the current quality
to 0. While the current quality is less than the initial quality, perform all possible two-point
rotations and then all possible three-point rotations. Then calculate the current quality and
go through the while loop again until a local minimum is reached.

In order to eliminate bias when performing these exhaustive rotations, we have a φ function
that randomly chooses the starting point for the exhaustive rotations for each iteration of
the while loop so that the rotations are not performed in the same order every single time.

MICS 2008 81

Algorithm 2 newExhaustiveRotation()

dGi
= quality() {initial quality}

dGc = 0 {current quality}
while dGc < dGi

do
for all p1 ∈ P do

for all p2 ∈ P do
rotate(φ(p1), φ(p2)) {same as swap() function}

end for
end for
for all p1 ∈ P do

for all p2 ∈ P do
for all p3 ∈ P do

rotate(φ(p1), φ(p2), φ(p3))
end for

end for
end for
dGc = quality()

end while

3.1 Complexity

The complexity of Algorithm 2 is Θ(kp4

g
), where p is the number of points and g is the

number of sections. The value k is the number of iterations of the while loop, and from our
tests, we have never seen k greater than 5. The quality function has a complexity of Θ(p

g
).

4 Results
We have broken our original data into two datasets: the first dataset uses the euclidean
distance measure and the second dataset uses T. Vincenty’s formula for distance.

4.1 First Dataset: Euclidean distance
Once Algorithm 2 reaches a local minimum, we cannot determine if the local minimum is
a global minimum. We have a relatively small sample size in comparison to the millions
of possible initial sectionings we could use for the algorithm. However, we ran four tests,
each of which ran the algorithm repeatedly on different initial random sectionings. In total,
we ran the algorithm on 700 different initial sectionings, and each one of these four tests
resulted in the algorithm producing the same value we believe to be the best quality possi-
ble for this graph. Also, with each additional run, the number of local minima decreased
relative to the total number of initial sectionings used.

MICS 2008 82

Number of Runs Number of Distinct Local Minima Best Quality Frequency of Best Quality
300 165 552.396 20
100 76 552.396 4
100 71 552.396 10
100 69 552.396 9
700 289 552.396 51

Table 1: Results from our test runs.

4.2 Second Dataset: Geodesic distance
After 107 runs with different initial sectionings, our algorithm arrived at the same local
minimum each time: 2.47784x104. This value is twice the sum of every path between two
points in a group in each group of the sectioning. Thus, the average distance between two
schools is 24.42 km by this value. We are not as confident that this is the global minimum.

We would like to thank our algorithms class for their support and Professor Weimerskirch
for bringing the problem to our attention.

References
[1] K. Alsabti, S. Ranka, and V. Singh. An efficient k-means clustering algorithm. First

Workshop on High-Performance Data Mining, 1998.

[2] M. Ester, H. Kriegel, J. Sander, and X. Xu. A density-based algorithm for discov-
ering clusters in large spatial databases with noise. Published in Proceedings of 2nd
International Conference on Knowledge Discovery and Data Mining, 1996.

[3] M. Halkidi, Y. Batistakis, and M. Vazirgiannis. Clustering algorithms and validity mea-
sures. Proceedings of the 13th International Conference on Scientific and Statistical
Database Management, 2001.

[4] T. Vincenty. Direct and inverse solutions of geodesics on the ellipsoid with application
of nested equations. Survey Review, XXII, 176, 1975.

MICS 2008 83

Enhancing the Price/Performance of a Clustered

Multiprocessor System

Joseph Myre Daniel Ernst

Department of Computer Science

The University of Wisconsin - Eau Claire

Eau Claire, WI 54701

{myrejm, ernstdj}@uwec.edu

Abstract

In this paper, we will explore the design considerations of a low cost, high performance

microprocessor cluster, including both hardware and software factors. The goal of the

designed system is to maximize the ratio of performance to price, creating a powerful

computer at very low price point. This paper will explore the target capabilities of the

platform, the design process used to select components and configurations, and metrics

by which microprocessor clusters can be evaluated.

MICS 2008 84

1. Introduction

Historically, a researcher wishing to perform computationally demanding studies has

required access to a high performance supercomputer. For institutions with a grand

problem to solve, investing in a large parallel system was often the best (and only) way to

achieve the capabilities that they desired.

Unfortunately, access to this much computing power was traditionally only available to

those with hefty budgets. Traditional “supercomputers” often involve a lot of specialized

parts, including custom microprocessors, enormous memory banks, and elaborate

network topologies. Therefore, it is no surprise that the institutions which showcase the

fastest machines are often only government labs [11], mega-corporations, or large

research centers [10]. In addition, given the high cost of these custom parts and the low

volumes that these companies deal in, even smaller versions of these machines are

prohibitively expensive for anyone for whom it does not provide a major capability

advantage.

However, with the advances in performance of off the shelf hardware, clustered systems

of commodity microprocessors have become an extremely popular alternative for

institutions where both price and performance are concerns. A cluster is defined as a

scalable architecture based on commodity hardware, a private system network, and

usually running on open-source software [4]. The benefit provided by clusters is twofold:

First, by using off-the-shelf parts and free software, cost can be greatly mitigated.

Second, clusters enable institutions without the benefit of extraordinary budgets to

establish their own modestly scalable high-performance computing (HPC) environment

without breaking the bank.

Recently, a group at Calvin College designed and built Microwulf, a personal, portable

Beowulf cluster, which provides over 26 billion floating point operations per second

(Gflops) of measured performance at a total cost of less than $2500 [1]. This level of

performance attained by Microwulf was one of the first to break the $100 per Gflop

barrier at $94 per Gflop. Given the natural decay of prices over time, Microwulf could be

constructed for roughly half the cost today. Microwulf, along with these other projects,

provide plentiful evidence that market trends are making the construction and usage of

clusters progressively more accessible.

It is the primary objective of this research to explore the means and metrics by which

low-cost microprocessor clusters can be constructed and evaluated for academic use.

This includes looking at price and performance numbers for components, installing and

running industry standard evaluation utilities, as well as experimenting with machine

configurations to determine how various hardware and network configurations impact

performance. In order to accomplish this goal, we have designed and implemented our

own low-cost, high-performance computational cluster.

The remainder of this paper is organized as follows. Section 2 outlines our approach for

MICS 2008 85

designing the system and selecting components. Section 3 describes our experiences

with the hardware and software issues that arose during the implementation of our cluster.

Our evaluation metrics for the cluster is explained in Section 4. Section 5 presents the

cluster’s performance and cost efficiency results. Section 6 proposes some future

directions and conclusions.

2. System Design

2.1 System Goals and Criteria

There are many considerations to account for when designing any computing system,

including clusters. The first issue to address is the eventual cost of the cluster. Through a

differential tuition grant, our project was allocated $3000 to complete our system. This

limitation forced us to be very selective about what portions of the machine we spent

money on.

The second issue to address is to determine the purpose of the final system. In our case,

we hope to use our resulting system for both teaching purposes and as a shared research

resource. In particular, both avenues of usage (“toy” multi-threaded applications and

architectural simulations) will entail highly CPU-bound computation with fairly small

and/or non-critical network requirements. This goal will help us prioritize where we

spend money within our budget.

In addition, our department has an acute lack of available space to house our cluster, so

our design should be as space efficient as possible. Ideally, the machine should be able to

sit on or under a desk in a faculty office, if so desired.

Combining the above goals, we came up with the following criteria for our system:

1. Since processor performance is our most important metric, our budgetary

resources will be focused on getting the best processor possible.

2. To leave as many resources as possible for processing power, all other

components will be budgeted only at a level which is sufficient to not limit

processor performance.

3. The physical size of the system should be minimized, if possible. (i.e. choose

small form-factor parts when available)

2.2 Analysis of Available Materials

2.2.1 Microprocessors

The long march of Moore’s Law over the last three decades has steadily packed more

performance into individual microprocessors. In recent years, the advances in chip

technology have changed from more aggressive uni-processor designs and systems to

MICS 2008 86

providing multiple cores (processors, essentially) on each individual chip. While these

advances don’t do much for single-threaded programs, they are a great boon for

multithreaded workloads intended for multiple processors. In addition, multi-core

processors, because they are held within a single package, cost far less than two more

powerful single-core processors. Therefore, for the purpose of our cluster, we will get the

largest amount of compute performance at the lowest price by maximizing the number of

cores in our processors (assuming that each core has reasonable performance).

The speed at which Moore’s Law advances processor technology also aids us in finding

affordable options that still have high performance. Because new processors are being

developed and released at very high rates, they drop in price relatively quickly, causing

the performance difference between brand new chips and those out only 3-4 months to be

very close in overall performance.

We catalogued the processor options available to us in October 2007 and plotted them on

the scatter plot shown in Figure 1.

Figure 1: Pareto analysis scatter plot of microprocessor performance versus price.

MICS 2008 87

In order to find an optimal microprocessor to meet our dual goals of high performance

and low price, Pareto analysis can be used. Pareto analysis is a data analysis technique

which eliminates sets of data such that the remaining data points are optimal given a set

of criteria. In this case, the data eliminated will be microprocessors that are either

lacking in computational power (up on the chart) or are too expensive to fit our budget (to

the right on the chart). This analysis allows us to quickly analyze the wide range of

available processors on the market visually as well as quantitatively.

Figure 1 reveals a very obvious microprocessor choice. The one chosen was that with the

highest amount of performance per unit cost, a 2.4 GHz Intel Core2 Quad Q6600. In

Figure 1 this microprocessor is represented by the data point at ($279, 29823). This

selection was near trivial since that microprocessor provided performance that was near

that of microprocessors with almost four times the cost. Similarly, the selected

microprocessor provided almost 1.5 - 2 times the performance of microprocessors near its

own cost.

This processor was one of the very first 4-core processors released, and so was also the

first to drop drastically in price. Because it was the only quad-core processor among its

peers in cost, it was a clear choice.

2.2.2 Memory and Network

When maximizing machine performance for the general case, care must be taken when

selecting other components to avoid damaging performance. As far back as 1970, Gene

Amdahl [2] observed that a computer system must provide sufficient resources in

memory and network I/O to provide a balance to the CPU performance. This balance

should ensure that the maximum amount of processing power is available in the system,

but also requires the remaining components be at a level that doesn’t inhibit the

processing power through starvation.

A long accepted rule-of-thumb that expresses this balance says that, for every Hz of

processor speed, a system needs one byte of RAM and 1 bit-per-second of network

bandwidth [2]. Extrapolating out this rule of thumb for our chosen “sweet-spot”

processor dictates that we need 2.4 x 10
9
 * 4 cores ~= 10 GB of RAM and 10 Gbits of

network bandwidth per node.

Putting 10 GB of RAM (or even 8) on each node is not very feasible, as the largest

single-DIMM RAM size available is 2GB, and we’d prefer to not limit our motherboard

choices to only those with 4 memory slots. Placing 4 GB on each node would also cost

roughly as much per node as the processor. Analyzing our budget options, we were

therefore presented with a choice between using 4 nodes, each with 4 GB of RAM, or 6

nodes, each with 2 GB.

To determine how far away from the “rule of thumb” we were willing to go, we returned

to analyze our initial goal applications for the cluster. All of these applications rely

heavily on processor performance and each uses easily less than 256 MB of RAM per

MICS 2008 88

thread. We therefore opted to provide more total nodes, each with 2 GB of memory.

We faced the same dilemma with network bandwidth. As 10 Gbit Ethernet is still very

new (and extremely expensive) and Myrinet technologies [9] are also cost-prohibitive, we

chose to use standard Gigabit Ethernet to connect our nodes together. Because our target

applications do not depend heavily on network bandwidth or latency and as GigE is the

standard interface included on most motherboards, this was an easy choice.

Most implementations of MPI support the use of multiple network interface cards on

each node, successfully multiplexing traffic across both interfaces. Our budget had room

for an additional GigE card per node, however, because our network usage estimate was

low, we chose to not make that purchase. In the future, if more bandwidth is needed,

adding the cards will be a simple upgrade.

2.2.3 Other Parts

Most of the remaining parts were chosen based on simple functionality constraints. The

full parts list is shown in Figure 2.

The one remaining “interesting” choice is that of the motherboard. In order to satisfy our

size criterion, we chose to use a micro-ATX small form-factor motherboard from

GIGABYTE.

Part Name Price Qty.

 Intel Core 2 Quad Q6600 2.4GHz $279.99 6

GIGABYTE GA-G31MX-S2 Micro ATX Motherboard $76.99 6

Rosewill RV350 ATX 1.3 350W Power Supply $20.99 6

Transcend JETRAM 1GB 240-Pin DDR2 SDRAM DDR2 800 $23.49 12

Seagate 250GB 7200 RPM IDE Ultra ATA100 Hard Drive $64.99 1

DVD-ROM Drive $16.99 1

Rosewill RC-410 10/100/1000Mbps Black 8 Port Switch $39.99 1

Various Case Fans $32.34 1

Grand Total $2779.00

Figure 2: Parts list for our cluster system.

MICS 2008 89

3. Implementation

3.1 Hardware

The actual construction of the physical system was nearly trivial. The system consists of

6 compute nodes connected by a standard star network topology. Each compute node

consists of a single quad-core processor and 2 GB of RAM on the MicroATX

motherboard. One node (the “head”) includes the system hard disk, a basic CD/DVD

drive, and an additional external network interface to connect the cluster to the outside

world.

Instead of enclosing each node’s hardware within its own case, we chose a more space-

efficient method of “stacking” the motherboards together on a frame created from a few

simple threaded rods. Besides minimizing the cluster’s footprint, minimizing case

hardware also saves on extraneous costs.

3.2 Software

What remains for the implementation is the software that is required to allow the cluster

of microprocessor systems to act as a cohesive unit. Due to our goal of keeping the

project cost low, it is preferred for the majority, if not all, of the software used to be free.

The first and most critical software need to address is that of an operating system. If

possible, we wanted a system that has proven itself capable within the HPC community.

To meet this requirement, a version of the Linux operating system is used. Linux has an

excellent reputation for stability and is currently running 85.20% of the Top 500

supercomputers in the world [14]. We specifically chose Ubuntu Linux for its ease of use

and fast setup time.

The method of inter-node communication that we use implement for this cluster is MPI.

MPI (Message Passing Interface) is a standardized and portable message passing package

designed to function on a wide array of parallel computers [12]. By using MPI, clustering

functionality is implemented in user space and is in the hands of the users themselves.

This does not limit functionality or hinder usability in any manner however, due largely

in part to most MPI systems implementing job queuing. MPI is also a dependency of the

industry standard benchmarking suite, LINPACK, which we ran to benchmark our

system.

It is also necessary to provide a mechanism by which users can submit compute jobs to

the system in such a manner that the multitude of jobs running do not interfere with one

another. The tool used to handle this situation is a job queuing system. A job queuing

system is responsible for controlling access to compute resources by controlling how user

batch jobs are scheduled. Due to the job queuing system, scheduling conflicts between

jobs are no longer a problem since the users are not allowed to control the scheduling of

their own jobs. This makes the systems easier to use because of that fact. Users no longer

need to concern themselves with how their job will be scheduled against other users’ jobs

MICS 2008 90

since the computing time will be allocated fairly among all jobs.

The job queuing system we plan to implement on this system is Torque. Torque is a

derivative of OpenPBS, which in turn is an open source version of the Portable Batch

System (PBS) project. PBS was originally developed by NASA Ames Research Center,

Lawrence Livermore National Laboratory, and Veridian Information Solutions, Inc.

Torque provides numerous improvements over PBS (a list of which can be found at the

Torque website) and is available as a free download [5].

4. Evaluation

In evaluating our cluster, we will use two approaches. First, in order to get a general

sense of the overall system performance, we will evaluate our cluster using LINPACK,

the industry standard HPC floating point computation benchmark. Second, we will

measure the performance of the cluster in executing a load indicative of our original

target applications – a batch of architecture simulations.

4.1 LINPACK

The current industry standard for basic HPC capability analysis is the benchmark

LINPACK [6]. It is with the LINPACK benchmark that the Top 500 supercomputers in

the world are currently determined and ranked [13]. The benchmark measures a system’s

double-precision floating point computational power. To determine this performance,

LINPACK provides numerous numerical linear algebra routines which are run on the

system being analyzed. These routines typically consist of sets of n by n linear systems

Ax = b that the machine must solve.

The solving of these linear systems is a relatively good metric of expected computational

performance because such linear algebra operations occur frequently in science and

engineering computing applications. By measuring the number of routines the system

can handle, as well as the time it takes the system to complete the routines, theoretical

system performance can be calculated and reported in terms of how many billion floating

point operations can be performed per second (GFlops).

It is necessary to understand that the results of LINPACK are still a very theoretical

performance metric because it does not stress the full I/O capabilities of a machine. This

is an important observation to make note of since the I/O performance of clustered

microprocessor system, especially given our very thin network, is typically poor when

compared to the larger custom supercomputers. Custom supercomputers have very high

speed interconnect which are designed specifically for connecting compute nodes with

high bandwidth and much lower latency. In contrast, microprocessor clusters typically

use simple switched Ethernet for connecting compute nodes. While Gigabit Ethernet is a

reliable and affordable performer for clusters, the operational latency of Ethernet is much

higher than that of specialized high speed interconnect. As an example, one such

interconnect, Myrinet, has an operating latency of one fifth to one tenth to that of

Ethernet [7]. In some computational applications, there is a much higher dependence on

MICS 2008 91

high-speed communication between nodes. In those cases, the shortcomings of Ethernet

quickly become apparent.

4.2 SIM-MASE

In any performance analysis or computer architecture course, it is emphasized that the

best benchmark to use to judge system performance is the program that you intend to use

most often on the system. As stated earlier, one application we will be using on our

cluster is an architectural simulator, MASE [8], which is a derivative of the SimpleScalar

research simulator toolset [3].

MASE simulates the operation and performance of an aggressive out-of-order

microprocessor. The simulated processor is capable of running real applications so that

performance impacts of different architectures can be clearly shown.

However, since simulating the behavior of a processor entails far more computation than

running the program itself, the simulations are exceptionally processing intensive.

5. Results and Analysis

5.1 LINPACK Results

Figure 2 shows the LINPACK results for our cluster for varying problem sizes (N) and

using different numbers of active nodes.

You can see that, as N increases, the performance also increases. This is because the

larger the matrices are in LINPACK, the more computation that occurs between network

sends/receives. Our cluster tops out at around 38.64 GFlops, for a cost efficiency of

$71.92/GFlop. As a peer comparison, MicroWulf reported 26.25 GFlops of performance

with a maximum N of 30,000. Its cost efficiency at the time of construction was

$94.10/GFlop.

Interestingly, for most of the way up to our maximum problem size (anything over

N=30,000 gives “out of memory” errors), using only 5 nodes nearly matches the

performance of using the full 6. This non-intuitive result comes from the ratio of

computation to transmission not being high enough to allow the processor to compute

any faster (there is more transmitting with 6 active nodes, counterbalancing the extra

processors).

The network performance of the benchmark was monitored using “ntop”, and the peak

bandwidth used never exceeded 175 Mbits. This demonstrates that the communication

overheads were not from bandwidth overload, but from the long latency of Ethernet.

The true limitation for LINPACK on our cluster is the small amount of memory. With

more RAM, the processing to communication ratio would be significantly higher,

allowing our processors to shine more fully.

MICS 2008 92

Figure 3: LINPACK performance for various N using 4, 5, or 6 nodes.

5.2 MASE Results

Instances of MASE were run on variable numbers of processors, from one up to the full

24. Performance of the simulators was not impacted in any way as the number of

processors scaled upwards. As previously stated, each instance of the program uses

minimal memory and produces very little network traffic (enough to transfer files to and

from the head node). In all cases, the simulator was able to maintain a throughput of over

660 million instructions per second on each node.

5.3 Analysis

The relative ease with which our design handled the architectural simulation comes as no

surprise – the system was designed with that specific workload in mind. However, the

performance of the LINPACK and MASE benchmarks taught us a few things.

First, that there is definite wisdom behind Amdahl’s rule of them, at least when looking at

a computing system with a generalist benchmark such as LINPACK (which exercises

every component at least somewhat). We chose, because of our budget and our target

applications, to use an unbalanced amount of memory. This decision greatly affected the

LINPACK performance of the system. Extrapolating out the performance curve to an N

of 45000 (which would use roughly 2x the memory space) would yield a hypothetical

system performance of 48.29 GFlops. However, the cost efficiency would be very nearly

the same, as the cost of doubling the RAM is a significant investment.

Second, this study shows that general benchmarks such as LINPACK do not necessarily

reflect the potential performance of a system on a workload that doesn’t have the same

characteristics as the benchmark. Had we used LINPACK solely to judge our

MICS 2008 93

performance, we might have concluded that our system would have run into the same

limitations when running MASE. The result of that evaluation would have likely been

the misguided decision to pay a heavy premium for more memory that we will likely

never use.

Finally, our system provides a proof-of-concept that cost savings can be easily obtained

for a cluster when it is constructed for a specific purpose, by building the system in a

traditionally unbalanced way, as long as the final application space is well understood.

6. Concluding Remarks

Our goal for this project was to design a small, affordable cluster system that will meet

our computational needs. Criteria for its construction were created and applied

analytically to the parts available in the marketplace. Once the cluster was built, it was

evaluated using both an industry standard general benchmark and a more specific

targeted application, each showing a clearly different assessment of the system’s

capabilities.

References

[1] Joel Adams and Tim Brom. “Microwulf: A Beowulf Cluster for Every Desk.”

Proceedings of the ACM Symposium on Computer Science Education (SIGCSE),

2008.

[2] G. Amdahl, “Storage and I/O Parameters and Systems Potential,” Proceedings of the

IEEE International ComputerGroup Conference (Memories, Terminals, and

Peripherals), June 16-18, 1970, Washington, D. C., 371-372.

[3] Todd Austin, Eric Larson, and Dan Ernst, “SimpleScalar: An Infrastructure for

Computer System Modeling,” IEEE Computer, February 2002.

[4] beowulf.org. http://www.beowulf.org/overview/index.html, 2007.

[5] Cluster Resources. Torque Resource Manager.

http://www.clusterresources.com/pages/products/torque-resource-manager.php, 2007.

[6] Jack J. Dongarra and Piotr Luszczek and Antoine Petitet, “The LINPACK

Benchmark: Past, Present, and Future,” Concurrency and Computation: Practice and

Experience, Volume 15, pp 1-18, 2003.

[7] HPCWire. “Myricom Demonstrates Low-latency 10-Gigabit Ethernet.”

http://www.hpcwire.com/hpc/708822.html, 2006.

[8] Eric Larson, Saugata Chatterjee, and Todd Austin, “The MASE Microarchitecture

Simulation Environment”, 2001 IEEE International Symposium on Performance

Analysis of Systems and Software (ISPASS-2001), June 2001.

[9] Myricom Home Page, http://www.myri.com.

MICS 2008 94

[10] “Pittsburgh Doubles Capability of BigBen”, Pittsburgh Supercomputing Center news

release, Nov 21, 2006. http://www.psc.edu/publicinfo/news/2006/2006-11-21-

bigbengrows.php

[11] Neal Singer, “Red Storm upgrade boosts Sandia supercomputer to #2 in world,”

Sandia National Laboratory news release, Nov 24, 2006.

http://www.sandia.gov/LabNews/061124.html

[12] Marc Snir, Steve Otto, Steven Huss-Lederman, David Walker, and Jack Dongarra.

MPI - The Complete Reference: Volume 1, The MPI Core. The MIT Press,

Cambridge, MA, 1999.

[13] The Top500 Supercomputing Sites. http://www.top500.org.

[14] The Top500 Supercomputing Sites. Operating System Family Share for 11/2007.

http://www.top500.org/stats/list/30/osfam, 2007.

MICS 2008 95

Performance Evaluation of Java RMI in Parallel and
Distributed Discrete Event Simulation

Thoshitha Thanushka Gamage

Ahmad Ramadani
Donald O. Hamnes

St. Cloud State University

St. Cloud, MN 56301
{gath0601, dohamnes} @stcloudstate.edu

Abstract

Java threads and RMI have gained a lot of popularity in recent years as a medium of
distributed computing. In a distributed simulation, the efficiency as well as the accuracy
of the simulating system will depend both on how well the simulation code is written and
on how the nodes in the system communicate with each other. In an attempt to look into
this issue, we carried out several experiments in Distributed Discrete Event Simulation
using Java Threads and RMI. The main focus of our study was to evaluate the
performance of Java RMI in a distributed simulation with a small number of processors.
For the purpose of this study, we developed a distributed queuing network using a four
(4) computer cluster which follows the conservative approach to distributed discrete
event simulation. The empirical test results of our study are summarized and presented in
this paper.

MICS 2008 96

1. Introduction

Implementation of real world systems in many cases is preceded by a simulation study
which is carried out on a cluster of computers. This has been practiced not only because
simulations are easy, but also because it is very expensive as well as dangerous to
implement time critical and complex real systems without a proper study. In some cases,
the need arises such that future events need to be assessed before time as part of a disaster
preparation plan. For example, research such as worm propagation [11] in computer and
communication networks is focused on analyzing and modeling epidemic style spread of
attacks to study and to take appropriate counter measures to alleviate or minimize
damage. Not only that, these studies help system engineers to build early attack detection
and prevention systems.

The traditional approach to simulation is using sequential algorithms. Here at a given
instance of simulation time, only one event gets executed or modeled with corresponding
changes in the system [1]. In time critical systems, use of sequential simulators might not
be the best solution as sequential execution of concurrent events is time consuming. An
alternative is to use a parallel and distributed approach where several events could be
modeled simultaneously and gain potential speedup. In many real life systems, events
when they actually occur are rather discrete as well as unpredictable. Discrete events
might occur at different locations or nodes in the system and there is every possibility for
more than one event occurring at the same time as well. The notion of Parallel and
Distributed Discrete Event Simulation (PDDES) takes into account all these concepts in
developing models to observe the time based behavior of systems. Applications of
PDDES can be observed in many domains including computer and network security,
communication networks, game simulation, weather forecasting, battlefield simulation,
queuing Networks, traffic modeling and digital circuits. Several other applications of
Parallel Discrete Event Simulation can be found at [4].

The popularity of Java as a programming language in Discrete Event Simulation has
shown steady increase during the past few years. Various features of Java such as
platform independence, portability, scalability and even object oriented features are some
of the reasons behind this increase in popularity and use. Not only that, Java provides
several APIs that provide support for distributed and parallel Programming. Java
Threads, RMI, CORBA and socket programming are well developed and documented
APIs that come with the standard Java Development Kit (JDK). A recent addition to this
collection is Java MPI [12, 13]. Thus various research groups are using Java for Discrete
Event Simulation modeling. [9] shows the use of RMI for a web based simulation while
[6] has implemented a Java based simulation engine in Conservative approach using Java
RMI and Threads. IDES [7] targets portability and use in heterogeneous computing
environments and selected Java for their Distributed simulation engine. An Initial
investigation of the use of Java in PDDES on windows platform with small number of
processors was carried out by [10]. Although [6] has used Java RMI and Threads in their
implementation, there is the potential for more distinct comparisons of the technologies.

MICS 2008 97

They do demonstrate that the use of Java with RMI can speed up a simulation when it is
distributed over several machines. However, their emphasis has been more on evaluating
the effect of network heterogeneity.

Section 2 is a general introduction to the concepts in PDDES. Section 3 describes the
implementation criteria we have used in this study which is followed by the
implementation methodology. In Section 4 we describe the hardware and software and
test parameters. Section 5 shows the results of our study and Section 6 lists the
conclusions.

2. PDDES

Sequential simulations are inherently slow, and processor intensive. The alternative is to
break the code into several distributed versions and run them in parallel. During the
execution, the system changes its state accounting for the events at discrete simulation
time intervals. For the results of the simulation to be correct at a given time T, all events
which occurred in the system up to time T should have been executed in increasing order
of their simulation time. Thus the simulation should be identical to the behavior of the
real system that is under study. Here the notion of time refers to the simulation time
rather than real time or actual wall clock time. Since several logical processes (LPs) are
running across multiple machines, it is necessary to synchronize their parallel events.
Two main approaches to this problem are using Conservative Simulation [1] and
Optimistic Simulation [2].

In the Conservative approach, each LP will wait until each of its incoming channels
contain messages and select out the message with the smallest timestamp for execution.
All LPs in the system progress towards a common simulation limit which could be a
certain time constraint or number of events. In doing this, each LP insures that messages
sent out are in the increasing order of their timestamp. The local simulation time of a LP
also gets updated according to the timestamp of the message that has been selected. This
mechanism ensures that all the LPs in the system maintain time synchronization and
when a particular LP hits its local simulation time limit, it will not process any further
event messages along any of its input channels. A mechanism to avoid possible deadlock
due to waiting and how to recover from a deadlock situation has been described in [1].

While the Conservative approach maintains a strict ordering of event message execution
in increasing timestamp order, the Optimistic approach on the other hand would allow
any event message received to be executed as soon as possible. Here, when a particular
LP receives message with a timestamp less than its clock value, a “Rollback Mechanism”
is used to send anti-messages to alleviate the effect of previously sent incorrect event
message(s). In the Optimistic approach, each LP works under its own local simulation
time (a virtual time) and at a given instance of the wall clock time some LPs might be
ahead of others. Nevertheless, this fact is invisible to the processes themselves [2]. The
progress of the system globally is maintained using a Global Virtual Time (GVT) which
is the minimum of all local virtual times and all messages that have been sent and still are
in transit [2].

MICS 2008 98

Performance of PDDESs can be evaluated using the PHOLD model [8] which is an
extension of widely used HOLD model for Sequential Event List Algorithm. This model
consists of several parameters as described in [8]. In this study we have used the PHOLD
model to assess the behavior of queuing systems under various test parameters.

3. Implementation

We implemented a queuing network following the Conservative approach. The code was
primarily based on the Conservative approach PDDES algorithm defined in [1] and was
developed in Java. The queuing network consists of several queuing elements. The
architecture of a single queuing element is depicted in Figure 1. A LP in this study is
basically a single queuing element which consists of a queue, server and a branch point.

Figure 1: Single LP with 3 incoming Channels

Each LP has several inbound channels on which messages from other queuing elements
arrive. These are dedicated channels between the corresponding sender and the receiver
and in our study any LP can send messages to any other existing LP in the system. Thus,
each LP had ሺn െ 1ሻ number of incoming channels where n is the number of LPs in the
network. The server selects the smallest timestamp event message from the set of
incoming channels and processes it. The processing takes a random time after which the
message is sent out to its next destination by selecting a receiver randomly. The
simulation was carried out using the following configurations.

• Configuration 01: A single Processor hosting n number of LPs using threads –
 ࡰࡱࡾࡴࢀ࢘ࢋ࢙࢙ࢋࢉ࢘ࡼࢋࢍࡿ

• Configuration 02 : A single processor holding n number of LPs using Java RMI –
 ࡵࡹࡾ࢙࢙࢘ࢋࢉ࢘ࡼࢋࢍࡿ

• Configuration 03 : n number of processors each hosting one or two LPs using
Java RMI – ࡵࡹࡾ࢙࢙࢘ࢋࢉ࢘ࡼ࢚࢛ࡹ

Here a processor is a computer with a single CPU.

MICS 2008 99

4. Methodology

4.1 Hardware and Software

The simulation was carried on with the use of 4 DELL Dimension 2400 computers
running Fedora core 5. Each machine was equipped with a 2.4GHz CPU and 512MB of
RAM. The computers were interconnected with the use of 100 Mbps links and a 5 port
switch. Figure 2 shows the interconnection network of the simulator with 4 LPs. Each LP
has an incoming channel from each of the other LPs in the system. Java JDK 1.6 was
used as the development platform.

Figure 2: Interconnection Network with 4 LPs

Using 4 computers we simulated a system of 4 LPs and 8 LPs. In
SingleProcessorTHREAD and SingleProcessorRMI configurations, a single computer
hosted all 4 or 8 LPs. In the MultiProcessorRMI configuration, first, each computer
acted as a single LP and hosted a single instance of the queuing system and later each
computer was assigned 2 instances to simulate 8 LPs using 4 computers.

4.2 Test Parameters

The PHOLD model was used to evaluate parameterized behavior of the system. The
PHOLD model defines six model parameters [8]. Table 1 shows the values of four model
parameters that we have used in our study. Additional model parameters are discussed
afterwards.

MICS 2008 100

Model Parameter Value

Number of LPs 4 and 8
Message Density Refer Table 2
Computation Grain 10 milliseconds
Movement Function Random selection out of ሺ݊ െ 1ሻ

Table 1: PHOLD Model Parameters Used in the Study

The Timestamp Increment Function (TIF) was defined as follows. Whenever a
message − whether it is an event message or a null message − is selected to be executed,
its timestamp is checked against the present simulation time of the LP to see whether it is
greater. If so, the simulation time is increased to the message timestamp. We used a
biased exponential distribution to generate random service time values for each server.
The definition of the service time generation function (ST) we used was,

ST ൌ bias ሼrand כ fASTሽ

Here ݂ܶܵܣ stands for Fixed Average Service Time. We used a bias of 0.9 and ݂ܶܵܣ of
19. The random numbers were generated using the java.Random class. After servicing an
Event message, the simulation time is updated for a second time with an increment of ST.
Thus the message leaving the server reflects the effect of service time as well as the
current simulation time of that particular server. Computation Grain is an artificial real
time delay introduced at the server. After processing, the next receiver of a message is
also selected randomly over a range of ሺ݊ െ 1ሻ candidate destinations (queuing
elements) - Thus termed as the Movement Function. The message densities used for
both the 4 LP setting as well as the 8 LP setting were 16, 32, 48, 64 and 80. Initially, all
the LPs start with the same number of messages. This defines the sixth parameter of the
PHOLD model which is the Initial Configuration. For example, with a message density
of 48 and a 4 LP setting, a single process would initially hold 48 messages, distributed
equally as much as possible among all of the incoming channels. Table 2 shows extended
test parameters for different test cases followed in each setting.

LP Setting 4 Logical Process 8 Logical Process

Message Density 16, 32, 48, 64, 80 16, 32, 48, 64, 80

Simulation Time Limit 225000 25000

Number of Runs 10 6

Table 2: Test Case Configurations

MICS 2008 101

Each test case was executed several times as defined by Number of Runs and the
following observations were made and recorded.

 Total Elapsed Time

 Total Number of Event Messages

 Total Number of Null Messages

 Total Service Time

These values were used to derive Average Service Time, Null message count and
Speedup. Null messages are used to avoid and recover from Deadlocks [1]. Comparisons
were made between different communication methods within a Configuration as well as
between them.

5. Results

5.1 Test Model with Four LPs

For each configuration defined in Section 3, the queuing network was evaluated with
message densities as defined by Table 2. Figure 3 shows the effect of message Density on
average elapsed time. As the message density increases more event messages get serviced
at the corresponding server. Thus, the TIF is primarily invoked due to event message
servicing. This in turn increases the local simulation time in greater quantities ultimately
leading the queuing element to reach stopping condition sooner.

Figure 3: Variation of Average Elapsed Time with Message Density in 4 LP setting

MICS 2008 102

The MultiProcessorRMI has the least elapsed time while the SingleProcessorRMI takes
the most time. The SingleProcessorTHREAD version runs faster than
SingleProcessorRMI. This might be caused due to overhead in RMI calling system calls
in kernel and lower levels of communication for loopback connection establishments.
Threads on the other hand are executed at higher level which returns quicker. Also
running several LPs on a single processor is slower than executing on several processors.
RMI is performing much faster than local threads in multi processor distributed
environment.

The number of Event and Null messages received in the MultiProcessorRMI
configuration for the 4 LP setting as a function of Message Density is shown in Figure 4.
When the Message Density increases, Null message count rapidly decreased. At the same
time the number of Event messages received increased although the rate of increase was
less than that of rate of decrease in Null message receipt. With more Event messages, the
parallelism of the system increased thus the need for Null messages for the purpose of
preventing deadlock decreased.

Figure 4: Received Event and Null message count variation with message Density in 4
LP

The average wait Time is defined as the average simulation time an event message has to
wait in the queue (channel) before being serviced. With low message densities an event
message has a higher chance of being selected as soon as it arrives. But as the number of
event messages in the system increases, so does the time an event message has to wait.

MICS 2008 103

Figure 5: Average Wait Time variation of 4 LP setting with Message Density

The wait time behavior in 4 LP setting with configuration 03 is shown in Figure 5. The
waiting time increases almost linearly with the increase of Message Density.

5.2 Test Model with Eight LPs

A similar set of tests were carried out for the Eight LP setting. Since we only used 4
machines in our study, a single computer was assigned to host 2 LPs. Here again we used
Message Densities of 16, 32, 48, 64 and 80.

Figure 6: Variation of Average Elapsed Time with Message Density in 8 LP Setting

MICS 2008 104

Figure 6 is a graph of Average Elapsed Time against Message Density in 8 LP setting.
The behavior is similar to that of 4 LP setting, where as MultiProcessorRMI outperforms
SingleProcessorRMI. The performance of MultiProcessorRMI in the 4 LP setting
appears more uniform across message densities than it does for the 8 LP case. A
reasonable explanation is that since we used only 4 machines to represent 8 LPs, a
communication overhead might have been introduced in name resolution or virtual IP
resolution. Better results might be expected with 8 individual processors.

Figure 7: Received event and Null message count variation with message Density in 8 LP

Figure 7 shows the Number of received Null messages and event messages for each
Message Density in a 8 LP MultiProcessorRMI configuration. Number of received Null
messages decreased rapidly with the Message Density.

Figure 8: Average Wait Time variation of 8 LP Setting with Message Density

MICS 2008 105

Wait Time behavior with varying Message Density for 8 LP setting with
MultiProcessorRMI configuration is shown in Figure 8. Here again the wait time almost
linearly increases with Message Density. By comparison with 4 LP setting, the wait time
for a specific Message Density has increased in 8 LP setting.

5.3 Speedup

Speedup comparisons were made in both 4 and 8 LP configurations. These comparisons
are shown in Figure 9.

Figure 9: Speedup Ratio for 4 LP and 8 LP Settings

In 4 LP setting, the potential speedup of using MultiProcessorRMI was on the average
around 4.5 times than that of using SingleProcessorRMI. The speedup variation with
increasing message density was more prominent in 8 LP case ranging approximately
from 2 to 6. The average speedup of 8 LP yields to around 4.0 which implies that running
too many simultaneous RMI codes in a single processor slows down the performance. On
a single Processor, threads runs faster than local RMI with speedup less than 1 for both 4
and 8 LP setting. In general, MultiProcessorRMI shows better performance over
SingleProcessorRMI and SingleProcessorTHREAD versions for both the 4 LP setting as
well as the 8 LP setting.

MICS 2008 106

6. Conclusion

In this study we implemented the Conservative approach to Parallel and Distributed
Discrete Event Simulation with Java RMI and Threads. Our results led to the following
conclusions about the performance of Conservative simulation in our environment:

• On a single processor, using RMI communication results in poorer performance
relative to a thread-only simulation; this is especially true at the lower message
densities.

• On a single processor as the message density increases, the performance of RMI
becomes much closer to that of Threads running several processes in the same
machine as both execute with nearly the same average elapsed time.

• For a small number of LPs, using RMI to communicate among independent
processors is faster than a single processor hosting either multiple THREAD or RMI
based processes.

o For a distributed simulation on a small number of processors, using Java RMI
speeds up the overall simulation relative to a thread-only simulation on a
single processor.

o For a distributed simulation on a small number of processors, using Java RMI
speeds up the overall simulation relative to an RMI based simulation on a
single processor.

• Generally, elapsed times decrease with increasing message density.

• Overall performance behavior with 4 LPs and 8 LPs is similar as measured by elapsed
time.

However, use of RMI for distributed computing might not be the most optimal solution.
As shown by [14], Sockets outperform RMI. Also, RMI has shown considerable
overhead in object marshalling and un-marshalling as shown by [15].
Further work in this area would be to measure the performance of Java MPI [12, 13]
compared with RMI or implementing an Optimistic approach simulator on the same set
of criteria to analyze the system behavior.

MICS 2008 107

7. References

[1]. Misra, J. Distributed Discrete Event Simulation. ACM Computing Surveys, Vol 18,
March 1986.

[2]. Jefferson, D.R. Virtual Time. ACM Transactions on Programming Languages and
Systems, Vol 7, July 1985.

[3]. Teo, Y.M., Ng, Y.K., Onggo, B.S. Conservative Simulation Using Distributed
Shared Memory. Proceedings of the 16th Workshop on parallel and Distributed
Simulation (PAD'S 2002.)

[4]. Trooper, C. Parallel Discrete Event Simulation-applications. ACM Journal of
Parallel and Distributed Computing, Vol 63, 2002.

[5]. TEO, Y.M., NG, Y.K. SpaDES/Java: Object Oriented Parallel Discrete Event
Simulation. Proceedings of the 35th Annual Simulation Symposium 2002.

[6]. Ferscha, A., Ritcher, M. Java Based Conservative Distributed Simulation.
Proceedings of the 1997 Winter Simulation Conference.

[7]. Nicol, D.M., Johnson, M.M. IDES: A Java Based Distributed Simulation Engine. 6th
IEEE International Symposium on Modeling, Analysis and Simulation of Computer
and Telecommunications Systems (MASCOTS) 1998.

[8]. Fujimoto, R.M. Performance of Time Warp under Synthetic Workloads. Simulation
Councils, Inc. Vol 22 1990.

[9]. Page, H.E., Moose, R.L., Griffin, S.P. Web Based Simulation in SimJava Using
Remote Method Invocation. Proceedings of the 1997 winter simulation Conference.

[10]. Ramadani, A. Conservative Parallel and Distributed Discrete Event Simulation
using Java. A starred paper submitted to the graduate faculty of St.Cloud State
University 2006.

[11]. Wei, S., Mirkovic, J., Swany, M. Distributed Worm Simulation with a Realistic
Internet Model. Proceedings of the 19th Workshop on Principles of Advanced and
Distributed Simulation (PADS) 2005.

[12]. WeiQin, T., Hua, Y., WenSheng, Y. PJMPI: pure Java implementation of MPI.
Proceedings of the 4th International Conference/Exhibition on High Performance
Computing. 2000.

[13]. http://www.hpjava.org/
[14]. Ahuja, S.P., Quintao, R. Performance Evaluation of Java RMI: A Distributed Object

Architecture for Internet Based Applications. IEEE Proceedings of the English
International Symposium on Modeling, Analysis and Simulation of Computer and
Telecommunication Systems 2000.

[15]. Kazi, I.H., Chen, H.H. Techniques for Obtaining High Performance in Java
Programs. ACM Computing Surveys, Vol. 32, No.3, September 2000.

MICS 2008 108

SECURING THE BORDER GATEWAY

PROTOCOL

Matthew Nickasch, Joe Cavanaugh,

Michael Kohl, Matt Dolfin

Comp. Science and Software Engineering Students

Syed (Shawon) M. Rahman, Ph.D.

Assistant Professor

Dept. of Computer Science & Software Engineering

University of Wisconsin - Platteville

1 University Plaza, Platteville, WI 53818, USA

Phone: (608) 342 1625, Fax: (608) 342-1965

Email: {nickaschm, rahmans, cavanajo, kohlm, dolfinm}@uwplatt.edu

Abstract

BGP, or Border Gateway Protocol, is the primary inter-domain routing protocol used

today in the Internet. Due to the complexity and high-profile nature of the protocol,

BGP is particularly vulnerable to many types of attacks; therefore putting large

networks at risk.

This paper first analyzes the basics and fundamentals of the Border Gateway

Protocol, including modern applications of BGP in the Internet today. Further

analysis of the Autonomous System (AS), route selection and building, as well as

network advertisement, are defined in the analysis of the protocol.

Secondly, the security risks and vulnerabilities of the protocol are analyzed. From

BGP message vulnerabilities, to route redirection, black holing, and route flapping,

the protocol faces some significant security-related challenges. There are several

types of attacks that can be made against BGP and its propagation of routing

information to others. Any of these attacks may be instigated by gaining access to

BGP-enabled routers by using brute-force password attacks, or abusing a router’s

Operating System (OS) vulnerabilities.

Finally, recommendations of securing the Border Gateway Protocol are described.

From PGBGP (Pretty Good BGP) to SBGP (Secure BGP), there are several draft

recommendations to further secure the protocol.

MICS 2008 109

Introduction

Routing protocols often go unnoticed in the day-to-day usage of the Internet.

Anything from checking your email from home, to exchanging information between

Tier1 Internet Service Providers, routing protocols make up a very important part of

the Internet.

The need for routing protocols is immense. From the seemingly simple task of

exchanging information of routes between multiple routers, to providing services for

ISP multihoming and algorithmic best route selections, routing protocols are needed

to complete the job. This task of learning and advertising routes occurs at Layer 3.

Almost all application-level protocols rely heavily on Layer 3 routing, so the

importance of sharing routing information between multiple networks is absolutely

necessary [1].

As always, there are multiple methods to accurately and efficiently communicate

available routes, and therefore, wide arrays of routing protocols have been developed

to facilitate this sharing of information. Border Gateway Protocol (BGP) is used

primarily on very large networks, typically between Internet Service Providers

(ISPs), or large companies or organizations who connect to multiple ISPs.

Routing Protocol Overview and Comparison

With a plethora of routing protocols available for network architects to consider, the

difference between such protocols can be confusing. However, routing protocols fall

into one of two categories: Interior Gateway Protocols (IGP) and External Gateway

Protocols (EGP).

Autonomous Systems (AS)

When determining the difference between IGPs and EGPs, it is important to consider

the AS, or autonomous system, in which these protocols will be exchanging

information. An AS is often an abstract classification given to a collection of

networks that are subject to the same routing policy. This AS can contain networks

of more than one organization, and can be classified as a single administrative

domain in which these collections of networks fall [2].

Interior Gateway Protocols (IGP)

Interior Gateway Protocols are used to communicate routing information internally

within an AS, but not outside of the AS. There are four primary protocols used for

intra-AS routing: Routing Information Protocol (RIP), Interior Gateway Routing

Protocol (IGRP), Open Shortest Path First protocol (OSPF), and Intermediate

System to Intermediate System (IS-IS).

MICS 2008 110

1) RIP, or Routing Information Protocol, is perhaps the simplest routing

protocol of all IGPs and EGPs. RIP is a distance-vector protocol, and uses a

hop count as a simple metric for calculating best routes. A router actively

listens for other routers communicating routing updates and adds or modifies

new routes into its routing table in order to communicate with other routers

running RIP in the AS. RIP’s logic is based on the Bellman Ford Algorithm.

There are several limitations of RIP, with the most significant being a 15-hop

limit. Also, a network with frequent topology changes can generate a lot of

RIP-generated bandwidth in order to communicate these frequent routing

table updates. Finally, RIP is considered to be a very “slow” protocol in

realizing link changes across networks.

2) IGRP, or the Interior Gateway Routing Protocol, is another distance-vector

protocol. This protocol was developed by Cisco, and therefore runs only on

Cisco routers. In comparison with RIP, IGRP allows for faster convergence

to identify topology changes.

3) OSPF, or Open Shortest Path First protocol, is not distance-vector based, and

is therefore architected significantly different from RIP and IGRP. This

protocol is link-state based, and is therefore significantly more complex.

OSPF utilizes DRs and BDRs (Designated and Backup Designated Routers)

elected on a subnet basis to handle information about link-state changes.

These “supervisory” routers collect the initial network topology information

and replicate it out to all other router-peers on the network. Once this process

is complete, the Shortest Path First algorithm is executed on each router, and

uses that information to populate its routing table with the best routes. This

common exchange of routing information, using the same SPF algorithm,

allows all routers on the network to converge on routes, eliminating any

possibilities of routing loops.

4) IS-IS, or Intermediate System to Intermediate System, is also a link-state

routing protocol. The OSPF protocol was developed out of influence from

IS-IS. It is important to note that only OSPF and IS-IS natively support

VLSM, or Variable Length Subnet Masks, which will be discussed later in

the paper. VLSM support is essential in the modern application of networks

that are heavily subnetted and partitioned [3].

External Gateway Protocols (EGPs)

While IGPs are necessary for communicating routing information within an AS,

EGPs are necessary for communicating routing information between Autonomous

Systems. In fact, interior routes maintained by IGPs may also be used in upstream

routing, hence, in routes maintained by EGP. BGP, or Border Gateway Protocol, is

considered to be the standard in inter-AS routing protocols, because of its wide

acceptance, open standards, and efficiency.

MICS 2008 111

History and Development of BGP

EGP, which was originally specified in 1982, was used during the earlier days of the

internet to connect ASes. It is commonly used between hosts on the Internet to

exchange routing table information. The routing table contains a list of known

routers, the addresses they can reach, and a cost or metric associated with the path to

each router so that the best available route is chosen.

Each router polls its neighbor at intervals of varying length and the neighbor

responds by sending its complete routing table. EGP is a simple reachability

protocol, and, unlike modern distance-vector and path-vector protocols, it is limited

to tree-like topologies [6].

BGP version 1

BGP version 1 was created to replace the EGP routing protocol to allow fully

decentralized routing. The message size for BGP version 1 varied in size from 8 to

1024 bytes, this was changed to a message size from 19 to 4096 bytes in the

subsequent versions. This was largely done due to the protocol expanding and

becoming redefined to support newer and better path mapping [17].

BGP version 2

In version 2, the concept of "up", "down", and "horizontal" relations between

autonomous systems that were present in version 1 were removed. BGP version 2

also introduced the concept of path attributes and further elaborated on parts of the

protocol that were considered “under-specified” [9].

BGP version 3

In version 3, several restrictions on the use of NEXT_HOP path attribute were

removed. Along with this, version 3 clarified the procedure for distributing BGP

routes between BGP speakers within an ASes [9].

BGP version 4

BGP version 4, which has been the standard for the internet since 1994, has yet to be

replaced. This version redefined the previously class-based network layer

reachability portion of the updates to specify prefixes of arbitrary length in order to

represent multiple classful networks in a single entry. The AS_PATH attribute has

been modified so that sets of ASes, as well as individual ASes may be described. In

additions, the INTER-AS Metric attribute has been redefined as the MULTI-EXIT

MICS 2008 112

DISCRIMINATOR. The LOCAL-PREFERENCE and AGGREGATOR attributes

have been added. BGP version 4 also became the first version to support CIDR. Very

few vendors still support earlier versions of BGP [7][9].

Fundamentals of BGPv4

Overview

The Border Gateway Protocol (BGP) uses a Transmission Control Protocol (TCP)

connection through port 179. Since it does not run directly on top of the Internet

Protocol (IP) or use User Datagram Protocol (UDP), it is possible to discover

neighbors through sending broadcast and multicasts. After establishing a TCP

connection, BGP information is sent in the form of messages. The messages have a

header which contains a marker, the length of the BGP message, and the type. The

marker checks for sender and receiver synchronization. The type indicates the

messages purpose. The type can be open, update, notification, or keep alive [2].

Routing Algorithm

BGP is often thought of as a distance path protocol. Unlike other protocols, BGP

doesn’t keep track of just a hop count, yet it doesn’t keep track of the entire topology

of the network either. Instead, every router receives information on the availability

of only its neighboring routers. It chooses the shortest path between ASes, updates

the routing tables and announces the information to its neighbors. This way BGP

doesn’t have to keep track of each network within the AS, but only the route between

them [2].

Autonomous Systems (AS)

An Autonomous System is defined in the IETF document, RFC 4271:

“The classic definition of an Autonomous System is a set of routers under a

single technical administration, using an interior gateway protocol (IGP) and

common metrics to determine how to route packets within the AS, and using

an inter-AS routing protocol to determine how to route packets to other ASs.

Since this classic definition was developed, it has become common for a

single AS to use several IGPs and sometimes several sets of metrics within an

AS. The use of the term Autonomous System here stresses the fact that, even

when multiple IGPs and metrics are used, the administration of an AS

appears to other ASs to have a single coherent interior routing plan and

presents a consistent picture of what destinations are reachable through it.”

[10]

MICS 2008 113

Each AS is specified by a number from a 16-bit number field, allowing 65,536

possible fields. The numbers 1 through 64511 are available for use with internet

routing while the numbers 64512 through 65534 are reserved for private use. AS 0,

65535, and 23456 are also reserved for various purposes. The AS numbers are used

by ASes to determine where a message started and how it got to its final location

[2][10].

Network Advertisement

Route announcement says which AS has control over a certain IP address space. If

an IP address space were to go down, the AS has to notify every other AS to update

its routing tables. If the network comes back online it must again announce a change

in the table configuration. The repeated on/off is commonly referred to as “route

flapping” and causes major congestion between the ASes.

Interdomain Routing

Classless Inter-domain Routing (CIDR) replaces the notion of network classes (such

as A, B, C) by freely allowing the AS to choose of the number of bits for the network

part of an address. According to Beijnum, “instead of looking to see if an address is

Class A, B, or C every route has an explicit indication of the number of bits that

belong to the network part of the address, either in prefix format or as a netmask.”

[2]

Route Replication

Route replication is where a redundant link is configured to the internet to increase

services and reduce costs. BGP is used as a key tool for achieving internet

connection redundancy. Multihoming increases the reliability of a connection by

using two or more ISPs. This insures that the IP range of the network is still

accessible when one of the connections or ISPs fail. BGP uses algorithmic

intelligence at the router to decide which ISP has the most efficient path [10].

Types of BGP Sessions

According to the Request For Comments (RFC’s) for BGP there is a list of sessions

that BGP can be in. These include idle, connect, active, opensent, openconfirm, and

established. The state BGP is currently in will determine the behavior of the router.

Idle is when the router is not setting up a BGP connection and any neighbors setting

up TCP connections will be refused. Connect is when the router is waiting for its

own TCP establishment to complete. Active is when BGP is waiting for some TCP

MICS 2008 114

session. OpenSent is when the open message has yet to be received but the open

message has been sent. OpenConfirm is the open message from a neighbor has been

received and is waiting for the completion of the BGP setup phase. Lastly,

Established is the initial keepAlive message is received and is ready for the other

message types. [2]

The propagation of BGP routes happens when a new route is received in a BGP

update message. When a BGP route is updated the router checks the filters to see if

it’s allowed and inserts the route if it is. It compares the route to other routes and

determines if it is the best. If it is the best the old route is removed and tells all its

neighbors it has received a new best route. If the filters on the external neighbor

ASes allow for the new route, it is propagated. The neighbors in the local AS are

then updated with the new best route, usually without any additional filtering [2].

Route Building / Selection

Route selection enables a router to select what route is the best amongst those

presented by the BGP. Three processes build and maintain the routing tables: The

BGP process, the route table itself by accepting information from BGP, and the

forwarding process which requests information from the routing table to make a

packet forwarding decision [10].

Routes are built and chosen in the routing table based on the BGP administrative

distance. Routes learned from protocol with the lowest administrative distance are

installed in the routing table. If there are multiple paths to the same destination from

a single routing protocol then the multiple paths will have the same administrative

distance and the best path is selected based on the metrics. Metrics are values

associated with specific routes, ranking them from most preferred to the least

preferred. The parameters used to determine the metrics differ for different routing

protocols, as mentioned in the History and Development of BGP [10].

Security Considerations

The Border Gateway Protocol (BGP) allows for the passing of information packets

by the use of routing tables through separate Autonomous Systems (ASes). ASes are

usually large Internet Service Providers (ISPs). BGP is a key tool for ensuring

multiple connections between two separate ASes. To achieve this, BGP uses

algorithmic intelligence at the router to decide which ISP has the most efficient path.

Routes are built and chosen in the routing table based on the BGP administrative

distance. Routes with the lowest administrative distance are installed in the routing

table. If there are multiple paths to the same destination from a single routing

protocol then the multiple paths will have the same administrative distance and the

best path is selected based on the metrics. Metrics are values associated with specific

routes, ranking them from most preferred to the least preferred. [18]

MICS 2008 115

It is common knowledge that the internet contains numerous vulnerabilities. Some

prominent examples include Internet viruses, worms, and spyware. Often, these

attacks are attributed to a lack of protection in software, including operating systems

and commercial programs. In addition to these software deficiencies we often find a

lack of security inside of the network layer of the TCP (Transfer Control Protocol)

Model. Since the routing structure of the Internet consists of many “peers” that work

together to route traffic, malformed routing tables can easily and quickly replicate

across the entire Internet. Human error in routing configurations can also

significantly affect large portions of the Internet, causing outages and malformed

routing tables. Specific to BGP, most would assume that vulnerabilities arise from

the protocol itself, while many potentially damaging attacks may result from

implementation. Therefore, repairing and securing the protocol itself will not solve

all security-related problems [18].

There are several types of attacks that can be made against BGP and its propagation

of routing information to others. Any of these attacks may be instigated by gaining

access to BGP-enabled routers by using brute-force password attacks, or abusing a

router’s Operating System (OS) vulnerabilities. Some of the specific types of attacks

include false route updates, route redirection, route instability, and blackholing.

False Updates are a very clear-cut type of attack against the protocol. This simply

occurs when an Autonomous System advertises a route or a prefix that it does not

administratively own. Route Redirection causes traffic to a specific destination to be

routed away and possibly to another compromised destination. Route Instability or

Route Flapping occurs when routes to networks are advertised and quickly retracted,

causing route dampening algorithms to activate in upstream routers, causing a delay

in establishing valid routes. This could potentially cause frequent short-term outages

during these frequent topology changes. Finally, blackholing is when an entire

network or prefix is inaccessible from a large segment of the Internet. There are

some cases where blackholing is valid, particularly for private and restricted network

ranges (192.x.x.x Class C networks) that should not be advertised. Malicious

blackholing is the mis-advertisement of valid routes, causing routers to drop valid

traffic to the “blackholed destinations.” [18]

BGP Message Vulnerabilities

Message authenticity is largely vulnerable. These types of vulnerabilities span most

or all parts of the BGP message structure. First, the message header, or the leading

part of the BGP message, contains information that requires specific syntax [19].

Any errors, especially syntax-based, will cause the BGP session to drop. In addition,

route-calculating processes will re-run and therefore consume router resources to

determine appropriate routes. Malformed message headers pose a significant risk for

router’s CPUs. Message header errors can potentially cause wide-reaching problems

MICS 2008 116

in the event that large ASes are compromised, sending out malformed or

syntactically-incorrect BGP message headers [19].

In addition to the message header, potential vulnerabilities exist at the various BGP

message forms. An OPEN message calls the router to invoke its route-decision

process in anticipation of new routes being calculated and added to the routing table.

 OPEN message arrivals may indicate that an attempted new connection, or that an

existing connection has dropped and is trying to be re-established. Frequent, or

abusive OPEN messages cause problems related to the respective router’s CPU

utilization, similar to the vulnerabilities that exist in BGP message headers [19].

The BGP KEEPALIVE message is not transmitted when BGP connections are being

established. A transmittal of a KEEPALIVE message while in the states of Connect,

Active, and OpenSent would cause the connection-in-progress to fail. Therefore, an

improperly-placed KEEPALIVE message would cause connections to fail [19].

BGP NOTIFICATION messages can easily be spoofed, and transmittal of these

messages to BGP listeners will cause an immediate loss of the active BGP session.

 Large amounts of spoofed NOTIFICATION messages could significantly impact

routing via a “cascade” effect, and may make connections between large numbers of

ASes impossible [19].

Route Redirection

Route redirection is when traffic flow is forced to take a different path to reach a

particular network. The path that the traffic is redirected to is often either incorrect or

is potentially compromised. The main objective of a redirection attack is to have the

compromised destination impersonate the true destination. This way the attackers

can get confidential information. The redirected traffic can also be used to congest or

completely collapse a different network [13].

In order to instantiate a route redirection, a hacker first needs to get into a networks

router. From there the hacker changes the routing tables to isolate parts of the

network and direct network traffic elsewhere. Another way a hacker can get your

computers to send data to the wrong address is to send Internet Control Message

Protocol (ICMP) redirect packets to the router. An ICMP redirect packet instructs the

router that an IP packet is being sent to the wrong router and that there is another

route to the destination address that is more efficient, faster, or capable of avoiding a

network problem. It is difficult to forge ICMP packets, however, because they must

appear to come from the router closest to the originating computer [13].

MICS 2008 117

Denial of Service (DoS)

A denial of service attack is an attack meant to make a resource unavailable to the

intended recipients. Often these attacks are intended to be malicious and target

Internet services that receive a lot of traffic to begin with. Common types of denial

of service attacks include the following [6].

SYN attack

In the Transport Control Protocol (TCP), a small buffer space exists to handle the

initial “hand-shaking” exchange that sets up the session between a server and a client

[6]. The packets used to establish the connection have a SYN field identifying the

status of the hand-shaking process. An attacker can perform a SYN attack by sending

a large number of connection requests quickly without responding to the reply from

the server. The packets fill up the buffer thereby blocking the legitimate requests of

other clients. The packets in the buffer are eventually dropped without a reply, but

the effect of many of these connection requests still makes it difficult for legitimate

requests to get established [6].

Physical Infrastructure Attacks

A Physical Infrastructure Attack is where a piece of the hardware is forcibly

disconnected. An example of this attack can range from simply cutting a cable to

damaging one of the routing devices. This attack is easily handled by redirecting the

traffic to another available route [6].

Teardrop Attack

The internet protocol requires each packet size to be within a certain range. If a

packet is too large for the next router to handle, the packet should be divided into

smaller fragments. Each of these smaller packets identifies an offset from the first

packet which is then used to piece together all of the fragments of the original

packet. An attacker can send a packet with a misleading offset value in subsequent

fragments that then make it difficult for the receiving to reconstruct the original

packet. If this is not handled by the receiving system, this can cause the system to

crash [6].

Viruses

Computer viruses replicate across networks and can act as denial-of-service attacks

in that they make a resource unavailable to the intended recipients. A virus usually

doesn’t specifically target one system but simply anyone who happens to get the

virus [6].

MICS 2008 118

Smurf Attack

In a smurf attack, the attacker sends a ping request to multiple servers using the IP

address of target. This attack causes the recipients to all send the ping back to the

target host which causes congestion at the receiving host’s buffer [6].

Blackholing

Blackholing is a technique used to deny a particular IP address or domain access to

an AS or specific machine. Through Blackholing, packets are discarded based upon

some assigned criteria. For example, an ISP might blackhole packets coming from a

known spammer or from a file sharing application such as Bit Torrent. In this way

blackholing can be used to protect systems from malicious software. Blackholing

can also be used with a malicious intent in mind. Malicious blackholing refers to

false route advertisements that aim to attract legitimate traffic to the wrong router

and then drop it. This would cause packets to be lost and for information to no

longer be delivered to its intended source [6].

Route Flapping

Route announcement says which AS has control over a certain IP address space. If

an IP address space were to go down, the AS has to notify every other AS to update

its routing tables. If the network comes back online it must again announce a change

in the table configuration. The repeated on/off is commonly referred to as “route

flapping” and causes major congestion between the ASes [19].

Route Instability or Route Flapping occurs when routes to networks are advertised

and quickly retracted, causing route dampening algorithms to activate in upstream

routers, causing a delay in establishing valid routes. This could potentially cause

frequent short-term outages during these frequent topology changes [19].

Route flapping is caused by a variety of conditions within the network which cause

information on the reachability of an area of the network to be repeatedly advertised

and then withdrawn. Configuration errors and sporadic errors in communications

links are the most common causes for route flapping. Route flapping often forces

routers to recalculate new routes to the offending network, while traffic on its way to

that network is already in transit through the routers [20].

An example of the effects that route flapping can have is given below.

“In October 2002, a seemingly small misconfiguration of a router caused

widespread outages. Improper filtering rules added to a router caused the

routing tables of WorldCom’s internal infrastructure to become flooded with

external routing data. The internal routers became overloaded and crashed

repeatedly. This caused prefixes and paths advertised by these routers to

MICS 2008 119

disappear from routing tables and reappear when the routers came back

online. This repeated advertisement and withdrawal of prefixes, known as

route flapping, served to destabilize the surrounding network.” [21]

Pretty Good BGP (PGBGP)

There is significant ongoing research on techniques and strategies to improve the

Border Gateway Protocol. BGP's vital importance to the routing structure of the

Internet lacks the necessary security to protect the Internet against large-scale routing

attacks. Pretty Good BGP (or PGBGP) is an effort to improve the existing BGP

implementation by making well-formed modifications [15][16][17].

The main focus of the PGBGP effort is in direct response to "bogus routes" that

compromise routing tables across multiple ASes. PGBGP significantly protects

against bogus routes by adding a time delay for learning new routes, adding a enough

time for a logical analysis and "weeding-out" of bogus or poor routing decisions

[15][16][17]. Since the introduction of bogus routes into routing tables is a prime

attack vector, the PGBGP effort significantly closes a possible attack vector against

BGP. The primary foundation of PGBGP is that even recognizable, pre-established

routes are treated with vigilance before used as a primary route within intra-AS

routing tables [15][16][17].

There are specific metrics that PGBGP considers when analyzing intra-AS routes for

consideration. As routes are newly formed and prioritized, PGBGP places them in a

quarantine to ensure their authenticity and quality. The protocol analyzes time, the

update’s prefix, and routing tables to verify the dependability of the proposed update

or new route. Also during this intermediate period, PGBGP accepts updates to the

specified route “in waiting” and recalculates metrics if such an update occurs

[15][16][17]. After the intermediate time has expired, PGBGP commits these time-

tested routes to the “normal routing table”. This verified routing table consists of

trusted routes, and so-called bogus routes are usually eliminated in quarantine.

 Bogus routes are classified as suspicious, and the router relies on routes from the

verified table to route traffic [15][16][17].

PGBGP also communicates known bad routes to an Internet repository for other

routers to analyze. This peer-contribution of information allows network operators

to quickly identify bad or bogus routes. Mailing lists such as NANOG (North

American Network Operators Group) frequently communicate and tabulate known

bad routes to ensure that such routes do not affect intra-AS traffic [15][16][17].

This proposal, while containing some flaws, significantly closes a well-known attack

vector for the existing BGPv4 protocol: bogus routes. The verification and

quarantine of new and updated routes would significantly reduce such attacks on

intra-AS networks [15][16][17].

MICS 2008 120

Secure BGP (SBGP)

BGP is highly vulnerable to a variety of attacks, secure BGP addresses these issues.

In order to address them, SBGP uses three tools: Public Key Infrastructure (PKI), an

optional BGP transitive path attribute (attestations), and IPSec. In large part, the

SBGP has not been deployed because of the stalemate between Internet registries,

router vendors, and Internet Service Providers (ISPs). Each organization cannot

justify investing in SBGP without the others having consented to do so also [14].

Public Key Infrastructure

According to Internet research department from BBN technologies, “PKI is used to

support the authentication of ownership of IP address blocks, ownership of

Autonomous System (AS) numbers, an AS's identity, and a BGP router's identity and

its authorization to represent an AS. This PKI parallels the IP address and AS

number assignment system and takes advantage of the existing infrastructure

(Internet registries, etc.).” The PKI will use an existing certificate management

system with a few modifications. The resulting new Certificate Authority (CA) will

be set up at an Internet registry. The CA establishes an organization to use a block of

IP addresses. An IPAddrBlocks certificate allows for verification that an

organization indeed has the right to the IP addresses by verifying a signature within

the certificate. Secondly, it establishes the right for an organization to have an AS

number (ASN) and a way to identify AS’s. Lastly it allows for routers to have an

association with ASes. However, there has not been any implementation of PKI in

routers to determine its real-world performance. BBN claims this is because of the

aforementioned stalemate [2].

Attestations

The aforementioned additional transitive path attribute uses digital signatures to

protect attestations in order to cover the information in a BGP UPDATE. This is

used in conjunction with the PKI to allow for authentication of both address and path

information. Attestations are described best by BBN itself:

 “They enable each S-BGP speaker that receives a route advertisement to

verify that each AS along the path has been authorized by the preceding AS

to advertise the route, and that the originating AS has been authorized to

advertise those prefixes by the entity with the right to use each IP address

prefix contained in the UPDATE [14].”

Attestations come in two forms: Route Attestation (RAs) and Address Attestations

(AAs). The route attestations are used in the optional transitive path and are

MICS 2008 121

additionally protected by the digital signatures. Address attestations are when the

sender (signer) of the attestation has the rights to route to one or more ASes specified

in the prefix address [14].

IPSec

According to BBN IPSec “is used to provide BGP control traffic with data and

partial sequence integrity, and with peer entity authentication.” IPSec protects the

reliability in TCP connections of organizations using BGP by implementing it at the

IP layer. In order to prevent the DoS attacks commonly associated with BGP, SBGP

uses anti-replay mechanisms. It is faster than a normal TCP detection system thereby

reducing the effect of the DoS attack [14]. SBGP focuses mainly on closing the holes

in security by allowing for the scalability of authenticating users and the legitimacy

of BGP control traffic. It attempts to be operable with current BGP settings, but has

many opponents. Any actual implementation of a new standard will be many years in

the future [14].

Conclusion

With the various security issues discussed throughout this paper we have come

across several key problems. There are many vulnerabilities in BGP messaging.

Messages are easily forged and disrupted when transmitted. Also, route redirection

causes the flow of traffic from a network to be rerouted. The traffic is often routed to

a compromised location or forced to a different network to cause overflows or

flapping. Denial of service is simply an attack intended to prevent an organization or

user from getting the resources they need. Different types of denial service attacks

are SYN attacks, physical infrastructure attacks, teardrop attacks, viruses, and smurf

attacks. Blackholing is used in preventing access to an AS or specific machine from

a specific IP or domain. The packets are then dropped based on definite criterion.

Route flapping occurs when routes to networks are advertised and quickly retracted.

This could cause frequent short-term outages. Pretty good BGP is a protocol that will

improve upon the existing BGP. Implementing PGBGP will help close common

attacks that occur upon current BGP networks. Secure BGP would update the

existing BGP network by including a variety of verifications in to the system while

maintaining the speed of the existing network.

MICS 2008 122

References

[1] "Routing Protocols." Network Dictionary. 24 Oct. 2007

<http://www.networkdictionary.com/protocols/routing.php>.

[2] Van Beijnum, Iljitsch. BGP. Sebastopol, CA: O'Reilly Media, 2002.

[3] Mattias, Jansson. "RIP." KTH School of Computer Science. 4 Feb. 2004. KTH.

26 Oct. 2007 <http://www.nada.kth.se/kurser/kth/2D1490/04/lectures/rip.pdf>.

[4] Saaristo, Sampo. "Implementation of IS-IS Routing Protocol for IP Versions 4

and 6." Tampere University of Technology. 4 Oct. 2002. Tampere University of

Technology. 27 Oct. 2007

<http://www.cs.tut.fi/tlt/npg/icefin/documents/isis_impl.pdf>.

[5] "Border Gateway Protocol." Wikipedia. 27 Oct. 2007. 27 Oct. 2007

<http://en.wikipedia.org/wiki/Border_Gateway_Protocol>.

[6] "Exterior Gateway Protocol." Wikipedia. 2 Oct. 2007. 30 Oct. 2007

<http://en.wikipedia.org/wiki/Exterior_Gateway_Protocol>.

[7] "BGP." Advanced Internet Routing Resources. 26 Sept. 2007. 30 Oct. 2007

<http://www.bgp4.as/>.

[8] "BGP." Network Sorcery. 31 Oct. 2007

<http://www.networksorcery.com/enp/protocol/bgp.htm>.

[9] Huston, Geoff. "Exploring Autonomous System Numbers." Cisco. 4 Nov. 2007

<Exploring Autonomous System Numbers>.

[10] Davis, David. "How to Use BGP to Achieve Internet Redundancy." Tech

Republic. 11 Mar. 2002. <http://articles.techrepublic.com.com/5100-1035_11-

1039765.html>.

[11] Nordstrom, Ola, and Constantinos Dovrolis. Beware of BGP Attacks. Georgia

Institute of Technology. ACM, 2004. 4 Nov. 2007.

[12] Kranakis, Evangelos, P.c. Van Oorschot, and Tao Wan. Security Issues in the

Border Gateway Protocol (BGP). Carleton University. 2005. 4 Nov. 2007.

[13] “Articles on Security”. Dec 02, 2007. <http://www.appinlabs.com/articles-on-

security.php>.

[14] Mikkelson, Joanne and Seo, Karen and Lynn, Charles. “Secure BGP (S-BGP)”.

June 2003. Dec 02, 2007. <http://www.ir.bbn.com/sbgp/draft-clynn-s-bgp-protocol-

01.txt (used in SBGP)>.

[15] Karlin, Josh and Forrest, Stephanie and Rexford, Jennifer. “Pretty Good BGP:

Improving BGP by Cautiously Adopting Routes”. Dec 02, 2007.

<http://www.cs.princeton.edu/~jrex/papers/pgbgp.pdf>.

[16] “Internet Alert Registry”. Dec 02, 2007. <http://iar.cs.unm.edu/>.

[17] Convery, Sean and Franz, Matthew. “BGP Vulnerability Testing:

Separating Fact from FUD v1.1”. Dec 02, 2007. <http://www.nanog.org>.

[18] “Denial of Service”. Oct 23, 2007. Dec 02, 2007.

<http://searchsoftwarequality.techtarget.com/sDefinition/0,,sid92_gci213591,00.html

[19] Murphy, S. “BGP Security Vulnerabilities Analysis”. Jan, 2006. Dec 01, 2007.

<http://www.rfc-archive.org/getrfc.php?rfc-4272>.

[20] “Route Flapping”. Dec 02, 2007 <http://en.wikipedia.org/wiki/Route_flapping>.

MICS 2008 123

[21] Farley, Toni and McDaniel, Patrick and Butler, Kevin. “A Survey of BGP

Security Issues and Solutions”. AT&T Labs Research. Dec 02, 2007.

<http://www.cs.purdue.edu/homes/ninghui/readings/TruSe_fall04/td-5u

MICS 2008 124

Content-Aware Image Resizing

Kirk Wienkes and Dr. Kenny Hunt
Computer Science Department

The University of Wisconsin-La Crosse
La Crosse, WI 54601

email: wienkes.kirk@students.uwlax.edu, hunt.kenn@uwlax.edu

Abstract

Recent advances in image display and document layout have given rise to the notion that
resizing of images should not necessarily resample an entire image but that resizing should
consider the content of an image. This article is based upon previously published research
on the content-aware image resizing technique known as seam-carving as presented by
Avidan and Shamir [1]. The seam carving technique uses seams which are defined as
an 8-connected path of pixels from top to bottom, or from left to right. This technique
uses the repeated removal of seams of least importance where importance is based on an
energy function image. By removing seams the algorithm retargets the image size to the
users desired width and height. By removing the least important seams those parts of
the image having the most information content are preserved while truncating the least
significant image pixels. Unfortunately, a pure seam carving implementation suffers from
poor performance on a certain class of images, mainly images with a strong diagonal edge.
Here we present an implementation of the seam carving method, a verification of known
results, and an explanation on the seam carving algorithm for implementing effective image
resizing.

MICS 2008 125

1 Background

In today’s world, the internet is integral to everyday life and can be accessed by people
throught the world using a vast variety of computing systems. Unlike at its origins, the
internet is no longer bound to personal computers and mainframes, and thus web pages
can no longer assume that they will be displayed by a computer monitor using a prescribed
resolution and aspect ratio. The internet can be accessed and displayed on everything from
small-screened cell phones to large-screened high-definition monitors. Thus web designers
have to be able to dynamically adjust their web page content to adjust to the capabilities
of the displaying device. While dynamic webpage layouts have given web designers the
ability to scale and move textual information, dynamic webpage layouts generally do little
with respect to retargeting images. Web designers therefore require tools to dynamically
retarget images in their online documents to accomodate any type of display. Currently,
there are three main methods of resizing: cropping, padding, and retargeting. All of these
common methods are based solely on the dimensions of an image rather than the content.

The first method, cropping, requires that the desired dimensions be smaller than the origi-
nal dimensions. The cropping method removes pixels from around the edges of the image.
Thus all the content that is on these portions of the image that are thrown away and their
information is completely lost. There is no effort on the part of this method of image
resizing to save the complete image only just a sub rectangle of the image. The second
method, padding, requires that the desired dimensions be larger than the original dimen-
sions. Padding as a method of resizing simply adds background pixels around the image
in order to make it conform to the desired dimensions. This can be done by always adding
pixels off the right and bottom edges of the image so that the content of the image remains
in the upper-left hand corner or equally around the image so that the content of the image
remains in the center. Padding adds no content or added clarity to the image; it simply adds
a border.

The third method, retargeting, unlike cropping and padding has no restriction on the size
of the desired dimensions in relation to the original dimensions of the image. The method
of retargeting uses a mapping function between the source and retargeted image. Most
retargeting methods use an inverse mapping function that defines a mapping function from
the pixels of the destination image to the pixels of the source image. This prevents holes
that can occur when using a regular mapping function, which maps a function from the
pixels of the source image to the pixels of the destination image. Some of the problems
that occur with retargeting deal with how it can distort the images since the functions are
not a one-to-one correspondence and they often point in between pixels. The two main
ways of dealing with this is done by either picking the nearest pixel or the using some
type of interpolation to approximate what that point in between pixels would be. The main
feature that these traditional resizing methods lack is that they do not take into account the
content of the image. They only concern themselves with the dimensions of the image.
The deficency in this approach is that all image pixels are treated as of equal importance
when retargeting such that a relatively unimportant background pixel takes on as much
significance as a pixel that defines an object of interest in the scene.

MICS 2008 126

Realizing the deficiencies and limitations of a purely geometric resizing algorithm, the
next step in image resizing needs to take into account what is in the image or the content
of the image. This brings us to content-aware image resizing methods. Due to the lack
of efficient content-aware resizing algorithms, there is a lot of interest in content-aware
image resizing. A content-aware image resizing algorithm will look at the features of an
image and try to protect these features as it resizes the image. This way the image only
loses uimportant information and retains the important information. In 2007, Shai Avidan
and Ariel Shamir published a paper describing a content-aware image resizing algorithm
named seam carving [1]. At the end of the paper, the authors expressed the limitations
of their algorithm. According to the authors, there are certain types of images that break
this algorithm: images with too many features, images with relative spatial requirements
such as faces, and images that have content that prevents the seam from bypassing them.
By using face detections algorithms, Avidan and Shamir were able to get a handle on this
problem with faces, but they left the other two cases up to future work. Most of this paper
will be heavily based on the work done by Avidan and Shamir in their paper. Our purpose
will be implementing their seam carving algorithm, verifying their results, and eventually
expanding on their research. In this paper, the technical explanations are derived from the
paper by Avidan and Shamir, but the implementation of their seam carving algorithm is our
own contribution.

2 Overview of Seam Carving

2.1 Energy Function

Seam carving makes use of an energy function in order to determine the relative importance
of pixels within an image. A pixel that is important to the content of the image is said to
have a high energy and a pixel that is not important to the content of the image is said to
have a low energy. There are many different energy functions that can be used determine
the energy of a pixel. Using the observation by Avidan and Shamir, we decide to implement
and use the two energy functions that they deemed best in most circumstances: e1 and eHoG.

The e1 energy function is an approximate measure the magnitude of the gradients in an
image. It combines the image gradients in the vertical and horizontal directions by adding
their absolute values. For an image I the energy function e1 is defined as

e1(I) = |δI
δx
|+ |δI

δy
| (1)

For computing the oriented gradients δx and δy of an image I we convolve with the proper
Sobel mask. The histogram of gradients energy, eHoG, attempts to measure image gradi-
ents but in a more sophisiticated fashion. The eHoG function is defined by the following
equation.

eHog(I) =
| δI
δx
|+ | δI

δy
|

max(HoG(I(x, y)))
(2)

MICS 2008 127

(a) (b) (c)

Figure 1: Source image (a) and the pixel energies as computed by eHoG (b) and e1 (c).

HoG(I(x, y)) is the histogram of the oriented gradients at every pixel. This is computed
using an 8-bin angular histogram computed on an 11 by 11 mask around each image pixel.
The denominator of this energy function takes the seam toward the edges of an image
while the numerator helps to ensure that the seams run parallel to the edges so that they
do not cross to edge. This energy function has been used in the area of computer vision
in the detection of humans in an image [2]. Figure 1 gives a visualzation of these energy
functions. The center image is a visual representation of the histogram of oriented gradients
energy function of the source image on the right [5] while the rightmost image is a visual
representation of the e1 energy function on the image on the left.

2.2 Seams

A vertical seam is an 8-connected path of pixels from top to bottom containing one, and
only one, pixel in each row of the image. A mathematically precise definition of a vertical
seam on an image I with dimensions n×m is the following:

Sx = {Sxi }ni=1 = {(x(i), i)}ni=1,∀i{|x(i)− x(i− 1)| ≤ 1} (3)

Similarly, a horizontal seam is an 8-connected path of pixels in an image from left to right
containing one, and only one, pixel in each column of the image. A mathematical definition
of a horizontal seam on an image I with dimensions n×m is the following:

Sy = {Syj }nj=1 = {(y, y(j))}nj=1,∀j{|y(j)− y(j − 1)| ≤ 1} (4)

Hence, when removing either a vertical or horizontal seam from an image, the image is
reduced in either width or height by exactly one pixel. It is also important to note that
when removing a seam from an image a shifting of pixels occurs. For horizontal seams,
all the pixels below the seam are shifted up to fill the space where the seam once was.
Similarly for vertical seams, all the pixels to the right of the seam are shifted left to fill
the space where the seam once was. In order to select the seam that contains the least
information with respect to the content of the image we choose the seam where the sum of
the energies of the pixels in the seams is minimized. The energies of vertical seams Ss and
horizontal seams Sy are defined as

MICS 2008 128

(a) (b)

Figure 2: Minimial cost vertical seam (a) and horiztonal seam (b) shown in red using eHoG.

e(Sx) =
n∑
i=1

e(Sxi) (5)

e(Sy) =
n∑
j=1

e(Syj) (6)

For maintaining the most energy or content in the image it is important to remove the
optimal seam in an image, designated as S∗. The optimal seam is defined as the seam with
the least energy.

S∗ = min(∀S ∈ I{e(S)}) (7)

To find this optimal seam, use can use a dynamic programming algorithm. Let M(i, j)
be the energy of the minimum partial path at location (i, j) of an image I as the seam
is traversed from top-to-bottom in a vertical seam. Note that the technique for horiztonal
seams is a straightforward extension of this description. For all pixels in the top row of
an image, the minimum partial path energy is given as M(0, j) = I(0, j) for all column
indices j. For all other rows of the image, the minimum partial path energy is computed
using a linear raster scan using the following formulation:

M(i, j) = e(i, j) +min(M(i− 1, j − 1),M(i− 1, j),M(i− 1, j + 1)) (8)

The minimum cost vertical seam is the path having the minimumM value in the bottom row
of the image. To figure the rest of the path we simply, backtrack through M(i, j) collecting
the smallest connected partial paths on the way back to the first row. Figure 2 illustrates
how the minimal cost seam captures the notion of a path of least important image content.
The image on the left displays in red the minimal energy vertical seam using the histogram
of oriented gradients. The image on the right displays in red the optimal horizontal seam
for removal using the histogram of oriented gradients energy function.

MICS 2008 129

(a) (b) (c)

Figure 3: Source image (a) is resized to 75% of its original size using seam carving with
eHoG to produce (b).

2.3 Image Resizing

Having definitions for energy functions and seams, we can describe image resizing using
seam carving. For this paper, we will only be discussing reducing images, a discussion
of enlarging images can be found in the Avidan and Shamir paper. Consider image I with
dimensions n×m and assume that we want to resize I into I with dimensions n×m. Using
seam removal, we will need to remove n − n horizontal seams and m −m vertical seams
from to create I . For this paper, there are four approaches for selecting the seams to be
removed: 1) remove all horizontal seams first 2) remove all vertical seams first 3) alternate
between removing horizontal and vertical seams and 4) and alternate between vertical and
horizontal seams. Our implementation chooses to alternate between vertical and horizontal
seams.

Figure 3 shows how seam removal attempts to keep image content while eliminating pixels
of little relative import. A source image is reduced by 25% using the traditional resampling
approach to obtain the image shown in (b) while seam removal is used to obtain the image
shown in (c). Comparing the skylines of the two reduced images reveals that seam removal
has kept more of the foreground and eliminated more of the sky than the traditional ap-
proach. Also, the seam removal technique tends to dispense with pixels in the waterway
rather than the terrain and hence the spatial relationship between scene elements is altered.

3 Implementation

Due to our familiarity with Java and the Java digital image processing library in the awt
package, we decided to use Java as our implementing language of choice. Our main goal
was to create a correct solution without regard to efficiency. In order to speed up our re-
search, we used the Java framework as the basis of our implementation for the seam carving
algorithm. In this framework there are two main classes that we need to be concerned about
the BufferedImage and the BufferedImageOp. The BufferedImage class is the basic image
class of the framework; it stores all the information about an image. The BufferedImageOp
is a class that performs some one-to-one operation on a source image resulting in a destina-

MICS 2008 130

tion image. This operation is done using the filter method, which is the main method that
should be overridden when sub classing the BufferedImageOp.

In our implementation, we created subclasses of the BufferedImageOp including Retarge-
tOp, CropOp, SeamCarveResizeOp, SingleSeamCarveOp, and ColorSeamOp. The Re-
targetOp is an implementation of an inverse mapping retargeting resizing method. The
CropOp is an implementation of a crop method. These two classes provide a baseline for
comparison with our implementation of the seam carving algorithm. The SeamCarveRe-
sizeOp is the main class for our implementation of seam carving. It works by repeatedly
calling SingleSeamCarveOp which will remove the least important horizontal or vertical
seam as defined by an EnergyFunction which is the interface that we used to implement a
variety of energy function. The two implementations of EnergyFunction were the HOG-
Function and the MagnitudeGradientFunction. The HOGFunction gives an implementation
of the histogram of gradients energy function described above and the MagnitudeGradient-
Function gives an implementation of the e1 energy function described above. Finally, the
ColorSeamOp provides the same functionality as the SingleSeamCarveOp except that in-
stead of removing the least important seam; it colors the least important seam to give a
visual aid on what seams were being removed from an image.

4 Results

In order to find the classes of images for which this method performs adequately, we ran
our algorithm on images that represented vastly different categories of image types. Our
classification included computer generated images, nature images with strong edges, natu-
ral images with weak edges, and binary images. Our assessment of the quality of the results
is based on a subjective aesthetic evaluation rather than a quantitative metric.

4.1 Computer Generated Images

This class of images involves images created on a computer using synthetic techniques.
Clip art and icons are a few examples of types of images in this category. As a whole
this class of images did not perform well. Since a basketball is round, a good resizing
algorithm should result in a round or oval-shaped basketball. The seam carving method
does not perform well with this type of image since it has difficulties with maintaining
proportionality of its results. Figure 4 shows the results of reducing a source image [4]
by 25% using both traditional resizing and seam carving techniques. Traditional resizing
gives obviously superior results.

4.2 Natural Images with Strong Edges

Natural images are those that are acquired using direct environmental sampling. In this
case, we have chosen a subjectively determined strong edge criteria to mean any photograph

MICS 2008 131

(a) (b) (c)

Figure 4: Source image (a) is resized to 75% of its original size using traditional resizing
(b) and using seam carving with eHoG (b).

having strongly outline objects within the scene of interest. Figure 5 gives a representative
image of what we consider to be a natural image having a strong edge [6]. Strong edges
within an image that span the entire width or height of an image are problematic, as was
the case with the clip art example. In this case, the strong edge of the globe presents an
edge that all horizontal seams must traverse and hence represent an edge that cannot be
sustained throughout the seam carving retargeting.

(a) (b) (c)

Figure 5: Source image (a) is resized to 75% of its original size using traditional resizing
(b) and using seam carving with eHoG (b).

4.3 Images with Weak Edges

Seam carving produces the best results with images that have large swaths of relatively
weak edges throughout the image since wide horizontal or vertical seams can then be found
that produce negligible effect when removed from the resulting image aesthetic. Figure 6
shows one such result [3].

MICS 2008 132

(a) (b) (c)

Figure 6: Source image (a) is resized to 75% of its original size using traditional resizing
(b) and using seam carving with eHoG (b).

4.4 Binary Images

It is interesting to see how this seam carving method works on a binary image. Figure
7 shows the results of seam carving a section of scanned text. Since there are relatively
large pathways through the maze of lettering in both vertical and horizontal dimension, the
algorithm produces reasonable results but produces characters that are spatially shifted in
displeasing fashion.

(a) (b) (c)

Figure 7: Source image (a) is resized to 75% of its original size using traditional resizing
(b) and using seam carving with e1 (b).

5 Conclusion

Seam carving presents real potential for use in image retargeting as motivated by the desire
to dynamically adapt document layout to various display devices. Seam carving does not,

MICS 2008 133

however, present a general solution to image resizing since the content of an image may
cause the image to be more or less amenable to seam carving. We hope to extend this re-
search by developing a hybrid approach that attemtps to dynamically examine an image and
automatically determine those cases (or regions) which should be treated using the tradi-
tional hybrid approach and those that should be carved using the technique described in this
article. Determining the correct way to combine these two very different approaches into a
unified and automatic technique may present a powerful general solution to the problem of
dynamic image retargeting.

References

[1] Shai Avidan and Ariel Shamir. Seam carving for content-aware image resizing. ACM
Trans. Graph., 26(3):10, 2007.

[2] N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. Inter-
national Conference on Computer Vision & Pattern Recognition, 2:886–893, 2005.

[3] emdot. http://www.flickr.com/photos/emdot/73257388/, 2005.

[4] Stellaris. http://openclipart.org/media/files/Stellaris/1178, 2006.

[5] A. Wellsfry. Personal photo used by permission of artist., 2008.

[6] A. Wellsfry. Personal photo used by permission of artist., 2008.

MICS 2008 134

Tracking a Rat in Three-Dimensional Space Using Stereo
Cameras

Nathaniel Meierpolys
Computer Science

Program
St. Olaf College

Northfield, MN 55057
meierpol@stolaf.edu

Michael Krahulec
Computer Science

Program
St. Olaf College

Northfield, MN 55057
krahulec@stolaf.edu

Daniel Wiebe
Computer Science

Program
St. Olaf College

Northfield, MN 55057
wiebe@stolaf.edu

Olaf Hall-Holt
Computer Science Program

St. Olaf College
Northfield, MN 55057

olaf@stolaf.edu

Reid Price
Computer Science Program

St. Olaf College
Northfield, MN 55057
reid.price@gmail.com

Abstract

We consider the problem of determining the position and head orientation of
a rat in three-dimensional space based off of two colored LED lights attached
to the rat's head. In order to track the rat using only standard cameras (instead
of range-finder technology), we use two pre-calibrated cameras for
triangulation. To find the LED lights in the camera images, we segment the
image based on color and gradient data, storing the information in a half-
edge data structure. We then select specific faces as LEDs based on the
expected color and relative size of the LEDs. Finally, based off the
calibration information, we can triangulate the LEDs to within 0.3 cm. The
results of this process will be used in conjunction with brain wave activity
data as part of an interdisciplinary study of the neural basis for spatial
navigation in a rat.

MICS 2008 135

Introduction

The problem of automatic detection and tracking of objects is a familiar one in the field of
computer vision and has been analyzed in various contexts. The difficulty with this
problem lies twofold in the large amount of video information to be processed and the
inability of computers to recognize coherent objects and shapes the same way humans do.
Basic objects that appear clear and concrete to the human eye are actually rather complex.
Objects contain textures and shadows, potential for rotation and changing orientation, and
often blend into backgrounds, making them hard to identify.

Using data from a pair of high-quality video cameras, we locate two LED lights mounted to
the head of a rat. The front and back LEDs have a different color, and of the position of
each colored LED allows us to measure the orientation of the rat at any given time. This
information can be combined with measurements of individual neurons in the brain to
study the neural basis for spatial navigation in the rat.

The most difficult aspect of our case is the nature of the object being tracked. When
tracking a live animal, we encounter unpredictable difficulties with occlusion from objects
in the maze. We also encounter moments when the physical LEDs reflect off walls to
create virtual ones in the center of the reflection, confusing our system. If these
complications weren't enough, the movement of the rat changes the orientation of the LEDs
at varying speeds, which makes tracking the rat's movements very difficult.

Our approach relies on image data from two cameras, without need for range-finding
equipment. Processing data is performed by a software pipeline involving four distinct
components. Cameras are calibrated using a calibration target within view of both cameras.
Images of the rat from two cameras are segmented in parallel with the help of a powerful
Beowulf cluster environment. Images are then processed to determine the location of LED
lights using a doubly-linked half-edge data structure. Finally, identified points are
triangulated into three-dimensional space from pairs of stereo images. The process is
structured to allow the processing of many frames automatically. We sacrifice real-time
speed for highly precise measurement of LED light position.

Calibration

In order to utilize images from cameras to triangulate the positions of objects in three-
dimensional space, we must develop a concept of what a "camera" is, and how we can
translate the images it gives into meaningful data. We consider a pixel on an image as color
and position information about a particular ray of light that passes through the focal point
of the camera and a specific place on the light receptor of the camera (See Figure 1). As
seen in the diagram, the actual image taken by the camera can be placed in space such that
the ray of light passes through the pixel on the image. If we can determine the three-
dimensional position of the camera's focal point, and the size and appropriate position of
where the image can be placed in space , then we know everything about the camera
needed for triangulation. Throughout this next section, we will call the correct position and
orientation of the image the camera's screen.

MICS 2008 136

Figure 1: A Basic Camera

Calibration is the process of generating a three-dimensional coordinate system and
determining the positions of the screen and the focal point of a camera in that coordinate
system. In our method, we set up the cameras in the position they will be throughout the
whole experiment. We then place a calibration target within clear sight of both cameras.
This target is a a grid of black dots on a white sheet of paper, with an odd number of rows
and columns (Fig.3). The distance between the grid points is known, giving us a clear
measure of length in the image. To help simplify our algorithm, the cameras must be set up
such that pictures of the calibration target show the rows of dots to be parallel to the top
and bottom edges of the image. The correct placement of cameras is displayed in (Fig. 2).

Figure 2: Example camera layout Figure 3: Calibration Grid

Once we've taken an image of the calibration target with both cameras, we continue with
the experiment to its conclusion, for the calibration process can occur later, when we are
actually processing the data.

Our calibration algorithm takes the images containing the calibration targets and produces

MICS 2008 137

all the necessary position data about the cameras. The first step in this algorithm is
identifying the dots in the picture and putting them in grid-order. In order to do this, we
generate a mask of a standard black dot with a square white background of a size inputted
by the user. Next, we loop through all the pixels, starting at the upper left-hand corner of
the image, placing the mask over the image, centered at the current pixel. We then count up
the differences in color of all the pixels in the mask compared to the image pixels. This
value is normalized and stored as color data in a new image at the location of the original
pixel. The result of this process is also known as a disparity map. In order to isolate the grid
points, we filter this disparity map, blacking out any pixels that have a disparity higher than
a given tolerance level. We then find the pixel with smallest disparity in each dot-sized
region of interest to determine the positions of the dots in the image. As long as the dots in
the image were well-lit, this algorithm clearly identifies the positions of the dots.

The central dot is assumed to be the origin of our three-dimensional coordinate system. In
order to determine the camera parameters with reference to the grid, we first guess at a
series of camera parameters. Then, based on these parameters, and the distance between the
grid points, we generate a virtual grid of points, and display what would appear on this
cameras screen(See Figure 4). We then continuously vary the camera parameters slightly
until we minimize the difference between the virtual model and physical reality.

Figure 4: Virtual grid vs. Physical Grid

Capturing Video Data

Camera Settings

We use two Sony BRC-300 cameras which allow manual control of shutter speed, iris, gain
and zoom. The task of picking out bright LED lights can be greatly simplified using these

MICS 2008 138

manual settings. A high shutter speed means that the image sensor is exposed to light for a
shorter period of time, causing LED lights to stand out against less bright elements of the
background. Shorter length of exposure also reduces the risk of motion blur. Maintaining a
low aperture setting opens the iris wider. This increases the depth of field, keeping more
components of the image in focus. Both settings contribute to the reliability of our
procedure for identifying LEDs.

Scanline Issues

The cameras we use record interlaced video to effectively double the perceived frame rate
of the video. The technique of creating interlaced video involves capturing all odd
scanlines in one instant then all even scanlines in the next and finally piecing the two fields
together to produce a single frame. This process improves the smoothness of video while
reducing the amount of information to be broadcast or stored. In the context of our image-
processing needs, however, the jagged edges make our analysis more difficult and less
accurate. To deal with this problem and deinterlace image content, we first separate odd
and even fields and then double each line to produce two distinct images from each frame
recorded. The doubling ensures the maintenance of a consistent aspect ratio but
unfortunately comes at the cost of losing vertical pixel precision since we cannot know
exactly how closely our copied scanline matches the actual light entering the camera at that
point.

Figure 5: From left to right: Normal, deinterlaced image. The same
image, with interlaced fields during movement. An actual interlaced

LED image

Our relatively simple solution depends on knowledge of whether a line was initially copied
up or down. For odd fields where all scanlines are copied down, we are essentially skewing
the location of area within the face downwards. The same is true in the opposite direction
for even fields where scanlines are copied up. To compensate for this, we adjust the
vertical position of an LED's calculated center up by .5 pixels for odd scanline images and
down .5 pixels for even scanline images. The extra information gained by processing both
odd and even fields allows us to more easily overcome cases in which the LED light is
occluded in one scanline and visible in the other as is generally the case.

Segmentation

In order to get any meaningful information out of the images we collect, it is necessary to
analyze the image data for coherent shapes and color regions. We use a program

MICS 2008 139

http://www.cs.stolaf.edu/wiki/index.php/Image:Ratdeinterlaced.jpg
http://www.cs.stolaf.edu/wiki/index.php/Image:Ratinterlaced.jpg

developed by our co-researchers to segment our images. The program, called Eriol, breaks
an image into shapes called faces and stores the information in a half-edge data structure.
The Halfedge is a edge-centered data structure that is great for representing a polygon
mesh, the exact structure of segmentations. The Halfedge Data structure received its name
because instead of storing full edges of the mesh, we only store halfedges, where two
halfedges together form a edge pair, and are referred to as "twins". This way each halfedge
only belongs to a single incident face. Below is an illustration of a small portion of a
halfedge structure.

Figure 6: Halfedge example

The Halfedge data structure uses pointers to connect each face to its
"outercomponent"(outer edge). Then, each halfedge has pointers to both the next edge, it's
twin, and the incident face. This structure allows us to quickly move around the data
structure and retrieve data in constant time per each piece of information gathered. We use
the data stored in the faces of the structure to identify LED location and information more
easily than sifting through raw image data.

The segmentation process itself is driven by the minimization of a cost function including
four terms. These terms are variance (the change in color within faces), boundary length of
faces, the gradient (change in color along edges), and the number of segments needed to
describe the segmentation. The process starts with a grid containing the maximum number
of pixel size squares and removes segments until the cost function reaches a minima.

MICS 2008 140

http://www.cs.stolaf.edu/wiki/index.php/Image:Halfedge_small.gif

Figure 7: A segmented image in Eriol. The upper-right
bright spot is the actual orange LED, whereas the

bottom left one is its reflection. The remarkable size
of the reflection bright segmentation is atypical,

though it must be taken into consideration.

The very precise nature of this segmentation involves significant processing time. We
employ the use of a Beowulf cluster of up to 34 machines, facilitated by the use of MPI
message passing software. Together the cluster machines can segment many frames in
parallel, increasing the speed of the process. Whereas a single machine processing a frame
requires approximately 15 minutes to complete segmentation, many machines working in
parallel reduce this task by a significant factor.

Finding LEDs

Picking out faces

Using the Halfedge data structure of the image segmentations, we can easily query the
whole image to find the brightest faces in our segmentations. The LEDs are so bright that
they appear overexposed in the image, creating a bright white spot where the center area of
the LED is located. Because we have used the increased shutter speed to decrease the
amount of light entering the camera, the two LEDs and possibly a reflection of one of the
LEDs on the wall of the maze are the only bright spots that we find. Based on the area of
the bright faces, we select the two largest bright spots as our LEDs, because the white
center of the reflection of the LED on the wall is almost always much smaller than source

MICS 2008 141

LED itself.

Identifying Color

Once we have identified where the LEDs are located in the image, we need to find color
information about them to distinguish between the two LEDs, red or green. To find the
color of the LED, since the center face is only a bright white color, we must circle around
the image to find information about the color of surrounding faces. Luckily, with the
Halfedge data structure, we can easily find this information in constant time. We take the
mean color of all of the faces around the LED, and then, because there are only red or
green LEDs, we can look at which value, red or green, is greater in the mean RGB value of
the faces, and based on this we know the color of the LED.

Finding centroids

Once we have obtained the color of the LEDs, we need to know the exact location of the
centroid of our LEDs on each image to enable us to find the correct three-dimensional
position using triangulation. To do this, we use a function that uses the vertices of the face
to find an extremely accurate position of the centroid. The function is as follows, where cx

is the x-coordinate of the centroid and cy is the y-coordinate:

Figure 8: Centroid function

This function is great for use in our segmentation because it does not weigh the location of
the centroid based on the distribution of vertices. The coordinates of the centroid on both
the right and left images are then fed into our triangulation function to find the exact three-
dimensional location in space.

Triangulation

Once the two cameras have been calibrated, we are able to use pairs of camera images to
locate an object in three dimensional space. Given the (x,y) position of a small object in
each camera's image plane, we can generate the ray that passes through the focal point of
the camera and the position on the camera's screen (see the figure below; for the definition
of screen, see the Calibration section). The object observed necessarily lies somewhere
along this ray in space. Now if we have two cameras, and they both observe the same
object, the object must lie at the intersection of the two rays. In reality, there is naturally
some error in the positions of the rays such that they do not intersect, but pass very close to

MICS 2008 142

http://www.cs.stolaf.edu/wiki/index.php/Image:Centroidfunction.gif

each other. Thus, our algorithm finds the midpoint of the shortest segment between the
two rays, giving an approximation of the point of "intersection". A visualization of this
process is shown in the figure below (Figure 9).

Figure 9: Triangulation Image

Results and Error Analysis

Our algorithm successfully found the two LEDs in each frame only about 60% of the time.
The rest of the time, it found one LED, two of the same color, or none at all.

For the triangulation portion of our algorithm, it is much more difficult to determine the
error because we do not have an accurate "ground truth" set of images. To create a ground
truth dataset, we would need to accurately pinpoint the LEDs' positions in some other way
than with our cameras, whether with laser range-finding or with rulers. The former method
is not cost-effective for a single test, and the latter is not accurate enough to give us any
good comparison to our algorithm's results. Thus, the method we use is calculating one
half the length of the shortest line connecting the two rays in the triangulation process.
This measurement gives us a general idea of the error in our entire algorithm. During
testing, we found that this error ranged from .06 cm up to .3 cm. We consider this to be a
remarkable success, if indeed this is an accurate determination of our error.

MICS 2008 143

Conclusion and Future Direction

In conclusion, our algorithm is quite robust in triangulating the positions of the LEDs once
they are found. However, our LED-finding algorithm will need improvement. We have a
number of ideas on how to improve this aspect of our algorithm. First, although the size
difference between the real LED and the reflection is generally a reliable distinguishing
factor, we believe there could be instances when this characteristic may not be enough.
Another potentially valuable method would be to look at the color spread around the two
bright spots, since the color spread around a reflection is always significantly larger than
the color spread around the real LED. It is also possible to devise a method to check
accuracy and correctness based on the distance between the two LEDs found. Since the
LEDs will always be the same distance apart from each other in three-dimensional space,
information about the two potential LED positions makes it possible to check the distance
between them. If they are not the correct distance apart, the algorithm must search further
to obtain a new LED.

Occlusion of the LEDs is another problem that can occur in searching for the LEDs in our
experiments. There is a wire that runs down from the ceiling to the head of the rat, and this
cord can sometimes block the view of the LED for an instant, making it difficult to track.
We are already looking at both of the alternating scanlines to help with this problem, but
another possible resource could be the position of the LED in the image before and after
the occlusion occurred. Considering information from these two sources would allow a
very accurate estimate of the position of the LED, even in difficult cases.

These problems are of the foremost importance in the future direction of our research.
Other explorations of the problem could involve moving the cameras to track the LEDs
dynamically rather than our static setup where the cameras remain still. This would require
constant re-calibration of the cameras and precise control of the camera movement. Once
this is accomplished, the final step in our research would be to make all of these steps occur
in real-time, rather than waiting for segmentations to be developed after the video has been
taken and stored.

MICS 2008 144

Visualization of Energy Minimization
in Ferromagnetic Systems

Zachary Oler
Computer Science
Drake University

Des Moines, IA 50311
zac.oler@gmail.com

Timothy Urness
Computer Science
Drake University

Des Moines, IA 50311
timothy.urness@drake.edu

Abstract

Many different studies of ferromagnetism and anti-ferromagnetism models have pre-
sented theories on energy minimization. These studies, however, do not give visual
confirmation of what is occurring during minimization. We wish to study how the
energy minimizes locally in a ferromagnetic system. Where does the energy dissipate
once the magnetic field is applied? Are there regions that exhibit a chaotic nature
before eventually aligning with an external magnetic field? It has been demonstrated
that the energy of the system will minimize in the presence of an external magnetic
field. However, regions within the lattice may not converge at the same rate. Our goal
is to develop and apply a visual tool to the system, which would allow users to visu-
alize the minimization process. In this paper, we describe a model and visualization
system designed to illustrate the principles of energy minimization in ferromagnetic
systems.

MICS 2008 145

1 Introduction

While magnets and magnetic fields are ubiquitous and largely understood, the sub-
tle properties of atomic magnetic dipoles include complicated interactions between
individual atoms and electrons [2, 5, 9, 10, 11, 12]. A better understanding of these
magnetic, molecular interactions could be applied to various applications such as cre-
ating faster, more efficient random access memory (RAM) in modern computers.

We constructed software that models and visualizes magnetic dipoles in a lattice and
studied how the dipoles interacted with one another. Our software models the energy
minimization that naturally occurs in ferromagnetic materials using a basic model
for the Hamiltonian. Then, our software uses OpenGL to produce real-time three-
dimensional renderings of the interactions between magnetic dipoles.

Additionally, the software models the interaction of the dipoles with an external
magnetic field. This serves to demonstrate real life scenarios and to provide a litmus
test as to whether or not the energy minimization is being modeled appropriately
and accurately. Finally, our software models thermodynamic effects. By modeling
the thermodynamic energy (heat) of the system, our software can show things like
the threshold at which a material loses its ferromagnetic properties.

2 Background

2.1 Physics

The Heisenberg model is a simple n-vector model that allows us to represent magnetic
dipoles in a lattice and gives the Hamiltonian of an individual dipole. The Hamil-
tonian directly corresponds to the total energy of the system. A minimization of the
total Hamiltonian indicates that the system has been allowed to align internally in
the absence of an external magnetic field or has aligned with the external magnetic
field. The Heisenberg model uses the Nearest Neighbor Principle in the calculation
of the Hamiltonian. The Nearest Neighbor Principle states that only the surround-
ing dipoles’ orientation will be considered to be most significant in calculation of the
Hamiltonian. The surrounding dipoles in our system will be located above, below,
left, right, in front and behind. The Heisenberg model defines the Hamiltonian of the
jth dipole to be:

Hj = −
∑

i

~mi · ~aj − ~B · ~aj (1)

The ~aj is the vector that represents the jth dipole in the lattice. The
∑

i ~mi · ~aj is the
nearest neighbor sum where ~mi is the vector that represents the neighboring dipole.
~B is the magnetic field of the system. An assumption of the Heisenberg model is that
the magnitude of the dipole moment is one.

MICS 2008 146

Additionally, we wish to model the effect of temperature on the Hamiltonian in the
system. The energy of the jth dipole due to temperature is given by:

Ej =
F

2
kbT (2)

T is the temperature of the entire system and kb is the Boltzman constant. F rep-
resents the degrees of freedom. For our system, there are three rotational degrees of
freedom. We will assume that this energy is due to the rotational kinetic energy of
the jth dipole given by:

KEj =
1

2
Iω2 (3)

The I is the moment of inertia and ω is the angular velocity defined by:

ω =
∆θ

∆t
(4)

If we substitute ω from Eq.(4) into Eq.(3) and set the kinetic energy equal to the
thermal energy from Eq.(2) and solve for T we get formula for the temperature as a
function of ∆θ:

T =
1

3

(I

kb∆t
2

)
∆θ2 (5)

Using this relationship between the temperature and ∆θ, we can model the tempera-
ture of the system by altering the amount of random rotation (∆θ). Another physical
quantity that we will use is the magnetization. This is a measure of how the system
has aligned with an external magnetic field. The magnetization is given by:

~M =
1

N

∑
j

~aj (6)

Typically we will take projections of the magnetization in the direction of the external
magnetic field. This scalar quantity represents how much the dipoles have aligned
with the external magnetic field.

Physically, we expect that applying these formulas will exhibit the following behaviors
to system: If the temperature is zero (T = 0), the system will minimize its energy
and all vectors will align. If the temperature is not zero (T 6= 0), then we expect
that the energy will stabilize but may not become completely minimal. Lastly, if the
temperature rises above the Curie temperature, the system will be unable to minimize
and the dipole moments will not align. However, in the presence of a magnetic field,
the system will exhibit paramagnetism, a form of magnetism that only exists in the
presence of an external magnetic field. The algorithm we developed to model the
system is presented in section 3.

2.2 Visualization

Many scientific visualization techniques have been developed for representing and
understanding three-dimensional scalar and vector fields. Perhaps the most straight-
forward technique for visualizing a vector field is to use a series of lines or glyphs that

MICS 2008 147

are tangent to the vector field. This technique is known as vector plots or hedgehogs
[7].

In addition to the vector field, we also wish to visually represent the Hamiltonian
that exists throughout the three-dimensional domain. Volume rendering is a classic
visualization technique that uses color and opacity to represent a 3D scalar field. The
process begins by assigning a scalar value to each point in the domain. A transfer
function is defined to map each scalar value to a distinct color and level of trans-
parency [8]. The image is rendered by taking a number of 2D slices through the 3D
volume that is to be rendered. The slices are colored—or texture mapped—according
to the transfer function at each point in the domain. The final image is constructed
by compositing the transparency values within the slices to form a final 2D image
that accurately depicts the 3D volume.

Field et al. have developed a technique that combines volume rendering with other
vector field representations to visualize multiple quantities in the same three dimen-
sional domain [3]. Our work is inspired by these techniques and we seek to expand
these methods to better understand the minimization of the Hamiltonian.

3 Minimizing the Hamiltonian

We first randomly initialized the orientation of each dipole in a lattice consisting of
203 dipole vectors. Our initial implementation of a Monte Carlo method to minimize
the Hamiltonian proved to be computationally expensive. Instead, we employed an
iterative approach described in the next section.

3.1 An Iterative Algorithm for Minimizing the Hamiltonian

After the dipoles were randomly initialized, an iterative approach is applied to find
the orientation of the system that yields the minimum Hamiltonian. The technique
we developed for updating the lattice involves a simple manipulation of Eq.(1). The
Hamiltonian calculation involves a summation of its nearest neighbors added to the
magnetic field. We take this to be one vector ~Kj defined for the jth dipole to be

~Kj = (
∑

i

~mi + ~B) (7)

To update the lattice we add η(~Kj−~aj) to ~aj for each dipole, η is a small user-defined
constant that is on the order of 10−2. This constant relates to the type of material,
the value of the time step, and the rotational inertia. It is defined by the user to
attain the desired behavior of the system.

In figure 1, we show the results of our iteration method on the alignment of the dipoles
for various magnetic field strengths. We apply the magnetic field in the direction of
the x-axis. The alignment of the dipoles is represented by the magnetization projected

MICS 2008 148

Figure 1: The magnetization approaches 1.0 for a system with no temperature and a
magnetic field. If the magnetic field is stronger the graph approaches it more quickly.
This figure demonstrates exactly how we expect the energy to minimize.

in the direction of the external magnetic field. Perfect alignment with the magnetic
field would yield a magnetization of 1.0. As expected applying a stronger magnetic
field causes the dipoles to align more rapidly than a weaker magnetic field.

3.2 Incorporation of Temperature

In order to incorporate temperature into our system, we evaluated Eq.(5) and as-

signed 1
3

(
I

kb∆t2

)
= 1. This makes the relationship between temperature and the

average change in the angle very manageable. However, we lose the physical inter-
pretation of the temperature until further unit analysis is performed. The next step
is to allow our system to have random rotations of the dipoles because we want our
system to have a freedom in movement that non-zero temperature implies. We use
the Central Limit Theorem (which was first explored by De Moivre[1]) to achieve a
Gaussian-like distribution in which we could control the average angle and the vari-
ance independently. Figure 2 shows some plots of energy minimization at different
temperatures. This figure demonstrates how temperature affects the minimization
for a given magnetic field.

4 Visualization

In the next section, we describe visualization methods developed to better under-
stand the orientation and alignment of the dipole vectors and the three dimensional
convergence patterns of the Hamiltonian minimization.

MICS 2008 149

(a) (b)

(c) (d)

Figure 2: (a)-(c):These plots show the magnetization for three temperatures. These
temperatures were experimentally determined to be interesting, because they showed
how much temperature could affect the system. (d): This plot shows magnetization
for a constant magnetic field with three different temperatures.

4.1 Dipoles

An initial visualization method for representing the dipole is to simply construct a
line segment or glyph in the direction of each vector. This technique, known as vector
plots or hedgehogs, is traditionally an effective method for representing vector fields.
However, we are predominantly interested in the alignment of the dipoles and this
simple technique is not entirely sufficient. Figure 3(a) illustrates how the orientation
of the three dimensional vector glyphs within a lattice becomes difficult to interpret
without additional information, as the orientation of the 3D glyphs become occluded
by other glyphs.

In order to make the orientation of the vectors visually salient, we color the dipoles
according to their orientation. We assign each of the coordinate axis a separate
and orthogonal color in RGB color space (X⇒red, Y⇒blue, Z⇒green). Since each
components range is -1 to 1, we developed a mapping function as follows:

f(w) =
w + 1

2
(8)

where w is the X, Y, or Z component and f(w) corresponds to R, G, and B, re-

MICS 2008 150

(a) (b)

Figure 3: A visualization of the dipoles that have been allowed to partially align. (a):
Shows no coloring (b): Shows a coloring of the dipole that indicates the direction of
the dipole

(a) (b)

Figure 4: (a):This figure shows the lattice minimizing. We see there are definite
regions of minimization. The volume-rendered regions of green indicate that the
Hamiltonian has not completely minimized. (b): This figure is simmilar to (a) except
that it has an applied external magnetic field. Here we can see that the Hamiltonian is
minimizing in the dirrection of the magnetic field and volume render indicates regions
where the system is struggling to minimize.

MICS 2008 151

spectively. The result is that the vectors that are aligned are colored a similar color
(Figure 3.b).

4.2 Volume Rendering the Hamiltonian

Volume rendering is a classic visualization technique that uses color and opacity to
represent a 3D scalar field. We use volume rendering in order to represent the Hamil-
tonian of the system. This allows the user to directly identify regions where the
Hamiltonian is minimizing and how the minimization occurs. Figure 4 shows two dif-
ferent volume renderings. It is clear that there exist regions where the Hamiltonian
is not minimizing as quickly as other regions. It is also clear from these visualizations
that the lattice does not uniformly minimize and that there are identifiable regions
where initial dipole alignment greatly affects the convergence rate of the minimization
of the Hamiltonian.

Figure 5 shows a plot of the magnetization similar to the plots in figure 2. Addition-
ally, it shows the volume renderings that correspond to several time points throughout
the minimization. Figure 5(a) show how the system is completely unaligned at the
initial time step. It is clear from the volume rendering that there exists absolutely no
minimization in the Hamiltonian. Examining figures 5(b) and (c), it is clear that as
more iterations occur, the isolated regions of anti-alignment shrink in physical size.
Eventually, the system becomes almost completely aligned with the magnetic field,
which is clear from figure 5(d).

Figure 6 show that addition of temperature does not affect the existence of these anti-
alignment regions. However it can be seen by comparison of figure 5(b) and figure
6(b) that a system with temperature aids the existence of these regions allowing them
to be maintained longer. Additionally in figure 6(d), it is clear that there is a bit
of variation in the dipole directions in neighboring dipoles. This variation is due to
random rotations that are simulating the temperature.

4.3 User Interface

In order to allow the program be more useful and accessible a user interface was
developed. We implement the Graphics Language User Interface (GLUI) extension
for OpenGL. This is a open source extension that allowed for buttons, control of
variables, movement of and through visualization, and display of current data. In
Figure 7, the relevant data and controls are displayed for the user to manipulate,
which allows the software to be more controllable.

5 Conclusions and Future Outlook

By visualizing magnetic dipoles, we are gaining insight into ferromagnetism and en-
ergy minimization. Our goal is to give scientists a better tool to look at ferromag-

MICS 2008 152

(a) (b)

(c) (d)

Figure 5: (top) A plot of magnetization projected in the direction of the magnetic
field where temperature is not considered in the calculation. This plot and additional
figures demonstrate the connection between minimization and volume rendering. The
green X’s on the plot of the magnetization indicate where we are taking snapshots
of the volume rendering corresponding to (a)-(d), respectively. (b) and (c) clearly
demonstrate that there exist regions where the initial dipole orientation lead to a
slower alignment.

MICS 2008 153

(a) (b)

(c) (d)

Figure 6: (top) A plot of magnetization projected in the direction of the magnetic field
where temperature is considered in the calculation. This plot and additional figures
demonstrate the connection between Hamiltonian minimization and volume rendering
when temperature is considered. The green X’s on the plot of the magnetization
indicate where we are taking snapshots of the volume rendering corresponding to
(a)-(d), respectively. Note: In comparison to Figure 5, these plots align more slowly
because temperature is considered.

MICS 2008 154

Figure 7: A user interface for our software that allow easy access to information and
controls to operate the software.

netism. We hope that additionally we will be able to use our visualization to give
individuals who have not previously studied ferromagnetism a better understanding
of what underlying processes exist. Our visualization can demonstrate the Curie
temperature—the temperature at which a system can no longer be minimized—to
someone who has never had a single course in college level physics.

Our scheme for drawing dipoles and volume rendering is a starting point. We hope
that our research is only the first of many visual tools to allow a better understanding
of energy minimization in ferromagnetic systems. If our techniques were readapted
to utilize the graphics processing unit (GPU), we might be able to see better real-
time visualizations of large lattices. Additionally one could look at processing the
lattice on a super-computer or multi-core system. This would allow us to have faster
updating of large lattices. Lastly, this research could also benefit from visualization
on a virtual reality system, as it would allow the user to have a better perception of
the lattice.

6 Acknowledgments

We would like to thank Dr. Athan Petridis of Drake University for his expert advice
on some of the physics. Additionally, Zack Kertzman provided several helpful insights
at key times in our research. We would like to thank Drake Undergraduate Science
Collaborative Institute for funding this research during the summer of 2007. Finally,
we would like to thank the Drake University Student Travel and Research Fund.

MICS 2008 155

References

[1] W. J. Adams. The life and times of the central limit theorem. Kaedmon Pub.
Co., New York, 1974.

[2] D. P. Belanger and A. P. Young. Random field ising model. Journal of Magnetism
and Magnetic Materials, 100(1-3):272–291, 1991.

[3] B. Field, S. O’Neill, V. Interrante, T. W. Jones, and T. Urness. Fieldvis: A
tool for visualizing astrophysical magnetohydrodynamic flow. IEEE Computer
Graphics and Applications, 27(1):9–13, 2007.

[4] D. Giffiths. Introduction to Electrodynamics. Prentice-Hall, Upper Saddle River,
New Jersey, 1999.

[5] R. Guida and J. Zinn-Justin. 3d ising model: The scaling equation of state.
Nuclear Physics B, 489(3):626–652, 1997.

[6] C. Kittel and H. Kroemer. Thermal physics. W. H. Freeman, San Francisco, 2d
ed edition, 1980.

[7] R. Victor Klassen and Steven J. Harrington. Shadowed hedgehogs: A technique
for visualizing 2d slices of 3d vector fields. In IEEE Visualization, pages 148–162,
1991.

[8] J. Kniss, G. Kindlmann, and C. Hansen. Multidimensional transfer functions for
interactive volume rendering. IEEE Transactions on Visualization and Computer
Graphics, 8(3):270–285, 2002.

[9] J. Lee and J. M. Kosterlitz. New numerical method to study phase transitions.
Physical Review Letters, 65(2):137–140, 1990.

[10] U. Löw, V. J. Emery, K. Fabricius, and S. A. Kivelson. Study of an ising model
with competing long- and short-range interactions. Physical Review Letters,
72(12):1918–1921, 1994.

[11] E. Manousakis. The spin-1/2 heisenberg antiferromagnet on a square lattice and
its application to the cuprous oxides. Reviews of Modern Physics, 63(1):1–62,
1991.

[12] A. W. Sandvik. Finite-size scaling of the ground-state parameters of the two-
dimensional heisenberg model. Physical Review B - Condensed Matter and Ma-
terials Physics, 56(18):11678–11690, 1997.

[13] R. A. Serway, R. J. Beichner, and J. W. Jewett. Physics for scientists and
engineers. Saunders golden sunburst series. Saunders College Publishing, Fort
Worth, 5th ed. edition, 2000.

MICS 2008 156

Statistical Process Control of Software Processes for

Obtaining CMMI Level 5

Mike Rowe, Ph.D.
Computer Science and Software Engineering Department

University of Wisconsin – Platteville
Platteville, Wisconsin 53818

rowemi@uwplatt.edu

Elisabeth Farver
AVISTA, Inc.

Platteville, Wisconsin 53818
Beth.Farver@avistainc.com

Thomas Bragg
AVISTA, Inc.

Platteville, Wisconsin 53818
Tom.Bragg@avistainc.com

Mark Kelley
AVISTA, Inc.

Platteville, Wisconsin 53818
Mark.Kelley@avistainc.com

Craig Hale
AVISTA, Inc.

Platteville, Wisconsin 53818
Craig.Hale@avistainc.com

Abstract

This paper discusses the implementation of Statistical Process Control (SPC) for software
processes. SPC involves the tracking of key process parameters on a real-time (daily or
weekly) basis to determine how projects are performing against historical baselines. SPC
is critical for obtaining the Software Engineering Institute’s (SEI) Capability Maturity
Model Integrated (CMMI) Level 5. This paper contains an overview of CMMI, an
overview of SPC, a discussion of the actual implementations of SPC and its application
to software process monitoring, and a discussion of some of the benefits that were
encountered implementing SPC while obtaining CMMI Level 5.

MICS 2008 157

mailto:rowemi@uwplatt.edu
mailto:Beth.Farver@avistainc.com
mailto:Tom.Bragg@avistainc.com
mailto:Mark.Kelley@avistainc.com
mailto:Craig.Hale@avistainc.com

1 Introduction

In July 2007, AVISTA, Inc. became the 22nd U.S. and one of only a few Midwest
software companies to attain Software Engineering Institute’s (SEI) Capability and
Maturity Model Integrated (CMMI) Level 5. Over the past 20 years, AVISTA has
provided over 2.5 million hours of safety- and mission-critical software engineering
services to the world’s leading aerospace and medical companies.

Capability Maturity Model (CMM) and more recently CMMI has been promoted by
government agencies in their effort to understand what makes software system providers
successful. CMMI is broken into five maturity levels. The lowest, Level 1 – Initial, is
characterized by no formal process, and the highest, Level 5 – Optimized, is
characterized by an organization that is continually optimizing its process. Today CMMI
Level 3 or higher is required to perform work on many major government contracts and
is of increasing importance in the competition for non-government contracts.

Level 4 – Quantitatively Managed, requires establishment and maintenance of
quantitative understanding of the organization’s process performance. Quantitative
understanding of process is necessary to determine if process optimization is actually
occurring for Level 5. Statistical Process Control (SPC) is a mechanism for monitoring
process performance.

2 SEI CMMI Overview

For an excellent resource on CMMI see CMMI 2nd Edition, Guidelines for Process
Integration and Improvement[1]. Watts Humphrey[1] studied successful and unsuc-
cessful software projects and determined that there were 25 major processes related to the
level of success of software projects. This was the bases of the original CMM for
Software that was released in 1993. In 1995 a CMM for Systems Engineering was
released. In 2000, version 1.02 of CMMI Software and Systems Engineering standards
were integrated into one standard. With CMMI, the 25 processes were reorganized into
22. Most recently, CMMI has been split into three standards CMMI for Development
(version 1.2, 2006) Acquisition (version 1.2, 2007) and Services (version 1.2, 2007).

The 22 processes are subdivided into four process categories, including: Project
Management, Process Management, Engineering and Support. An organization’s
maturity is evaluated and categorized into one of five levels:

Level 1: Initial, there is no formal process, and success can be attributed to the
heroics of a few engineers;

MICS 2008 158

Level 2: Managed, there is a minimal process and the status of projects is visible
to management at major milestones. Process varies from project to project.

Level 3: Defined, there are organizational-wide standards, procedures, tools and
methods.

Level 4: Quantitatively Managed, there are quantitative objectives for quality and
process performance set for projects and the organization based on the needs of
customers, end users, the organization, and process users. These objectives are
statistically managed.

Level 5: Optimized, there is a constant effort to optimize the process by
investigating the causes of inefficiency and defects. Statistical tools, including
SPC, are used to spot possible inefficiencies and determine whether action plans
are efficacious.

Maturity
Level

Process
Management

Project
Management Engineering Support

1: Initial
2: Managed Project Planning

(PP)
Requirements
Management (REQM)

Configuration
Management
(CM)

 Project Monitoring
and Control (PMC)

 Process and
Product Quality
Assurance
(PPQA)

 Supplier Agreement
Management (SAM)

 Measurement and
Analysis (MA)

3:
Defined

Organization Process
Focus (OPF)

Supplier Agreement
Management (SAM)

Requirements
Development (RD)

Decision Analysis
and Resolution
(DAR)

Organizational
Process Focus
(OPF)+ Integrated
Product and Process
Devel-opment (IPPD)

Integrated Project
Management (IPM)
+ Integrated Product
and Process Devel-
opment (IPPD)

Technical Solutions
(TS)

Product Integration
(PI)

Organization
Training (OT)

Risk Management
(RSKM)

Verification (VER)

 Validation (VAL)
4:

Quantitatively
Managed

Organization Process
Performance (OPP)

Quantitative Project
Management (QPM)

5:
Optimizing

Organization
Innovation and
Deployment (OID)

 Causal Analysis
and Resolution
(CAR)

Table 1: CMMI processes organized by level and category.

MICS 2008 159

There is also a CMMI Capability level rating for organizations. Whereas maturity level
of an organization is based on the lowest rating of any of the four process categories, an
organization receives an individual capability level rating for each of the processes.
Level 0 corresponds to none of the specific goals of a process being satisfied. Capability
Level 1 corresponds to satisfaction of specific process goals, but none of these processes
are institutionalized, and thus, without assurance that they will continue to be used.
Levels 3 through 5 use the same names as CMMI Maturity Levels and represent similar
improvements in process and process performance.

Of particular interest to this paper is the Quantitative Project Management (QPM) process
that in part makes up Maturity Level 4. Quantitative Project Management (QPM) has the
following specific goals (SG) and specific practices (SP) [1]:

SG1: Quantitatively Manage the Project
SP1.1 Establish the Project’s Objectives
SP1.2 Compose the Defined Process
SP1.3 Select the Subprocesses that will be Statistically Managed
SP1.4 Manage Project Performance

SG2: Statistically Manage Subprogram Performance
SP2.1 Select Measures and Analysis Techniques
SP2.2 Apply Statistical Methods to Understand Variances
SP2.3 Monitor Performance of the Selected Subprocesses
SP2.4 Record Statistical Managed Data.

The next section of this paper will discuss how Statistical Process Control can be applied
to help achieve the QPM goals.

3 Statistical Process Control (SPC) Overview

SPC is a technique that facilitates the monitoring of process performance using control
charts. Control charts plot key process parameters against historical measures of central
tendency and variability. Run rules help identify non-random variations in processes
control charts. When non-random variation occurs, a process is considered to be “out of
control”. An out of control process triggers intervention to determine what if anything
has caused the problem using root cause analysis. If a root cause can be found, the
software process can be modified to hopefully prevent or minimize this root cause from
happening in the future. This is the basis for process optimization, which is pivotal for
obtaining to CMMI Level 5.

3.1 Control Charts

Control charts provide a real-time graphical presentation of how a process is performing
in relationship to a target baseline. A control chart makes use of a Target value, Control
Limits, in some cases Specification limits, Zones, and Run Rules. There are many

MICS 2008 160

different types of control charts for many different data types and applications. The two
major types of control charts are those for quantitative data and those for qualitative data.
Examples of quantitative data control charts include the X-bar-R chart, which plots
subgroup means and subgroup ranges; X-Bar-s chart, which plots subgroup means and
subgroup standard deviations; XmR chart, which plots individual data values and a
moving range. Examples of qualitative data control charts include p-chart, which plots
percent of defective units or part; np-chart, which plots number of defective units; c-
charts and u-charts plots number of defects (when a item can have more than one defect
per unit).

3.1.1 Target Value

The Target Value, also called centerline, is a central tendency value around which a
process parameter is expected to perform. To help make this concept more tangible, this
section will use the example of number of defects injected per KLOC. Often times this
target value is based on historical performance of the process, for instance a company
may have a historical average of 0.32 defects per KLOC. Unless this project is different
from previous projects, one would expect that from week to week that the defects per
KLOC would not be significantly different from this target of 0.32 defects per KLOC.
One would always like to do better than this though. Note that all actual data are
considered AVISTA proprietary, and for all examples, contrived data are used.

3.1.2 Control Limits

Control Limits, upper control limit (UCL) and lower control limit (LCL), define the level
within which one would expect a process to function. They are normally defined as 3.0
standard deviation above (for the UCL) and 3.0 standard deviations below the centerline
for the LCL. The range of +/- 3.0 standard deviations from the centerline represents
more than 99.7 % of normally distributed data. If data for a process falls outside of
control limits, the project lead can suspect that something bad or in some cases good has
happened. When a process goes outside of the control limits it is described as “out of
control”. The detection of problems will be discussed below in the section on run rules.
The standard deviation used for the control limits is commonly derived from historical
process performance data, although sometimes it is set by less empirical methods. Note
that some parameters are limited by logical boundaries, for instance, we cannot have a
negative number of defects per KLOC, in fact, one might become suspicious of a testing
process if very low defect numbers are consistently recorded.

3.1.3 Specification Limits

Specification Limits, upper specification limit (USL) and lower specification limit (LSL),
define the acceptable range of process output. Specification limits are commonly used to
control manufacturing processes. For instance, there may be tolerances with respect to
the diameter of a drilled hole. If it is too large or small it is unacceptable. Specification
limits are not commonly used to monitor software processes.

MICS 2008 161

3.1.4 Zones

Zones breakdown the region between the centerline or baseline mean and the control
limits into 1.0 standard deviation bands.

15

20

25

30

35

40

1 3 5 7 9 11 13 15 17 19

Time

Pa
ra

m
et

er
 V

al
ue

Mean

+1 Std Dev

+2 Std Dev

+3 Std Dev (UCL)

-1 Std Dev

-2 Std Dev

-3 Std Dev (LCL)
Zone A

Zone A

Zone B

Zone B

Zone C
Zone C

45

Figure 1: Control chart zones [2]

3.1.5 Run Rules

Run Rules were originally attributed to Western Electric [3] and make use of the zones to
spot statistical outliers. These are simple statistical rules of thumb that can be computed
by counting on one’s fingers. Simplicity was essential because at the time when SPC was
introduced, the 1940’s and 1950’s, even simple mechanical adding machines were
unavailable and unsuitable for most manufacturing environments. Below are examples of
some of the popular run rules.

MICS 2008 162

15

20

25

30

35

40

45

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Time

Pa
ra

m
et

er
 V

al
ue

Zone A

Zone A

Zone B

Zone B

Zone C
Zone C

Figure 2: Run rule, One point above the UCL or below the LCL [2]

15

20

25

30

35

40

45

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Time

Pa
ra

m
et

er
 V

al
ue

Zone A

Zone A

Zone B

Zone B

Zone C
Zone C

Figure 3: Run rule, 2 of 3 consecutive points in Zone A
and all 3 points on the same side of the center line [2].

MICS 2008 163

15

20

25

30

35

40

45

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Time

Pa
ra

m
et

er
 V

al
ue

Zone A

Zone A

Zone B

Zone B
Zone C
Zone C

Figure 4: Run rule, 4 of 5 consecutive points within Zone A or B
and all 5 points on the same side of the centerline [2].

15

20

25

30

35

40

45

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Time

Pa
ra

m
et

er
 V

al
ue

Zone A

Zone A

Zone B

Zone B
Zone C

Zone C

Figure 5: Run rule, 8 consecutive points fall on the same side of the mean [2].

MICS 2008 164

3.2 More on control charts

Quantitative control charts are generally used in pairs. One of the pair plots a measure of
central tendency while the other chart plots a measure of variability. The reason for
analyzing the pair of charts pertains to the nature of subgrouped data. The subgroup mean
may not tell the whole story, for instance across the week the mean of all projects may hit
the target perfectly. A closer look at the individual data for each project may show that
not a single project’s data fell within acceptable level – basically the projects offset each
other. To illustrate this let’s examine an X-bar-s (X-bar is the mean and s is the standard
deviation) control chart example. The X-bar chart is sensitive to shifts in the mean and
may have a CL=10.0, UCL=12.0 and a LCL=8.0. The raw data for the week might be 5,
4, 3, 15, 16, and 17; this yields an X-bar of exactly 10.0, which is right on the CL, thus no
run rule would trigger. The corresponding s-chart is sensitive to variability and may have
a CL=2.5, UCL=4.5 and a LCL=0.5. The raw data yields an s=6.62, which is
significantly beyond the UCL of the s-chart. A run rule would trigger for the s-chart
detecting this outlying standard deviation.

4 SPC at AVISTA

4.1.1 Background

AVISTA works in highly regulated mission critical and life critical domains and has been
ISO 9001 certified for a several years. Because of the nature of this business, AVISTA
already had several internal systems to track lifecycle activities, defects and labor efforts
to satisfy regulatory needs. There are two primary tracking systems used for SPC data.
The OMNI system tracks job level labor for numerous activities, earned values, lifecycle,
etc. and reports Cost Performance Indices (CPI) and Schedule Performance Indices (SPI)
to project and program management. Another tool, Data Item Review Tool (DIR Tool),
is used to track lifecycle, requirements, issues, defect (severity, type, insertion points,
detection points, etc.), resolutions, and signoffs. Combined, these two systems provide a
tremendous variety of project information to consider for review.

Part of CMMI Level 3 is the institutionalization of processes across an organization.
Over the years, AVISTA has developed standard processes for each stage in its
development lifecycle and for different levels of product verification. Generally, these
standard practices can be used with minimal tailoring for individual projects. This is of
tremendous value to the individuals executing the process, as most team members are
well practiced at performing all tasks necessary to complete a process. This also makes
possible the analysis of individual projects against historical organizational baselines for
each of the processes. Basically, one can compare a project to the historical baseline
created from other projects that have used the same or similar process by means of
control charts. The centerline, and control limits are set to the historically derived
baselines. Any significant variance from these baselines, as determined by the run rules,
triggers an alarm to study why the variance occurred. If the variance was caused by

MICS 2008 165

something that can be fixed, the process is modified to help prevent this variance in the
future.

4.1.2 Initial Planning

Part of the AVISTA CMMI team spent around a year studying its software activities to
characterize which process parameters were available and which parameters had the
highest potential to help the business. It was discovered that although there were a lot of
data being collected, additional parameters were still needed. The need for additional
data entities required a few enhancements to AVISTA’s internal tracking systems. On
the recommendation of our lead CMMI appraiser, XmR control charts were selected to
monitor AVISTA’s processes. XmR control charts plot individual data and a moving
average. Over 50 different control charts were initially planned.

4.1.3 Implementation of SPC

The first step in actually producing a control chart for a baseline was to write
requirements to query the database. Many of these queries are quite complex, involving
several relational tables. Because of this complexity and risk associated with using the
wrong data, very complete verification procedures were also produced. The verification
procedures included reviewing the actual SQL and the data that resulted from the queries.

A query produced several data tables, one for the final data to be directly used in the
control chart and additional intermediate tables that helped in the verification process.
The query results were exported to comma separated value (CSV) files to facilitate easy
import into Microsoft Excel™.

An Excel™ workbook was created for each of the planned control charts. These
workbooks contained specific sheets for the query requirements, the verification process
and results, notes for action items, intermediate data tables, excluded data and
documentation as to why a data point should be excluded, the final data used in the
control chart, and the control chart. Once the data were imported into the spreadsheets,
the data were verified. In the early iterations of the baselines, the verifications identified
several query defects. Once the data were verified, it was plotted in the control charts.

With the control charts populated, outliers are studied. An outlier is a data point that
triggered run rule. Normal variation is expected and can result in some false-alarms. The
study of outliers consists of interviewing the project leads to determine whether
something out of the ordinary was occurring. Points that have some known and possibly
preventable causes are classified as having “special cause variations” and are excluded
from use in future baseline calculations. Project leads are required to produce Correction
Action Requests (CARs) that document the reason for an outlier, including its root cause
analysis and suggest actions that could help prevent this type of event in the future. For
instance, some of the reasons for an outlier might include:

MICS 2008 166

• A single requirement was very complex, being based on a six-page logic diagram
rather than a simple “shall” statement. With very complex requirements, one
would expect to encounter higher development time, longer review time, more
defects during reviews and testing, higher rework time, and so on then with
simple “shall” statement requirements.

• A new member was added to a team and their productivity was below that of
experienced team engineers. There might also be misclassification of data items
by inexperienced team members.

• A customer dictated a different process than one of the AVISTA standard
processes. Because the process is different, we would expect somewhat different
results than projects that follow one AVISTA’s standard processes.

• A customer may have substantially revised project artifacts, like requirements in
the middle of a project.

• A project went into a temporary hold due to other companies involved with a
project. Many of the projects that AVISTA works on are very large, like the
Airbus 380 and the Boeing 787. Redesigns and their associated delays can
sometimes happen. These holds are associated with project ramp-down and
ramp-up inefficiencies.

• Delays in claiming earned value for work completed due to test environment
issues can cause outliers. Much of the software AVISTA develops is targeted at
real-time embedded systems. The work is not complete until it can be tested on
the target hardware – sometimes the hardware development is behind that of the
software development.

Outliers are documented on the exclude worksheet with a short description of why a data
point should be excluded or not excluded. This documentation stays with the baseline so
when new data is appended, we do not need to revisit this exclude or not exclude decision
process for the older data points.

Below in Figure 6 and 7 are the XmR control charts for Supplemental Test Review hours
per node. Supplemental Testing is a form of structural or coverage testing. A form of
structural testing, Modified Condition Decision Coverage (MC/DC) testing, is required
for AVISTA’s most critical avionics subsystems to certify at RTCA DO-178B Level A
[4]. A failure of a Level A system results in catastrophic failure conditions for an
aircraft, usually meaning it will crash. Figure 6 charts the actual test reviewing hours per
test node and Figure 7 charts the moving range, the difference between the current and
the previous values for review hours per node.

In Figure 6, there are two Lower Control Limits (LCLx red dotted and Actual LCL red
dashed). The calculated, -3.0 standard deviations from the CL, LCLx is below zero. In
the case of this measurement, hours per node, one would never expect to observe values

MICS 2008 167

less than or equal to 0.0. Thus, we used an Actual LCL set at 0.0 so that any non-positive
values will trigger investigation alarms.

Figure 6: X chart of Supplemental Test Review Hours per Node

The moving range (mR) chart in Figure 7 indicates a great deal of variability early in this
project. This is normal for many projects during their ramp up. After Review Number
10, the variability drops down and remains low for the rest of the project. If the
variability were to remain high, it would trigger an investigation.

Figure 7: Moving Range (mR) chart of Supplemental Test Review Hours per Node

MICS 2008 168

To date around 10 control charts and baselines are already being used, and there are a
couple more baselines that are in the final stages of development. Several of the 50
originally planned charts are associated with processes that have not generated sufficient
data yet to produce statistically stable baselines. As more data become available, these
baseline control charts will be produced. Examples of some of the control charts that
AVISTA actually uses include:

• Number of AVISTA Developed Software Requirements-Based Test Results
Defects Found per Total Software Requirements Covered in AVISTA Developed
Software Requirements-Based Test Results Reviewed

• Software Requirements-Based Test Development Hours per Earned Value
Equivalent Software Requirements Tested for average complexity requirements

• Software Requirements-Based Test Development Hours per Earned Value
Equivalent Software Requirements Tested for low complexity requirements

• Number of Total Developed Software Requirements-Based Test Defects Found
per Total Software Requirements Covered in Software Requirements-Based Tests
Reviewed

• Software Requirements-Based Test Review Hours per Total Software
Requirements Covered in Software Requirements-Based Test Review for average
complexity requirements

• Software Requirements-Based Test Review Hours per Total Software
Requirements Covered in Software Requirements-Based Test Review for low
complexity requirements

• Total Supplemental Test Review Defects per Total Nodes Covered in

Supplemental Test Review

• AVISTA Developed Code Review Defects Found per AVISTA Developed
KLOC

• Total Developed Code Review Defects Found per Total Developed KLOC

Reviewed

5 Future Plans

AVISTA is currently working on producing some of the other higher business priority
planned baselines.

MICS 2008 169

Minor changes in processes, tools and the projects themselves over time can affect the
baselines. For this reason, the baselines are reevaluated from one to four times per year
to determine if the control limits or centerlines need to be change. The period for this
analysis is based on the data volume for a particular baseline – the less data volume the
less often the baseline is evaluated.

6 Conclusions

SPC has had several positive benefits for the work AVISTA performs.

Many process improvements have occurred based on Corrective Action Requests (CARs)
resulting from the analysis of outliers. The process improvements are expected to help
prevent these events from happening in the future by removing or mitigating the root
causes of the problems. Many of these problems may not have been identified without
SPC baselines to pinpoint outliers.

The baselines have allowed the company to understand very precisely its performance
levels. AVISTA understands how long tasks take, defect rates, how much rework can be
expected, the variability in the complexity of requirements, and more. This is a
significant factor for bidding contracts as well as keeping projects on time and on budget.

As has been described above, deploying SPC into a software company is not an easy
overnight process. It is dependent on several preconditions:

• Institutionalized software processes, so that results from historical projects can be
generalized to future projects

• Strong data collection systems that do not burden engineers with record keeping.
In the AVISTA’s case, these systems actually make an engineer’s job easier.
AVISTA had already invested in these systems, so this was not as big an effort as
it would be for organizations starting from scratch.

• Organizations must understand their business to determine which key parameters
are actually useful to track and will help in the optimizing their business and
processes.

• Organizations must be willing to study outliers to discover how and why their
processes are producing outliers. Following this, the organization must be willing
to try to prevent these events by modifying their process.

• Organizations must be willing to continue to update their baselines as processes
and technologies evolve.

MICS 2008 170

7 References

[1] Chrissis, M. B. , Konrad, M., and Shrum, S., CMMI Second Edition: Guidelines for
Process Integration and Product Improvement, Addison-Wesley, 2007.

[2] DataMyte Handbook, 7th Addition, ASI DataMyte, Inc., 2005.

[3] Thomas, D.W, et al., (too many to mention), Statistical Quality Control Handbook,
AT&T, Indianapolis, Indiana (1956).

[4] Radio Technical Commission for Aeronautics (RTCA), http://www.rtca.org/default.asp.

MICS 2008 171

http://www.rtca.org/default.asp

INTRODUCING A CERTIFICATE IN SOFTWARE
TESTING FOR NON-MAJORS

Janet M. Drake
Department of Computer Science

University of Northern Iowa
Cedar Falls, IA

drake@cs.uni.edu

Abstract

Software testing is an important part of software development. Fifty to 70% of
development cost is used in verification and validation. Software testing is the major
activity in verification and validation. University computer science programs do not
produce enough qualified software developers much less software testers. Industry hires
people without computer science degrees and trained them to test software or testing is
sent off shore. The result is that the most expensive part of the development process is
done by the least well qualified people.

At UNI we are offering a Certificate in Software Testing for non-majors. These students
have domain knowledge from their major field and the Certificate gives them the basic
computer science skills to test software in their field.

MICS 2008 172

mailto:drake@cs.uni.edu

Introduction

Software testing is expensive – very expensive. The [NIST] report stated that 50% of
software development costs are spent in Validation and Verification (V&V). For life
critical software the V&V costs are even higher. Software testing is the largest part of
V&V and therefore is the largest cost factor in software development.

The NICS report also said that we are not very successful at testing. The report said that
software faults cost the US economy $59.5 billion in 2002 (0.6% GNP). The quality of the
software we produce is dismal. This is frightening because we are relying more and more
on software for our physical and financial safety.

We spend lots of money and still don’t do a good job. What is wrong? I believe that both
industry and computer science education have to take some responsibility for this problem.
We do not teach testing and industry does not put their best employees in testing. Industry
is more focused on time to market and profit than quality. Tom DeMarco discusses this
problem in [DeMarco].

As educators how can we attack this problem? First, I believe we have to teach testing in
every computer science course. Second, I believe that we have to educate more people to
be software testers. Third we have to recognize that software testing is a lucrative research
area. In this paper I will focus on educating more people to be software testers.

Motivation

I have taught testing in a variety of ways in a variety of courses. Still the great majority of
my students are working as software developers or system administrators and not as
software testers. We educate our students to value development or administration rather
than testing. Industry hires our graduates as developers or administrators rather than
testers. So both industry and educators are steering their best people away from testing –
testing where good people could make the greatest financial difference. We need to change
our value mindset.

Testing in the Curriculum

The courses where I have taught software testing are:

Introduction to Computing: Introduction to boundary value and equivalence class testing
were taught. Although boundary value and equivalence class testing sound initiative, they
are only intuitive after being introduced. In introductory courses our goal is to teach basic

MICS 2008 173

constructs. If we insisted on “bullet-proof” student programs, students would be spending
all of their time validating input rather than learning the necessary concepts. Still students
should realize that their programs usually do not pass minimum boundary value or
equivalence class testing.

Software Engineering: Two weeks of lectures which include structural (white box) and
functional (black box) testing are taught. For structural testing, students learn to use a
Multiple Condition Decision Coverage (MCDC) approach. For functional testing, they
learn to use boundary value, equivalence class, and transaction coverage. Even though they
write and run test cases, this is only a short introduction. Testing is also addressed in the
analysis/specification portion of Software Engineering. The Robertson and Robertson
specification approach includes a “fit criteria” for each requirement. The fit criteria
describes what the software must do to pass testing. This is the real starting point to
testing. The fit criteria make a stronger, testable requirement.

Software Testing: Structural and functional testing are covered and student teams test a
sizeable product. They use RequesitePro, an IBM-Rational tool that traced test cases to
requirements. The course uses Boris Bizers book that introduces multiple ways to produces
graphs from requirements and create test cases to cover graphs. The course only introduces
other types testing (environmental, language, user interface, hardware …). Automated
testing is only introduced.

Even after all this testing education, we are not producing testers. Industry is still hiring
non-computer testers. These people get on-the-job training and/or learn by doing.

Industry also out-sources testing to companies outside of the US. I believe industry does
not want to send this work out of the country but they have little alternative because
properly trained people are not available. Once these testing jobs are outside the US, it will
be very hard to get them back. I believe that foreign testers do not have the cultural
knowledge to adequate test products that will be used in the US. We are losing many good
jobs by not providing an adequate workforce.

New Approach

The UNI approach is to give non-computer science students a computer science/software
testing background. They already have domain knowledge from their major area of study.
With a little computer science education they are much more prepared to test software than
the non-computer science people industry is currently hiring. In addition, the software
testing skills provides work opportunities for graduates with majors in areas where fewer
opportunities exist.

We offer a 15 credit Certificate in Software Testing. The Certificate attempts to model the
work of software testers. Testers start work as part of the requirements team. They work to
write requirement to ensure that each requirement is testable. When the development team

MICS 2008 174

starts to design, the test team writes the test plan. Next the test environment must be
developed and test cases created. Testers develop and execute test sets for many levels of
testing. They can do structural testing on individual modules, testing on portions of a
program during integration, and on the program as a whole. Test case creation is very
creative and is most often done using a word processor, spread sheet, and configuration
management tools.

Testes also often deal with automated testing tools. Regression testing tools are especially
helpful. Tests can be automatically rerun after any change. Testers still have to develop the
original test sets, validate the tests, and update them to accommodate any change in the
requirements. Automated test tools are often built using Visual Basic and/or spread sheets.
Some automated test tools help with structural testing by recording coverage during
functional testing and finally reporting on missing coverage.

Software testers must have an overall understanding of the purpose of the software they are
testing. Testers are closer to the customer in mindset than most other members of the
software development team. The Certificate aims to take advantage of the students’ major
field of study for domain knowledge. Mathematics and actuarial majors with the
Certificate will have the domain knowledge to test computational software. One example
would be insurance company software. Physics majors with the Certificate will be naturals
for testing engineering software. Biology majors could bring the domain knowledge and
testing knowledge to medical and agricultural software.

Courses in the Certificate

The courses in our certificate were selected to develop the skills that testers need.

Visual Basic: This course gives students the basic programming concepts – sequence,
selection, and looping. Procedures and functions are also covered. Through the visual
interface students learn an object oriented approach to interface design by using icons with
properties and events. They learn to think at the basic level of programming and get an
understanding of software development.

Software Applications for Testing: This course gives students experience with the type of
tools they will use to create test cases and support testing documentation. The course
covers advanced word processing techniques needed to create and update documentation.
Spread sheets are widely used for tracking testing and actually making test cases. Several
automated testing tools use spreadsheets for data storage. Database systems are also widely
used in testing. Graphic modeling tools are also valuable to testers. In this class we are
currently using Microsoft Office and Visio.

Discrete Structures: This course covers the logic needed to think like a tester. Conditional
thinking, Boolean logic, and graphs are concepts needed by testers.

MICS 2008 175

Software Requirements Analysis: In this course students learn about requirement
specifications. They learn to elicit requirements from customers and represent the
requirements in both graphic and textual forms. They learn to use case tools. The course
focuses on making testable requirements.

Software Testing: Structural and function testing are covered in this course. MCDC
structural testing is covered. Equivalence class, boundary value, and several approaches to
graph base testing are covered. This is a project course and students work in a team to test
a software application.

Visual Basic and Discrete Structures are prerequisites for Software Requirements Analysis.
Software Requirements Analysis is a prerequisite for Software Testing.

Industrial Support

The Computer Science Department at UNI has an Industrial Advisory Board. At a recent
meeting the Software Testing Certificate was introduced and the board members were very
enthusiastic. Although board members come from different companies, they all have
difficulties in testing. They all found it difficult to hire testers and are anxious to support
the Certificate program.

A Quality Control manager from Principal Financial Group visited the Visual Basic course
to speak about careers in software testing and encouraged the students to consider the
Certificate. He said that his company’s starting salary for both testers and developers is the
same.

Conclusion

Software testing is a critical and expensive operation. Computer science graduates work as
developers rather than testers and industry has difficulty hiring qualified testers. At UNI
we are offering a Certificate in Software Testing for non-majors. The program gives non-
majors computer science basics and, along with their domain knowledge from their major
area, these students are prepared for positions as software testers.

MICS 2008 176

References

[NIST] Software Errors Cost U.S. Economy $59.5 Billion Annually, NIST Assesses
Technical Needs of Industry to Improve Software-Testing,
http://www.nist.gov/public_affairs/releasees/n02-07.http,created 6/28/02

[DeMarco] DeMarco, Tom, “Why Does Software Cost So Much?”, CrossTalk October
1994

MICS 2008 177

http://www.nist.gov/public_affairs/releasees/n02-07.http

The Characterization and Identification of

Object-Oriented Model Defects

Mike Rowe and Robert W. Hasker
Computer Science and Software Engineering Department

University of Wisconsin – Platteville
Platteville, Wisconsin 53818

rowemi@uwplatt.edu, hasker@uwplatt.edu

Abstract

This paper presents a study of defects that commonly occur in object-oriented modeling.
The study is based on experience from teaching more than a dozen sections of an Object-
Oriented Analysis and Design course to sophomore and junior-level Software
Engineering and Computer Science majors over the last eight years. The students use
IBM (Rational) Rose as the design tool.

The goal of this research is to eventually provide real-time and anytime feedback for
students as they develop their object-oriented models. It is hoped that this instant
feedback will help students by discouraging them from developing bad habits and
guiding them in the development of superior software models.

MICS 2008 178

mailto:rowemi@uwplatt.edu
mailto:hasker@uwplatt.edu

1 Introduction
While teaching the Object Oriented Analysis and Design course, we have observed that
many software modeling defects occur multiple times, year after year. This paper
categorizes these common defects by type of model: Use Case, Class, and Interaction
and State. Examples of these defects as well as manual methods and potentially
automated techniques for identifying some of these defects are described. This paper
serves two goals: to provide a (non-exhaustive) catalog of errors that could be made
available to students so they might be less likely to introduce the same defects, and to
generate feedback from other instructors about these errors.

Eventually, it is hoped that satisfactory automated techniques will be made available for
students and their instructors to help rapidly detect these defects and provide feedback to
remedy the problem. The automated techniques proposed by this paper are of two types.
The first automated approach involves the generation of C++ source code from the
models, compiling it and studying the compilation errors. The second approach involves
parsing Rose model (MDL) files to find specific defects directly.

The defects cataloged in this paper are based on having taught multiple sections of an
Object-Oriented Analysis and Design course over the past eight years. This course
covers modeling using the UML notation, though of course the concepts extend beyond
any particular syntax. The students in the course are typically at the sophomore and
junior level. The prerequisites are a course on fundamental data structures (CS2) and a
project-based course on software engineering. Thus students are quite familiar with
object-oriented programming and have already been introduced to some basic issues of
object-oriented design. This course attempts to move students from applying the
techniques on small problems towards modeling larger systems.

2 Related Work
Automated detection of defects in UML diagrams has received attention from a number
of researchers [1][3][7][8][9][10][11][12]. However, these works focus on improving
diagrams for professional developers. This paper focuses on errors typically made by
students – people who are not only learning UML, but also learning basic issues about
how to apply modeling in general.

This paper discusses errors typically made by students. [2] and [13] also examine errors
made by students, but these catalog only a few errors and some of these are controversial.
[5] and [14] discuss common errors in more depth, but focus on errors made by CS1
students. This paper discusses errors made by students at the sophomore/junior level.
These are students who already have a basic understanding of object-oriented
programming but do not yet appreciate certain subtleties of both modeling and object-
oriented design.

MICS 2008 179

3 Use Case Model Defects
There are a number of frequent defects in use case models: failing to use verb phrases for
cases, misusing extends and includes, and use cases which capture insignificant
interactions.

3.1 Use Case Titles That Are Not Verb Phrases
Description: Use cases are common uses of a system that describe how an actor or actors
obtain a significant benefit from a system. Since they describe this process of obtaining a
benefit, they are best titled as verb or verb-object phrases.

Detection: Use case titles are generally concatenated strings of two or more words. This
makes it difficult to parse the strings into separate words unless some syntax is enforced
such as “camel case” or underscore word separators. If the syntax allows parsing, the
component words in the use case title can be compared to a lexicon or use natural
language technology to recognize parts of speech. If a use case title is used inside of the
scenario, parsing the use case title in the syntax of the sentence may be able to reveal its
part of speech.

3.2 Misuse of Extends and Includes
Description: Use case extensions and inclusions are often confused. Most students can
give the strong definitions of these constructs, but often confuse the direction of the
arrows when producing use case diagrams. For an “include” relationship, the arrow
should be on the included use case side, whereas with an “extension” relationship, the
arrow should be on the far side of the extending use case.

Detection: This may be difficult to detect with only the use case diagram. A solution
may be to cross check the diagram against use case scenarios. Formal use case scenarios
typically list extensions and inclusions. By locating the use case scenario title in the use
case model, we can analyze the model from this point, comparing the model’s extends
and includes against the scenario’s. The automatic checking for this defect would rely on
very specific use case scenario templates.

3.3 Insignificant Use Cases
Description: The goal of a use case is to provide a significant benefit to an actor
associated with that use case. Use cases without a significant benefit should be combined
with others.

Detection: The above definition does not meet many of the IEEE STD 830 [6]
characteristics of “good” requirements. To say the least, this does not meet the test of
verifiability, in that we would be hard pressed to obtain universal consensus on precisely
what is meant by “significant benefit”. We believe that certain cases can be defined and
recognized, but further research is needed in this area.

MICS 2008 180

4 Class Model Defects
Because they are richer, the number of potential errors in class models is larger.

4.1 Non-noun Class Names
Description: Classes are the stuff from which objects are made, and objects are nouns.
Students frequently name classes using verbs, possibly because they are focusing on the
actions performed as part of the class rather than the object which performs those actions.

Detection: The detection of non-noun class names could be partially automated by
parsing scenarios, identifying which words are used most frequently as nouns, adjectives,
or verbs, and using this information to identify misused words in class names.

4.2 Reversed Multiplicities
Description: The collection class of an aggregation or composition should have a
multiplicity of ‘1’, whereas the parts can have any multiplicity. This mistake is also
commonly seen with other class relationships.

Detection: This can be detected with aggregation and composition, when the collection
class has a multiplicity not equal to ‘1’. See Figure 1 for a UML example of reversed
multiplicities and Figure 2 for a corresponding MDL file snippet. With non-collection
relationships, this cannot be easily detected without domain knowledge about the classes
and their relationship.

Collection PartOf
11..n 11..n

Figure 1: UML model with reversed multiplicities

// snippet from MDL file
root_category (object Class_Category "Logical View"
 quid "47BD93AC01B0"
 exportControl "Public"
 global TRUE
 subsystem "Component View"
 quidu "47BD93AC01B2"
 logical_models (list unit_reference_list
 (object Class "Collection"
 quid "47BD942B03D2")
 (object Class "PartOf"
 quid "47BD942F0346"
 documentation "A part of the collection.") // *
 (object Association "aggregation"

MICS 2008 181

 quid "47BD943502E8"
 roles (list role_list
 (object Role "$UNNAMED$0"
 quid "47BD94360384"
 supplier "Logical View::PartOf"
 quidu "47BD942F0346"
 client_cardinality (value cardinality "1") // multiplicity of part of: 1
 is_navigable TRUE)
 (object Role "$UNNAMED$1"
 quid "47BD94360395"
 supplier "Logical View::Collection"
 quidu "47BD942B03D2"
 client_cardinality (value cardinality "1..n") // multiplicity of Collections: 1..n
 is_navigable TRUE
 is_aggregate TRUE)))) // indicates Collection is an aggregate

Figure 2: Rose MDL file snippet for defective aggregation multiplicities.

4.3 Only Public Operations and Attributes in Implementation-level
Models

Description: An implementation-level class diagram should be at the detail that goes
beyond interfaces and public operations. If almost all operations across all classes are
public, then either the model not have enough detail to include private operations or the
designer has not properly identified which functions should be private. In either case,
there is a problem. Generally, it is hard to defend the concept that any class attribute
should be public.

Detection: The detection of this defect is as simple as calculating a percentage of public
to non-public operations in a class model. As long as the percentage is larger than some
arbitrary value (well less than 100%) then this defect may be present. An acceptable
percentage will depend on the domain, the design, and the expected level of detail in the
design. Recognizing any public attributes can also be flagged as very likely defects

4.4 Classes, Operations, and Attributes without Documentation
Description: Rose class models allow the designers to add documentation to classes,
operations, attributes, and operation parameters. This documentation is inserted into the
source code that is generated from a class model. Documenting the elements while
designing the system is an excellent practice since this is when designers are most likely
to be intimate with both the requirements and the elements of the design that satisfy those
requirements.

Detection: Identifying missing documentation is straightforward. The line marked by an
asterisk in Figure 2 marks the documentation for class part of (“a part of the collection”).
In contrast, class Collection, listed a couple lines earlier in the file, is missing its
documentation.

4.5 Associations without Navigation Attributes

MICS 2008 182

Description: Navigational attributes are reference or pointer variables that allow one
class to access another class. In a class model, they are part of the reference and on the
side of the navigational arrow. When code is generated from a class model, a
navigational attribute produces a reference or pointer class variable of the type of the
associated class.

Detection: Detection of missing navigational attributes can be detected by processing the
Rose MDL file’s references for missing navigational attributes. See Figure 3 for UML
model, Figure 4 for MDL file associated with the UML, and Figure 5 for C++ code auto-
generated by Rose from the model.

This “rule” is somewhat controversial: some instructors would prefer students to generate
diagrams with less redundancy in them. This illustrates a basic requirement for any
automated system: it must be possible for instructors to select which rules to apply for a
particular course or even assignment.

ClassA ClassB

ClassC ClassD+refClassD

Missing navigational
Reference

With navigational
Reference

Figure 3: UML without and with navigational references

logical_models (list unit_reference_list
 (object Class "ClassA"
 quid "47BDA0820067")
 (object Class "ClassB"
 quid "47BDA08500A6")
 (object Class "ClassC"
 quid "47BDA087023C")
 (object Class "ClassD"
 quid "47BDA08A00F4")
 (object Association "$UNNAMED$0"
 quid "47BDA0B803B3"
 roles (list role_list
 (object Role "$UNNAMED$1" // Un‐named navigational reference
 quid "47BDA0B903E2"
 supplier "Logical View::ClassB" // type of reference
 quidu "47BDA08500A6"
 is_navigable TRUE) // Navigable

MICS 2008 183

 (object Role "$UNNAMED$2"
 quid "47BDA0B903E4"
 supplier "Logical View::ClassA"
 quidu "47BDA0820067")))
 (object Association "$UNNAMED$3"
 quid "47BDA0BD01EE"
 roles (list role_list
 (object Role "refClassD" // named navigational reference
 quid "47BDA0BE021D"
 label "refClassD"
 supplier "Logical View::ClassD" // type of reference
 quidu "47BDA08A00F4"
 is_navigable TRUE) // Navigable
 (object Role "$UNNAMED$4"
 quid "47BDA0BE021F"
 supplier "Logical View::ClassC"
 quidu "47BDA087023C"))))

Figure 4: MDL file snippet of relationships without and with navigational references

//##ModelId=47BDA0820067
class ClassA // notice no reference to Class B is generated
{
};

class ClassC
{
 public: // this is the generated reference to Class D
 //##ModelId=47BDA0BE021D
 ClassD *refClassD;
};

Figure 5: Code auto-generated from Rose without (ClassA) and with (ClassC)
navigational references.

4.6 Attributes and Operations that are not Typed
Description: At the implementation level, class model attributes, operations, and
operation parameters need to be typed to support code development.

Detection: This defect can be detected by using Rose to generate source code from the
class model and compiling it. Non-typed identifiers are not permitted in many high-level
languages and will produce syntax errors. For example, the C++ code generated for
NonTypedClass in Figure 6 is

Class NonTypedClass { public: opp(void agr1); private: att1; };

MICS 2008 184

NonTypedClass
att1

opp(agr1)

TypedClass
attr : String

opp(arg1 : String) : String

Figure 6: UML without and with typed attributes, operations, or operation arguments

4.7 Illegal Identifiers for Target Language
Description: Classes should not be a dead end in a software development process. The
class names, attributes, operations, and parameters of the model produce the identifiers in
the generated source code. If illegal identifiers are used in the model, they will appear in
the generated code.

Detection: This defect can be detected by using Rose to generate source code from the
class model and compiling it. The compiler will produce errors relating to these illegal
identifiers. Below is an example of a class with illegal C++ identifiers as they contain
embedded spaces, “attr One”, “opp Two”, and “arg Three”. When the Rose-generated
code is compiled, parse errors result on the identifiers.

Bad_Id_Class
attr One : String

opp Two(arg Three : String) : String

Figure 7: A class with incorrect identifiers for an attribute, an operation, and a parameter
of the operation

4.8 Inheritance Arrows in the Wrong Direction
Description: A common student error is that to reverse the inheritance arrows, placing
the inheritance arrow on the child rather than the parent side of the relationship.

Detection: In general it could be very difficult to identify reversed inheritance arrows
automatically. However, it is possible in some cases: given that multiple inheritance is
rare in student solutions, a class with multiple outgoing generalization arrows suggests
the presence of an error. Common cases in which multiple inheritance is encouraged,
such as for the Composite Pattern [4] shown in Figure 8, can be detected as special cases.

MICS 2008 185

Figure 8: An application of the Composite Pattern in which Picture inherits two
interfaces

4.9 Duplicate Operations in Multiple Classes
Description: It is relatively rare for an operation to be duplicated in multiple classes
(except to support inheritance) in class projects. Duplicated operations often indicate
poor class cohesion or misplaced operations. While duplicated operations certainly do
not indicate an actual defect, they can trigger a message discussing the concern.

Detection: This type of defect can be detected by scanning the Rose model file for
duplicate operation names. The danger is leading students to believe that all duplication
is invalid. Some generic operations, such as “sort” or “find” are likely to appear in
several classes. Filtering out common operation names is likely to be necessary to avoid
teaching students invalid concepts.

NewClass

dupOp()

NewClass2

dupOp()

Figure 9: UML of two classes with the same operation

4.10 Classes without Attributes and/or Operations
Description: Once a model gets to the design or implementation phases, it should have
at least one unique attribute or operation. Classes without attributes or operations imply
either that the class may have been motivated by the analysis but not be relevant to the
final system or that the model is incomplete.

MICS 2008 186

Detection: This type of defect can be spotted by scanning the Rose MDL file for classes
that do not have “(object operation…” for class operations or “(object ClassAttribute…”
class attribute entries.

NewClass
NewClass2
attr : string

nonEmpty()

Figure 10: UML of an empty and non-empty class. The non-empty class contains the
operation nonEmpty().

root_category (object Class_Category "Logical View"
 quid "47BD9B0402AA"
 exportControl "Public"
 global TRUE
 subsystem "Component View"
 quidu "47BD9B0402AC"
 logical_models (list unit_reference_list
 (object Class "NewClass" // empty Class
 quid "47CC0AAE03D8")
 (object Class "NewClass2" // non‐empty Class
 quid "47CC0AB102EE"
 operations (list Operations
 (object Operation "nonEmpty" // non‐empty Class has an Operation
 quid "47CC10170157"
 result "void"
 concurrency "Sequential"
 opExportControl "Public"
 uid 0))
 class_attributes (list class_attribute_list
 (object ClassAttribute "attr" // non‐empty Class has an Attribute
 quid "47CC204E0177"
 type "string"))))

Figure 11: Rose MDL file snippet of empty and non-empty classes.

4.11 Classes that are not Associated with Other Classes
Description: Classes interact with each other, providing and using services. To be
useful in a system, classes need to be associated with other classes.

Detection: This type of defect can be spotted by scanning the Rose MDL for classes
which are never referenced in the “(object Association . . .” lists. See the lines annotated
with “//” comments in Figure 12.

MICS 2008 187

NewClass NewClass2

NewClass3 NewClass4navToClass4

Figure 12: UML example of two classes without associations and two classes with
associations.

root_category (object Class_Category "Logical View"
 quid "47BD9B0402AA"
 exportControl "Public"
 global TRUE
 subsystem "Component View"
 quidu "47BD9B0402AC"
 logical_models (list unit_reference_list
 (object Class "NewClass"
 quid "47CC0AAE03D8")
 (object Class "NewClass2"
 quid "47CC0AB102EE")
 (object Class "NewClass3"
 quid "47CC21E900DA")
 (object Class "NewClass4"
 quid "47CC21EE038A")
 (object Association "navToClass4"
 quid "47CC21F501B5"
 roles (list role_list
 (object Role "$UNNAMED$0"
 quid "47CC21F60109"

 supplier "Logical View::NewClass4" // Associated Class
 quidu "47CC21EE038A"
 is_navigable TRUE)
 (object Role "$UNNAMED$1"
 quid "47CC21F6010B"

 supplier "Logical View::NewClass3" // Associated Class
 quidu "47CC21E900DA"))))

Figure 13: MDL file of two classes without associations (NewClass1 and NewClass2)
and two classes with associations (NewClass3 and NewClass4).

MICS 2008 188

4.12 Very High Class Coupling
Description: Good object-oriented design strives for low coupling and high cohesion.
High coupling is associated increased maintenance costs because when one class
changes, the coupled classes are more likely to require changes.

Detection: The detection of high coupling is rather subjective in that the amount of
acceptable coupling depends on the problem domain. However, a coupling metric can be
computed for each class by processing the Rose MDL file associations and counting the
number time each class name appears in the “(object Association(roles (object Role
supplier)))” fields. A simple statistical analysis can be used to indicate which classes
might be candidates for being coupled to too many others.

NewClass3

NewClass NewClass2 NewClass5

NewClass4navToClass4

navToClass4 navToClass4 navToClass4

Figure 14: UML showing NewClass4 associated with the other four classes – high
coupling.

logical_models (list unit_reference_list
 (object Class "NewClass"
 quid "47CC0AAE03D8")
 (object Class "NewClass2"
 quid "47CC0AB102EE")
 (object Class "NewClass3"
 quid "47CC21E900DA")
 (object Class "NewClass4"
 quid "47CC21EE038A")
 (object Class "NewClass5"
 quid "47CC24F702AF")
 (object Association "navToClass4"
 quid "47CC21F501B5"
 roles (list role_list
 (object Role "$UNNAMED$0"
 quid "47CC21F60109"
 supplier "Logical View::NewClass4"
 quidu "47CC21EE038A"
 is_navigable TRUE)
 (object Role "$UNNAMED$1"
 quid "47CC21F6010B"
 supplier "Logical View::NewClass3" // NewClass3 associated with
 // NewClass4

MICS 2008 189

 quidu "47CC21E900DA")))
 (object Association "navToClass4"
 quid "47CC24E8034B"
 roles (list role_list
 (object Role "$UNNAMED$2"
 quid "47CC24EA01C5"
 supplier "Logical View::NewClass4"
 quidu "47CC21EE038A"
 is_navigable TRUE)
 (object Role "$UNNAMED$3"
 quid "47CC24EA01C7"
 supplier "Logical View::NewClass" // NewClass associated with
 // NewClass4

 quidu "47CC0AAE03D8")))
 (object Association "navToClass4"
 quid "47CC24EE0148"
 roles (list role_list
 (object Role "$UNNAMED$4"
 quid "47CC24F100CB"
 supplier "Logical View::NewClass4"
 quidu "47CC21EE038A"
 is_navigable TRUE)
 (object Role "$UNNAMED$5"
 quid "47CC24F100CD"
 supplier "Logical View::NewClass2" // NewClass2 associated with
 // NewClass4

 quidu "47CC0AB102EE")))
 (object Association "navToClass4"
 quid "47CC24FE02AF"
 roles (list role_list
 (object Role "$UNNAMED$6"
 quid "47CC2500000F"
 supplier "Logical View::NewClass4"
 quidu "47CC21EE038A"
 is_navigable TRUE)
 (object Role "$UNNAMED$7"
 quid "47CC25000011"
 supplier "Logical View::NewClass5" // NewClass5 associated with
 // NewClass4
 quidu "47CC24F702AF"))))

Figure 15: Rose MDL file showing NewClass4 associated with the four other classes.

5 Interaction and State Model Defects
This section discusses the most significant defect in dynamic diagrams: failing to be
consistent with static diagrams. Identifying additional issues is left as future work.

MICS 2008 190

5.1 Message Arcs and Class/Objects that do not Correspond to the Class
Model

Description: In a project, all of the object-oriented models model the same domain
objects and such should be based on the same model components. Many students fail to
make this connection. As a result, they build each model from scratch and ignore the
work already done in previous modeling. Frequently, students will have wonderfully
refined class models and then use different identifiers for classes, attributes and
operations when producing interaction and state models. On the other hand, Rose and
many other design tools provide mechanisms for ensuring consistency between diagram
types. In Rose, drop-down menus give appropriate suggestions based on components
from the class model – all a developer needs to do is click on the appropriate identifier.
Students need encouragement to use such assistance.

Detection: The detection of this defect can be achieved by scanning the interaction and
state model parts of the Rose MDL file to determine if all components are already part of
the class model.

6 Conclusion
We have identified a number of frequent errors made by students when constructing
UML diagrams. This list is certainly not intended to be exhaustive, but in our experience
these defects have the distinction of being both easily recognized (at least by instructors)
and very common. Future plans include developing tools to automatically recognize
many of these defects. The intent is that students would use the tools to get anytime
feedback on their models, presumably resulting in improved submissions. Thus the goal
is an automated assistant: developing a system to identify relatively simple errors. This
will hopefully allow instructors to spend more time on more significant issues.

References

[1] Cleidson, R. B., et al., Using Critiquing Systems for Inconsistency Detection

in Software Engineering Models. SEKE 2003, pp. 196-203.

[2] Coelho, W. and Murphy, G., ClassCompass: A Software Design Mentoring
System. ACM Journal on Educational Resources in Computing, Vol. 7, No. 1,
Article 2, March 2007.

[3] Egyed, A., UML Analyzer Tool. Information available at http://www.alexander-

egyed.com/tools/uml_analyzer_tool.html. Accessed March 7, 2008.

[4] Gamma, Helm, Johnson, and Vlissedes, Design Patterns: Elements of Reusable
Object-Oriented Software, Addison-Wesley, 1995.

MICS 2008 191

[5] Holland, S., Griffiths, R., and Woodman, M., Avoiding Object Misconceptions.
SIGCSE Bull. 29, 1 (Mar. 1997), pp. 131-134.

[6] IEEE Std 830-1998 IEEE Recommended Practice for Software Requirements

Specifications,
http://standards.ieee.org/reading/ieee/std_public/description/se/830-
1998_desc.html, IEEE, 1998.

[7] Kaneiwa, K., and Satoh, K., Consistency Checking Algorithms for Restricted

UML Class Diagrams. In Proceedings of the Fourth International Symposium on
Foundations of Information and Knowledge Systems (FoIKS 2006), Lecture
Notes in Computer Science, Volume 3861, Springer-Verlag, 2006, pp. 219-239.

[8] Konrad, S. and Cheng, B.H.C., Automated Analysis of Natural Language

Properties for UML Models. Lecture Notes in Computer Science, Volume 3844,
Springer-Verlag, 2006, pp. 48-57.

[9] Lange, C., Improving the Quality of UML Models in Practice. In Proceedings of

the 28th international Conference on Software Engineering (Shanghai, China,
May 20 - 28, 2006). ICSE '06. ACM, New York, NY, 993-996.

[10] Lindland, O., Sindre, G., Understanding Quality in Conceptual Modeling. IEEE

Software, March 1994, pp. 42-49.

[11] Pap, Zs., Majzik, I., Pataricza, A., and Szegi, A., Completeness and Consistency
Analysis of UML Statechart Specifications. In Proc. IEEE Design and
Diagnostics of Electronic Circuits and Systems Workshop (DDECS'2001), Győr,
Hungary, 18-20 April, 2001, pp. 83-90.

[12] Pilskalns, O., and Andrews, A., Rigorous Testing by Merging Structural and

Behavioral UML Representations. In 6th International Conference on the Unified
Modeling Language (UML 2003), San Francisco, USA, October 20-24, 2003.

[13] Thomasson, B., Ratcliffe, M., and Thomas, L., Identifying Novice Difficulties in

Object Oriented Design. ITiCSE’06, June 26-28, 2006, Bologna, Italy, pp. 28-32.

[14] Sanders, K., and Thomas, L., Checklists for Grading Object-Oriented CS1
Programs: concepts and misconceptions. ITiCSE ’07, June 23-27, 2007, Dundee,
Scotland, pp. 166-170.

MICS 2008 192

Exploring the Web Programming Jungle

Charles M. (Mike) Morrison

Department of Computer Science

University of WI – Eau Claire

Eau Claire, WI 54702

morriscm@uwec.edu

Abstract

Selecting the content for a web programming class is complicated by the large number of

protocols and technologies that can be used to accomplish similar tasks. A recent look at

a number of university catalogs showed many computer science programs do not list a

web programming class, and when they do they tend to focus on either Microsoft

technologies, J2EE technologies, or something else entirely like PHP or Ruby on Rails.

We propose a balanced course offering with topics taken from eight broad categories of

web technologies that we define. These categories are: communication protocols,

markup languages, web servers, server-side programming, client-side programming,

frameworks, application deployment, security, and development environment.

MICS 2008 193

Introduction

A recent look at a number of university catalogs listing a computer science web

programming class showed that a class of this type is often missing. When one is listed,

the topics covered vary widely and tend to focus on a small set of technologies. So what

are reasonable goals for a web programming class? First of all, we think a student should

have completed at least two programming classes and have a reasonable understanding of

common algorithms and data structures before taking this class. Next, our primary goal is

for this class to be about creating web applications, not creating a web browser or writing

the code for a web server. But before deciding what should be in this class, we made a

list of well know Web technologies and categorized them.

It quickly became apparent that there are many languages, development

environments, and technologies that can potentially be used in this class, and they all

can't be covered in depth. Should a web programming class educate students with a

broad sampling of the technologies available to web programmers or go into depth on a

small subset of technologies? We recommend teaching about a broad sampling of

technologies and covering a smaller subset of technologies in more detail. We think that

if students are experienced programmers, developing general programming skills and

introducing additional languages are less important than understanding programming in a

web context and making intelligent choices on what technology is appropriate in various

situations.

This paper summarizes major web technologies available today and discusses

how they can be incorporated into a web programming class. A curriculum is then

suggested for this class that uses a variety of technologies.

Web Technologies

TCP/IP protocols and the Internet were largely formulated during the 1970s. The

Internet didn't hit the mainstream, however, until the 1990s when Tim Berners-Lee's

work developing the World Wide Web converged with the development of graphical

browsers and the ability to process user inputs submitted from HTML forms. Mosaic

was the first graphical browser in 1993 and also in 1993, the Common Gateway Interface,

CGI, provided a standard way for web servers to start executable programs (written in

any language), pass HTML form inputs to them, and pass program outputs back to

browsers. From 1993 onward, new web technologies appeared rapidly (Figure 1).

MICS 2008 194

Figure 1 - Web Technology Timeline

Table 1 provides a brief description of the technologies shown in Figure 1.

Although all of these technologies can be discussed in a Web programming class, they

cannot all be covered in depth. Therefore these have been grouped into eight broader

categories with the idea that a few technologies in each category can be given in depth

coverage. Table 2 shows these categories.

MICS 2008 195

Technology (in chronological order) Description
TCP/IP Essential Internet Protocols used in the Web

DS – Digital Signatures Public Private Key Encryption

HTML - HyperText Markup Language Document Markup Language

HTTP - HyperText Transport Protocol Web Communication Protocol

CGI – Common Gateway Interface Protocol Linking Server Apps to Web Server

Apache Web Server Web Server

FCGI – FastCGI Improved More Scalable CGI

SSL – Secure Sockets Layer Protocol for Secure Internet Communications

IIS Web Server Microsoft Internet Information Services Web Server

CF – ColdFusion Server Framework and Language

JavaScript Client Scripting Language

JA – Java Applet Web Deployment Technology

CSS – Cascading Style Sheets Stylesheet Language

ASP – Active Server Pages Server Scripting Engine

Flash Web Oriented Multimedia Technologies

PHP – Hypertext Preprocessor (R) Server Scripting Engine

JS – Java Servlets Server Framework

JSP – Java Server Pages Server Scripting Language

XML – eXtensible Markup Language Document Markup Language

SOAP – Simple Object Access Protocol Protocol for Exchanging XML Messages via HTTP

XSLT – eXtensible Stylesheet Language Transformations Language for Transforming XML Documents

NetBeans Integrated Development Environment (open source 00)

WS – Web Service App to App Web Based Communication Protocol

Struts – Apache Struts Web Application Framework

Spring – Java Spring Framework Application Framework

RSS – Really Simple Syndication Formats for Publishing Frequently Updated Content

XSD – XML Schema Language XML Schema Definition Language

Apache/Tomcat Web Servers Web Server Supporting JSP and Servlets

JWS – Java Web Start/JNLP Web Deployment Technology

Visual Studio Integrated Development Environment

ASP.NET Web Application Framework (C#, VB, etc.)

RoR – Ruby on Rails Web Application Framework

Eclipse Integrated Development Environment (open source 04)

JSF – Java Server Faces Web Application Framework

ClickOnce Web Deployment Technology

AJAX – Async JavaScript and XML Group of Technologies for Interactive Web Apps

Table 1 Significant Web Technologies

 Category Technology

Communication Protocols TCP/IP, DS, HTTP, SSL, SOAP, WS, RSS

Markup Languages (and related) HTML, CSS, XML, XSD, XSLT

Client-Side Programming JavaScript, Flash, AJAX

Web Servers Apache, IIS, Apache/Tomcat

Server-Side Programming CGI, FCGI, ASP, PHP, JS, JSP

Frameworks CF, Struts, Spring, ASP.NET, RoR, JSF

Application Deployment JA, JWS, ClickOnce

Security HTTPS, DS, SSL/TLS, Certificates

Development Environments VS, Eclipse, NetBeans, Text Editor, etc.

Table 2 – Categorized Web Technologies

MICS 2008 196

Communication Protocols - TCP/IP, HTTP, SOAP, WS, RSS

If this class is offered prior to taking a networks course a single lecture hitting the

high points of the TCP/IP protocol should cover the aspects TCP/IP that are important to

web programming. These include IP addressing, domain names, domain name servers,

the host configuration file, and URLs.

Similarly a lecture should go over the high points of the HTTP protocol. This

would include a discussion of HTTP clients (browsers) and servers (web servers). A

brief summary of the HTTP request methods (with particular attention to GET and

POST) and an explanation of typical HTTP request and response messages would also be

appropriate – however – the web programming discussed in this paper is focused on

creating web applications and not on creating browsers and servers.

The simple object access protocol, SOAP, provides the foundation layer for web

services. This is an advanced, topic that adds additional protocols like WSDL and UDDI

to the mix. It merits inclusion in a web programming class – but if presented as a

programming assignment, this should be after the basics of creating and deploying web

applications are understood.

Really simple syndication, RSS, is another advanced topic that is of interest, but

would rate behind SOAP and web services in our hierarchy of what to cover in depth. It

provides a way to use an RSS document to specify web content that can be sent from one

web site to many other web sites. An intermediate company called an aggregator

periodically searches the registered web sites for RSS documents and displays

information about the feed so clients can link to documents of interest.

Markup Language (and Related) - HTML, CSS, XML, XSD, XSLT

Web outputs are normally structured as HTML documents that are displayed in a

browser. Therefore, a thorough understanding of the hypertext markup language HTML

is essential to a web programmer. Although HTML is picked up quickly by most

computer science students, you can't assume they already know it. It's important to

allocate one or two lectures to discussing the structure of an HTML document.

Cascading style sheets, CSSs, are commonly used to format an HTML documents

and merit part or possibly all of a lecture during the initial HTML part of the class. CSS

id, class, and tag styles should be explained and demonstrated. When the time finally

comes to write web programs, however, we recommend focusing on web programming

issues and avoiding the extra complexity of CSSs.

A lecture on the extensible markup language, XML, will be needed sometime

during the semester, but it doesn't have to come immediately after the HTML/CSS

lectures. It's likely, however, that the development environment and framework chosen

MICS 2008 197

for web programming projects will use XML configuration files. It is also the text format

used with SOAP messages and RSS documents. XML also has a place in sending

structured database data from one system to another. Where you include a lecture on

XML depends on other technology choices you make for the class and when they are

used.

XML schema definitions, XSDs, are used to specify data types, relationships, and

cardinalities within sets of XML data. This is of interest to a database class; but less so to

a web programming class. Keep in mind that anything done in a traditional database

program can be done with a web interfaced program.

The extensible stylesheet transformations language, XSLT, provides

programming commands and structures to process and format XML data. XSLTs are

built on top of the XML Path Language, XPath. XSL templates are used to retrieve data,

while XPATH provides the syntax for processing the data. We do not think XSLTs are

an important topic for a web programming class. Although this is an interesting

technology with an unusual programming style, reading a file in one format and

generating a new file in a different format is something that can be done with any

programming language and in any class – not just a web programming class.

Client-Side Programming – JavaScript, Flash, AJAX

JavaScript is a client-side scripting language used within web browsers. It started

life as a Netscape product named LiveWire and was informally renamed JavaScript and

moved into the public domain as a joint effort by Netscape and Sun Microsystems in

1995. When it was placed in the public domain, the ECMA Organization was chosen to

maintain it. JavaScript's official name is ECMAScript. Although Sun participated in

moving JavaScript into the public domain, it did not convert JavaScript into a Java clone.

JavaScript is loosely typed, doesn't support creating custom classes, is blocked

from accessing resources on the local computer, and relies on the web browser hosting it

to display outputs to users. Students with prior Java programming experience will still

find it useful to learn about JavaScript and work with it.

Adobe Flash is a multimedia design environment used to add interactive, dynamic

content to web pages. It was introduced in 1996 and is widely used. Flash has a wide

range of graphic design tools and includes a scripting language. It has a steep learning

curve, however, and is aimed towards graphic designers more than programmers.

Asynchronous JavaScript and XML, AJAX, appeared on the scene in 2005. Its

goal is to increase the responsiveness and interactivity of web pages by exchanging small

amounts of data with the web server without requesting a new web page. AJAX uses

JavaScript to dynamically display and interact with information. The XMLHttpRequest

object is used to transfer text data (typically in XML format – but any text can be

MICS 2008 198

transferred) between the browser and server. AJAX is a new technology that is used in

map sites like Google Maps and Map Quest and might become widely used in the future.

Web Server - Apache, IIS, Apache/Tomcat

There are many commercial and open source freeware web servers that can be

used to deliver web content. Only two stand out, however. According to a Netcraft

survey taken in February 2008 (http://news.netcraft.com/archives/2008/02/index.html)

the Apache web server has 51% of the web server market and Microsoft's IIS accounts

for 36% of the market. Both are readily available in most academic environments.

Both web servers have mechanisms for specifying home directories, accessible

directories, allowed activities within directories, and more. IIS is configured with

utilities displaying dialog boxes and wizards. Apache is configured by modifying the

contents of XML formatted text files. Students should be familiar with the concept of

virtual directories (IIS) and aliases (Apache). If you plan to use Java servlets or JSP

pages, the Tomcat web server also need to be discussed, since it is normally combined

with the Apache server and provides the servlet and JSP processing capabilities. (Tomcat

uses contexts instead of aliases or virtual directories). A lecture should be allocated to

showing how Apache, IIS, and possibly Apache/Tomcat are configured. When testing

web programs the development computer will normally have a version of IIS or

Apache/Tomcat locally installed – so an assignment configuring a web server could be

worked out.

Server-Side Programming - CGI, FCGI, ASP, PHP, JS, JSP

The common gateway interface, CGI, is a protocol specifying how a server-side

program can get user inputs from a web server and send outputs back to the web server to

be forwarded on to the browser as a web page. It is the first technology developed for

this and is still widely supported. It doesn't specify a language, however. Any language

capable of writing to stdout and reading from stdin (which means just about any

language) can be used. In practice, the PERL scripting language is most often used in

combination with CGI. FastCGI is similar to CGI. It scales up better than CGI;

however, since the programs using it can be run in threads within the Web server process

rather than having to start separate processes for each one as CGI does.

Active Server Pages, ASP, Hypertext Preprocessor Recursive, PHP, Java Servlets,

JS, and Java Server Pages, JSP, specify both the language to be used and the technology

connecting the web programs with the web server. All scale up better than the initial CGI

MICS 2008 199

protocol. If ASP is used, the language is usually VB. PHP has its own unique language,

and JS and JSP rely on Java.

Java Servlets are traditional Java programs extended with three javax.servlet

packages. These imported packages add methods allowing the java program to retrieve

HTML form inputs from a web server and send responses in HTML format back to the

web server. Sending HTML to the browser takes this form:

PrintWriter out = response.getWriter();

java.util.date now = new java.util.Date();

out.println("<html><body>HelloWorld! The time is " + now +

"</body></html>);

 JSPs take a different approach. They make a page using normal HTML tags and

when needed, embed special script tags containing java commands and special tags

displaying results from the commands in the resulting web page. This model of

embedding programmatic code with HTML is also used by ASP, PHP, and ColdFusion.

For example:

<html>

<body>

<% java.util.date now = new java.util.Date() %>

Hello World! The time is <%= now %>

</body>

</html>

JSPs are compiled into servlets when they are first accessed on the web server. If

the page isn't modified, the compiled file doesn't have to be compiled again when it is

accessed in the future. Its performance is therefore identical to that of a servlet (JSPs are

servlets). JSP's are limited to embedding Java within HTML and lose the structure that

can be provided in a traditional Java program. JSPs might be more popular than servlets,

however, since the JSP model of embedding programmatic code within HTML is easier

for many programmers to understand.

We think several of these technologies should be used in programming

assignments. If the students are not familiar with Java, any of the technologies in this

category are equally suitable. What should be stressed is the similarity of approach

between ASP, PHP, and ColdFusion and how CGI and servlets differ.

MICS 2008 200

Web Application Framework - CF, Struts, Spring, JSF, ASP.NET, RoR

In general, a framework goes beyond simple web content processing by

supporting a wider variety of tasks and common activities used in web development.

Many frameworks provide libraries for database access, templating, and session

management. Most provide support for the model view controller architecture, but this

isn't necessary to be classified as a framework.

With the previous server-side programming technologies, you navigate from one

page to another through links and code embedded within the JSP (ASP, PHP, etc.) pages.

A common problem with these technologies is that mixing the application logic with

information presented in the browser makes the code difficult to maintain and doesn't

clearly separate the roles of the web programmers and web page designers.

A model-view-controller approach, MVC, improves this situation. Most of the

frameworks in this section support MVC. If you plan to use Struts, Spring, or JSF,

consider adding additional work with servlets and JSP. A model-view-controller

architecture similar to that used in Struts, Spring, and JSF can be implemented using a

servlet for the controller, ordinary java classes (sometimes called plain old java objects,

POJOs) for the model, and JSPs for the view. Lecturing on this approach and having the

students complete a lab or assignment using this before learning about frameworks will

help them understand and appreciate what the Java oriented frameworks are doing.

ColdFusion was an early framework a wide range of tools. It does not appear to

directly support the MVC architecture, but a number of third party products claim to add

this. It does have an integrated development environment, support for AJAX, .NET

integration, JavaScript support, RSS support, and more. Although it's a proprietary

product, in the past, they had programs for distributing educational versions to schools

and might still be doing this. If so this is a potential technology for assignments.

Apache Struts is an open source framework that provides servlets to developers

supporting the MVC architecture. A Struts servlet acts as a switchboard that routes

requests from browsers to the appropriate programs and pages – you do not write your

own custom servlet to do this. In addition, POJOs are associated with actions in the

struts-config.xml file. The switchboard (a servlet provided by Struts named

ActionServlet) uses the struts-config.xml file to determine where to send incoming

requests.

In addition Struts provides a number of tag libraries that can be used within JSP

pages to reduce or eliminate the server side code normally seen in the non-MVC style

JSP pages described previously. You can also add your own custom tags that are linked

to Java classes you've written.

The source code and binary distribution of Struts can be downloaded from

http://struts.apache.org/downloads.html. The struts-version-lib.zip file is about 45

MICS 2008 201

megabytes in size and contains the Struts jar libraries and many additional starter

programs and examples.

Getting everything correctly configured for Struts is challenging. Although you

could develop a Struts application from scratch this doesn't have to be done. Apache

provides a number of zipped "war" files with typical starter configurations for Struts.

These are in the apps folder when you unzip the struts-version-lib.zip file. If you use

Eclipse for your IDE, these should be imported into a workspace (not an Eclipse project).

Next on the list is the Spring framework. It was developed at about the same time

as the Struts framework. Its focus is to provide a framework for organizing POJOs. It

can be used in a web context which makes it a possible web application framework. It

can also be used conjunction with Struts. We have not looked at Spring, although it has

many proponents. For now, we will add it to the list of interesting technologies.

ASP.NET was introduced after Struts and Spring. Although model code can be

separated from view code into separate files, they are tightly linked. (Microsoft recently

released a preview of a MVC toolkit for ASP.NET. So this may change in the future.)

An extensive set of complex, but easily used, user interface components is provided

along with an integrated event driven coding model. Additional components that render

JavaScript user input validation are also provided. As a result web applications with user

interfaces rivaling standard desktop applications can be quickly created.

Java server faces, JSF, was created after ASP.NET. Its method for using

components to rapidly create web pages is reminiscent of ASP.NET. JSF, however, uses

a model-view-controller approach. It adds a set of user interface components allowing

developers to rapidly add complex features to web pages along with an event driven

programming model. The basic web enabled version of Eclipse provides JSF support

(without having to resort to additional plug-ins or MyEclipse). Since JSF was built with

a component model in mind, it provides the capability to build components in a variety of

technologies and in ways that are amenable to drag and drop graphic design. Struts has

custom libraries that can be hooked into forms, however, it isn't amenable to JSF's style

of drag and drop or JSF's component oriented event model.

Ruby on Rails, RoR, isn't in the J2EE domain since it relies on the object oriented

Ruby language which was developed in the 1990s. It has many supporters in the J2EE

camp however. It follows the MVC architecture (almost identically to JSF), it's free, and

it claims up to 10 times the productivity of traditional J2EE frameworks using less code

than most frameworks put into their XML configuration files. Rails offers starting code

templates called scaffolding covering a large number of common database oriented web

page tasks. Its approach is to add or modify coding only when needed for unconventional

aspects of an application.

Two additional frameworks not yet mentioned are Apache Tapestry, and Apache

Wicket. Tapestry began as a SourceForge project in 2000 and joined Apache in 2003.

Tapestry isn't a standard like Struts or JSF; there is one implementation currently at

MICS 2008 202

version 5. Tapestry supports a component model to web development similar to JSF's.

Tapestry view pages, however, are XHTML with additional Tapestry attributes rather

than JSP pages. Tapestry is potentially more efficient than JSF since it uses separate

processes to handle form submission as opposed to rendering a page with no user inputs.

Wicket was released in 2005 and can be characterized as a simpler, easier to learn version

of Tapestry.

Web Application Deployment – JA, JWS, ClickOnce

Java Applets inherit from java.applet.Applet or java.applet.JApplet. This allows

them to be displayed from within a browser as long as the Java Runtime Engine, JRE,

and a plug-in for the browser is installed. Applets are designed to be executed in a

sandbox preventing them from accessing local data, which makes them to safe to run

from unfamiliar web sites. Applets were popular initially when most browsers were

configured out of the box to run them. They fell out of favor in recent years when this

capability was removed from most browsers. Running applets on most browsers now

requires installing the JRE and additional software.

Java Web Start, JWS, is a newer technology designed to allow running standard

Java applications by clicking a link in a browser. Unlike applets, JWS programs do not

run within a browser. JWS provides a sandbox the applications run within; however

unlike an applet sandbox, it can be configured to be less strict and allow access to the

local computer's resources. JWS doesn't appear to be targeted towards the general

Internet, rather more towards an organization's private intranet where it could

significantly ease problems with distributing software to organization members.

ClickOnce is a Microsoft technology that is similar to JWS. It employs a code

security model protecting client computers from malicious actions and also allows

security to be configured to allow access to local resources on the computer.

All of these technologies should be covered in lecture. None of them are

particularly difficult to use, however lab restrictions on how much students can do with

security settings might make it difficult to make assignments with JWS and ClickOnce.

MICS 2008 203

Security

Digital signatures, DS, secure sockets layer, SSL, its successor, the transport layer

security, TLS and digital certificates, DC are security related network protocols that

should be covered at some point in the semester. Digital signatures typically use

public/private key encryption. The private key is used to encrypt the signature and the

public key can be used to verify the signature was encrypted by the user of the private

key. SSL and the newer TLS, which is similar to SSL, are used to encrypt

communications between a browser and web server. Both rely on digital certificates

provided by certificate authorities. This then allows a public private key style of

encryption between the server and client.

These topics belong in a Web programming class and are probably best worked

into lectures later in the semester.

Integrated Development Environments

The J2EE community can choose between many different integrated development

environment, IDE, choices. BlueJ is a free stripped down Java development environment

suitable for teaching entry level classes but probably not best for working on web

oriented projects. Eclipse and NetBeans are free, open source, full featured IDEs suitable

for large Java projects and also suitable for web oriented classes. WebSphere, JBuilder,

and Idea are proprietary Java development environments whose proprietary nature and

cost makes them less desirable than Eclipse and NetBeans.

For a yearly subscription of $30 to $50, MyEclipse puts together a best of breed

selection of Eclipse plug-ins. We have not contacted MyEclipse to see if they allow free

(or lower cost) academic use. It would be worthwhile to investigate this and to

investigate other free plug-ins that support Struts if you plan to use Struts in the class. It's

easy to convert any web project into a Struts, Spring, or JSF project using MyEclipse

tools. In addition, configuring struts-config.xml becomes a graphic point and click

operation instead of a file editing task.

In the Microsoft camp, choices are limited to Visual Studio or the unbundled and

free Express versions of the development tools included in Visual Studio. Microsoft

allows academic departments to join their Microsoft developers network academic

alliance, MSDNAA, at a yearly cost of $320 (first years cost $499), or on a three year

basis of $799 (first three years $1,025). With the MSDNAA faculty members and

students have permission to install Visual Studio and other Microsoft products.

Permission is also granted to install them in labs. An alternative is to use the free Express

versions of the software; however when working on web applications, the full featured

MICS 2008 204

Visual Studio available through the MSDNAA has features missing in Visual Web

Developer Express Edition and is recommended.

Ruby on Rails is fairly new and therefore available IDEs are still in the early

stages. A quick search turned up RadRails, RoRed, and the Ruby Development Tool

plug-in for Eclipse. All of these are free and potential class IDEs. We haven't worked

with any of them and can't make recommendations.

Proposed Class Outline

After identifying major web oriented technologies we're ready to propose what

we'd like to see in a web programming class covering the 16 weeks in a typical semester.

This schedule assumes the students have completed two programming classes and have

Java programming experience. If not, we recommend making week 4 an introduction to

Java programming and moving everything following week 4 back a week.

ASP.NET will be a Microsoft technology used in one programming assignment.

JSF is the current favorite in the J2EE world and is probably the best J2EE candidate for

in depth coverage. Arguments can be made for in depth coverage of Struts, Ruby on

Rails and any of the others. The important point is that some of the chosen framework(s)

supports MVC and highlights the differences between it, ASP.NET and the other

frameworks.

Prior to the first programming assignment, students should understand how

HTML forms submit data via the GET or POST methods. In the first assignment, an

initial page collecting user inputs will be submitted to the servlet (or if skipping servlets,

other type of server-side technology) and something will be done with the user inputs.

Perhaps store user inputs in a file or database (assuming JDBC has been introduced in an

earlier class)? And finally a response will be generated and sent back to the user's

browser.

The second assignment should use a different server-side technology (JSP in table

3) and illustrate passing values among pages using cookies or session variables. This is

the time to introduce techniques for creating login pages, preventing page caching, and

preventing access to pages requiring a login if not yet logged in.

The third assignment should focus on creating a MVC framework using a servlet

for the controller, POJOs for the model, and JSPs for the view. This will be done without

using an application framework like Struts or JSF.

The fourth assignment will use Struts, the fifth JSFs and the sixth ASP.NET.

Each of these assignments will be structured to highlight what its technologies add to the

previous server-side technologies. The advantages and disadvantages of Struts versus

JSF versus ASP.NET will also be highlighted.

MICS 2008 205

Week Topics Labs Programs
1 Protocols: TCP/IP, HTTP

2 Markup: HTML, CSS, XML Static Web Pages

3 Client-side programming

4 JavaScript JavaScript HTML Form/Servlet/JavaScript

5 Server-Side Web Processing Servlets

6 JSPs Multiple Page JSP Application

7 Web Servers Server Configuration

8 Web Application Frameworks Controller, POJO, JSP Application

9 Struts Struts Struts Application

10 JSF JSF

11 JSF JSF Application

12 ASP.NET ASP.NET

13 ASP.NET

14 ASP.NET Application

15 Web Application Deployment JWS/ClickOnce

16 Web Security

Table 3 – Suggested Class Outline

Conclusion

Selecting the content for a web programming class is easier when available

technologies are listed and then categorized. In addition to the eight categories we

identify, technologies within many of these categories can be broadly categorized as

those supported by Microsoft, those that are Java centric, and everything else.

The Java centric technologies are wide spread and attractive to computer science

curriculums since most computer science students have taken programming classes using

Java. In the "everything else" category, PHP, CGI/PERL, Ruby on Rails and more are all

widely used. Any of these could be substituted for JSP, Struts, and JSF as proposed in

the course outline.

We chose a mix of Microsoft and Java development environments for the

programming assignments in this class. Our students are familiar with Java (they will

have completed two Java based programming classes prior to taking this class) which

frees us to concentrate more on web aspects of programming rather than learning new

languages like PHP, or Ruby.

Most of our students have no experience with Microsoft’s languages and style of

programming coming in to this class. We include ASP.NET because Visual Studio and

ASP.NET are major players in the programming world and we believe our students

should be familiar with them. It helps that Microsoft’s C# language has a lot in common

with Java, allowing our students to quickly adjust to it. (We have verified this in .NET

electives we occasionally offer).

MICS 2008 206

Finally, technologies like AJAX or Flash might add some excitement to a web

programming class. We haven’t included them in the schedule, but are still considering

ways this might be done. Both of these technologies provide ways to make pages more

responsive and interactive and could add an element of fun into assignments.

We are hoping the output of the class will be students who have some proficiency

in creating web applications and who understand the tradeoffs is choosing web

programming technologies.

MICS 2008 207

Transversal Homomorphism and Orthogonal within
OR/MS/DS Tools into VB.NET 2005

Dr. Elias O. A. Tembe

Associate Professor

Department of Computer Information Systems

University of Dubuque

2000 University Avenue, Dubuque, IA 52001

Tel: 563-589-3681

Email: etembe@dbq.edu.

41th Annual Midwest Instruction and Computing Symposium (MICS)

The University of Wisconsin-La Crosse (UW-L)

La Crosse, Wisconsin.

April 11th-12th, 2008.

MICS 2008 208

mailto:etembe@dbq.edu

Title: “Transversal Homomorphism and Orthogonal within OR/MS/DS Tools into VB.NET 2005: Application of
Advanced Database Using Collections, Generics and Algorithms”.

Abstract.

BASIC programming language has gone through revolutionary reengineering process since 1963 as
software for decision support systems (DSSs), management support systems (MSSs), intelligent decision
support systems (IDSSs), and intelligent management support systems (IMSSs). The evolution has
resulted to the creation of one of the most dynamic and popular visual programming languages in the
21st century known as Visual Basic.NET 2005. VB.NET 2005 is both window and web applications. VB.NET
2005 is object oriented (OO), object oriented design (OOD), object centered approach(OCA) and object
event ‐driven (OED) language within the Visual Studio. NET. The following are some of the orthogonal
characteristic of VB.NET 2005 that are also shared by all: OO, OOD, OCA and OED visual programming
languages within the Visual Studio.NET: class, connectivity, navigability, inheritance (generalization),
polymorphism (specialization, many forms), attribution, aggregation, encapsulation, abstraction,
coupling, association, composition, relationship, cohesion, multiplicity, etc. It is important to note that
all these qualities are inherited from operational research, management science and decision science
(OR/MS/DS) tools. These qualities have significantly enriched the development of VB.NET 2005 as
OR/MS/MS tool. OR/MS/DS approach incorporates many concepts from wide a range disciplines of
study that are both quantitative (i. e, mathematics) and qualitative (linguistics especially natural human
spoken languages such as English).

However, the transversal homomorphism and orthogonal programming feutures within and from
OR/MS/DS tools into VB.NET 2005 are some of the most important variables contributing to the
emergence the dynamo of VB.NET 2005 within the Visual Studio. The cross and hybrid pollination of
features (i.e., symbols, functions, modules, structures, operators, data types, algorithms, iterations,
constructs, loops) within and from OR/MS/DS tools into VB.NET 2005 has empowered VB.NET 2005 to
compute from the simplest (analytic) to the most complex (simulated) mathematical problems for real
world modeling.

The proposition is that anatomy of VB.NET 2005 with over 2000 controls (objects, boxes, controls
images, pictures), that configurations(patterns) from OR/MS/DS tools, VB.NET 2005 has ability to
provide superlative computing techniques in such areas as: simulation(last resort, experimentation),
telecommuting, bioinformatics, artificial intelligence(AI) soft computing (SC), cyber security, audio,
multimedia, information assurance, biometrics, forensics, telecommunication(remote sensing such as
mobile or cell phone), teleconferencing, artificial intelligence,(AI), business intelligence(data mining,
data warehousing, data mart), networking and data communications, soft computing (SC), pervasive
computing, quantum computations (space computation), globalization (internalization), distributed
computing, etc. The paper brings the attention that many intelligent (intelligence, smart) tools have

MICS 2008 209

been fused into VB.NET 2005 since September 11, 2001. The tools have oxygenated the propensity of
VB. NET 2005.

The paper, however, contends that superior computational abilities of VB.NET 2005 have not been fully
liquidated. One of the areas VB.NET 2005 which has not been fully utilized for real world modeling is the
creation of advance data base with application of mathematical structures such as trees (special graphs).
The paper demonstrates how mathematical trees in conjunction with some of the most recent
developments in computer science such as collections, generics and exceptional handling are
synergistically interlocked within OR/MS/DS for the creation of the advanced database programming
within VB.NET 2005. Collections in other visual programming language such as C++, C# and Java, are
referred to as containers. Collections hold many functions (verbs, functions, modules), iterators
(references or pointers, links), libraries or packages, properties (adjectives), and overloading
(polymorphic) member functions. Collections and generics and exceptional handling are potentially
dynamic (late binding, vectors) for sorting, searching, filtering, clustering, and recursion of data.

The conceptual framework integrates concepts within the OR/MS/DS tools which are quantitative and
qualitative in nature. Philosophical issues which include moral, ethics, cognitive, and emotive are also
addressed. The impact of phenomenological issues as part of OR/MS/DS intoVB.NET 2005 is also
discussed. The tools used for presentation include: (1) PowerPoint for presentation (2) VB.NET 2005
Version 7 for programming using of data base collections (3) Pentium 1V as the hardware.

The epitome of the abstract is that BASIC (beginners all symbolic instruction code) which was for only
beginners has been cloned with features from many fields of OR/MS/DS, and has now become the
software for all types of end users as for multipurpose, multiprocessing, multiprogramming,
multithreading and multitasking functionalities for teaching , learning, training and conducting research .

Key words: Orthogonal, data mining, OOP, OOD, OED, IDSSs, DSSs, MSSs, IMSSs, Visual Studio.NET,
transversal, relation, relationship, homomorphism, normalization, collection, generic, container,
Iterator, tree, graph, composition, data structure, abstract data type, business intelligence, object
centered approach, abstraction, abstract data, user defined data type, late binding, vector, module,
phenomenology.

Introduction:

For nearly three and half decades, BASIC programming language has been evolving as one of the main
programming languages that can cater for all types of end users in computing in problem solving and
decision making process. At the present, BASIC continues to reengineered, metamorphosized and
ignited (igneous) as VB.NET 2005 has become one the most powerful and popular visual programming
languages on earth. The emergence of VB.NET 2005 as a tool with propensity to manipulate simple(
analytic) and complex (simulations) computation from is due to convergence of many variables. The
paper contends that there is a transversal homomorphism, isomorphism, homoemorphism,
diffeomorphism and integrated crossover of OR/MS/DS(quantitative and qualitative)tools, approaches
and methodologies such as: structures, functions(methods, verbs, subroutines, procedures, modules),

MICS 2008 210

patterns, operators, linguistics (grammar: verbs, adjectives, conjunctions, punctuations marks) into
VB.NET 2005 which were not embedded within BASIC.

Statement of the Problem.

The variables which have continued to contribute to the emergence of VB.NET 2005 as one of the most
superior, popular and dynamic(vectored) visual, object‐Event drive(OVD, object oriented design(OOD),
object centered(OC), and object oriented programming (OOP) languages have not been fully examined
and integrated. The merits of the transversal homomorphism, isomorphism, homeomorphism, and
orthogonal feutures within and from OR/MS/DS tools into VB.NET 2005 within the Visual Studio.NET
have not been fully liquated (realized).

The Purpose of the Paper.

The purpose of the paper is to present the variables which have made of VB.NET 2005 as the most
superior, popular, dynamic, visual and event ‐driven programming application software. The paper
further explains and demonstrates that there is dynamic transversal homomorphism and orthogonal
processing system within and from OR/MS/DS tools, approaches, techniques and methodologies into
VB.NET 2005 which continue to contribute to the power of VB.NET 2005. The paper also demonstrates
how VB.NET 2005(version 7) can manipulate from the simplest to the most complex OR/MS/DS
computations for real‐world applications such as the creation of advance data base systems using a
special a graphical topology (structure)referred to in this study as binary search and sort tree.

Hypothesis.

Ho: The merits of the transversal homomorphism and Orthogonal within OR/MS/DS Tools into VB.NET

2005(version 7) for advance database systems have not been realized.

H1: The merits of the transversal homomorphism and Orthogonal within OR/MS/DS Tools into VB.NET

2005(version 7) for advance database systems have been realized

Limitations of the Study.

The paper is devoted and limited to the following: (1)literature review from primary and secondary
sources (2)OO, ODA, OCA, OCA, and EDA systems, (3) use of Pentium IV as the hardware, (4) advance
object oriented relational database programming (OORDBMP) using VB.NET 2005 (Version 7) using
binary search sort tree as a special OR/MS/DS/(mathematical graphical topology), (5) Philosophical
issues (ethics, moral, cognitive, emotive) and phenomenological (lived experiences), economic, social,
etc. which have impact in OR/MS/DS especially computer science database systems are also
incorporated.

Conceptual Framework.

Many scholars such as (Dale 2003, Deitel and Deitel 2007, Malik and Sen 2004, Malik 2007) have written
on visual programming languages (VPL), OOA, OOP, OOD, and OOC. However, there is no integrated
conceptual framework that succinctly provides a holistic approach to show that there is transversal

MICS 2008 211

homomorphism and orthogonal coexistence between and amongst OR/MS/DS tools, approaches,
methodologies, and techniques into VB.NET 2005. The paper provides and recognizes: an enriched
integrated, synergized, symbiotic a approach of OR/MS/DS tools, techniques and methodologies
enriched VB.NET 2005. Figure 1 shows the hybrid and cross pollinated conceptual framework (
schematic diagram) used in this paper. The conceptual framework is dubbed as Integrated OR/MS/DS
Transversal Homomorphism and Orthognality into VB.NET (IORMSDSTMAOIVB.NET).

Homomorphism &
Orthogonality

 Arts

Humanities
 Science

Java

VB.NET

C++

C #

Visual Studio

Quantitative

Qualitative

 OR/MS/DS

Figure 1. IORMSDSTMAOIVB.NET Converged Approach

Assumptions.

The assumption are that: (1) research is worthwhile (2) the conceptual framework can be utilized for
programming for creating simple and complex computer programs (i.e. database, e.t.c) by many other
types of end users and stakeholders (researchers, students, project managers, leaders) within the field
of OR/MS/DS.

Methodology.

The study was conducted using literature review: (1) (primary and secondary sources, and (2) software.
The presentation is into two phases: (1) Microsoft Office PowerPoint 2007 and (2) Visual Studio.NET:
Visual Basic.NET 2005 (version 7) programming. Pentium IV is used as the main hardware. PowerPoint
2007 is used to provide explanation before the practical demonstration with VB.NET 2005(version 7).

Programming and Experimentation with Visual Basic.NET 20005(Version7)

Visual Basic.NET 2005(version 7, although currently there is Version 8) is used to demonstrate and show
a typical example of transversal homomorphism and orthogonal within OR/MS/DS tools, methodologies
and techniques into Visual Studio.NET 2005. VB.NET 2005.The program provides an excellent
mechanism for creating a library of collections of classes to handle storage and processing of data
advance database with binary search and sort tree. The demonstration shows and includes the following
key elements within the anatomy of program structure (code) for application of advanced database

MICS 2008 212

using: (1) data structure (2) abstract data types (ADTS) or simply data abstraction (3) collections,(4)
vectors (5) generics and (6) algorithms (7) comments or remarks (see the definition of terms). The
VB.NET 2005(Version 7) program code is however, encapsulated (hidden). The code is however, exposed
and explained during the presentation.

 Container Container

 Iterator Iterator

 Objects Objects

 Iterator

Algorithm

Algorithm

Algorithm

Figure 2 Containers (Collections), algorithms, and iterators

Source: Robert Lafore. Object –Oriented Programming in C++. Fourth Edition, 2005

Data structure refers to the process by which data or information is stored in the computer memory. In
C++, collections are known as containers within the Standard Template Library (STL) while in other visual
programming languages: VB.NET, C# and Java, the containers are referred to as collections. Collections
are ways data is stores in computer and organized in the memory of the computer which include
member functions for specific tasks. The type of collection used in this paper for demonstration belongs
to type of collection referred to associative collection. Associative collections are not sequential; instead
they utilize keys (primary keys) to access data. Typically keys are digits or string (words)which are used
to automatically and dynamically sort, search, filter and cluster the stored elements in a specified
organized order. In computer lingo, Generics are general (generalization) and dynamic concepts using
one method (function) for many variables. The print method () is a typical example of generics. The
term vector is OR/MS/DS especially in mathematics and computer science that refers to dynamic
arrays of arrays (late binding). A Vector shrinks and expands automatically while the program is
executing. Vectors with random access iterators can be plugged into any algorithm. Algorithms are sets
(arrays of arrays) of dynamic (vectors) and late binding instructions, methods, functions (methods)
procedures that are applied to containers to process data in various ways such as the use of sort (), copy
(), search () for data for solving problem and making decision (see Figure 2). In this paper algorithms

MICS 2008 213

are used as non member stand alone methods used for both the non‐discrete (analog) and discrete
mathematical (digital) computations. Iterators as used in this paper are like (cables, links, connectivity,
connections, wires) can be considered as smart pointers, intelligent, intellisense , points to, points at
inorder to connect or references on data or information “entry” in the collections. Algorithms use
iterators to act on objects in containers (collections. Iterators determine which algorithms can be used
with which collections and why it is necessary to do so such as efficiency of the algorithms Iterators also.
Iterators are elegant match appropriate algorithm and collections. Iterators can be also considered as
algorithms. Examples of iterators algorithms include: find (), input() reverse() , print(), merge()
forward(), begin() , random(), output(), read line(), write line(), copy (). It is important to point out
that VB.NET does not have pointers like C++ programming language but it has methods and algorithms
which act like pointers within the program code.

It is important to point out that the demonstration using VB.NET 2005 is the central purpose and theme
of the approach to show the transversal homomorphism and orthogonality of OR/MS/DS tools into
VB.NET

Research Questions.

The paper addresses the following questions: (1) What impact has transversal homomorphism and
Orthogonal played within OR/MS/DS tools into VB. NET 2005? (2) What are some real‐world application
of advanced database using collections, generics , iterators, vectors, and algorithms, and (3) What is the
future of VB.NET 2005 and other versions to be created?

Literature Review:

The real‐world modeling applications using object oriented tools is documented as old as ancient
civilization in the Indus valley, Mesopotamia (Tigris and Euphrates), Egypt (the Nile Valley), Yang-test-
Chinese Civilization, Greeks, Romans, Mayas, Incas, Maoris of New Zealand, the Aborigines of Australia,
Babylonians, Phoenicians, Medes, American Navajo Indians and other . The Egyptians developed great
pyramids based on integrated incorporated OR/MS/DS tools. The Egyptian writings were hieroglyphics
(picture writing, icons, graphs, charts, trees) using various tools(objects). In India the Alora and Ajanta
caves with old magnificent with pictures (images, icons) and many mathematical archictectural
designs(OR/MS/DS tools). American Navajo developed coding systems called "Code Talkers” which was
used during the World War II for security. The Code Talkers is an important real‐world applications
within database or information for encryption security (secrete communication, security, crytology).
Russell and Taylor (2007) comment that “history is full of amazing production feats –the pyramids of
Egypt, the Great Wall of China, the roads and aqueducts of Rome. Malik and Sen 2004 point out those
mathematical concepts which are discussed at length in programming recursion “represents work that is
under the way in the temple of Brahma. At the creation of the universe, priests in the temple of Brahma
were supposedly given three diamond pegs, with one peg containing 64 golden disks “. It is also
authenticated from theological and biblical literature that the children of Israel wanted a god they could
touch (Bible: Revised Standard Version).

MICS 2008 214

Figure 3 shows some examples of ancient civilization tools which have been integrated into
programming hieroglyphics.

Pyramids of Giza Egyptian Hieroglyphs Indian Temple

Babylonian Alphabet

Figure 3 Ancient Object Oriented Writings.

The objects used for many years have been translated to real‐world English application and some have
been imported and embedded into computer programming. Visual Basic.NET is one of the visual
programming languages which have been enriched by the transversal homomorphism of objects from
OR/MS/DS tools and techniques for real‐world application such as trees: binary search and sort trees for
advance data base applications.

It can be deduced that mankind: (1) is object oriented by nature from time immemorial, (2) loves,
appreciates and is motivated to work with tools that are visualize and touchable(tangible), (3) attracted
to images, icons, pictures, shapes, cards (game programming, Sudoku) , buttons, graphs, trees, circles,
oval, notations, symbols, volumes, dimensions, metrics, color, patterns, paints, and drawing, lines,
curves, tables(mathematical relations for row and columns), figures, structures, boxes , etc , such the
over 2000 tools which have been embedded into Vb.NET 2005 from OR/MS/DS tool, (4) appreciates
objects are aesthetic (I. e, specially spiritual), inspiring, in nature and intrinsic appealing (intrinsically,
intangible), (5) uses objects as tools relational for amusement and entertainment, and (6) innovates by

MICS 2008 215

using objects. The creation of VB.NET 2005 is the integrated innovation involving broad transversal
homomorphism and orthogonality within OR/MS/DS tools, methods, approaches and techniques.

It also interesting to note that there is trend in Europe for mankind to build pyramids to be cemetaries
for the burial of the dead like the Egytians did. This kind of is plan(strategic, tactical, operational),
philosophical(spiritual, emotive and cognitive) feeling and phenomenological though is intertwined with
the integration and utilization of OR/MS/DS tools including the creation of computer science systems,
hence tranveral homomorphism and orthogonality of knowledge.

Justification for Using VB.NET 2005

There are many the main variables and justifications contributing to the strong attributes of VB.NET
2005 powerful software of the 21st century within Visual Studio.NET: hence its selections as application
software for database using binary search graph(tree). The following are the variables and the
justifications for selecting and strength of Visual Basic.NET 2005 as tool for with OOEDRDBMSs binary
search and sort tree: (1) attractive and colorful (2) appealing (3) visual (4) easy to recognize and identify
(5) eye catcher (6) simplicity for programming (coding), (7) statements (clauses, functions, verbs,
modules) from one of the most powerful transform –oriented and declarative database software:
Structures Query Language(SQL)are embedded within VB.NET 2005. SQL contains statements and
clauses such as SELECT, WHERE, UPDATE, INSERT, DELETE, etc. which are useful OOEDRDBMSs. (8) more
visual than most software because it contains with over 2000 tools such as controls (boxes, buttons
images, picture, shape, lines, etc) for programming (9) user friendly and easy to program, (10) dynamic
or late binding (11) any type of end user (all beginners) can learn it (13) it is currently being developed
orthogonally by computer gurus to be at the same level with other visual programming languages.
(14)homomorphism of functions, operators into VB.NET 2005 from OR/MS/DS: quantitative disciplines,
namely: algebra, calculus, discrete mathematics, numerical analysis, and geometry such as: graphs,
predefined mathematical functions(i.e., cosine, sine, tangent, floor, ceilings), matrices, determinants ,
partially ordered sets (posets), congruence, summation, recursion, permutation, combinations,
forecasting techniques, counting techniques, strings(words), relations, Big‐O and theta notations, Venn
diagrams, ordered pair and Cartesian product, cardinality, functions (i.e, co‐domain, target, injection,
subjection)sets, sequences, series, vectors, paths, circuits , logic(negation, conjunction, disjunction,
implication, bi‐implication), constructs and loops(i.e, invariants), automata, probability and types,
conics, rational, logarithmic and exponential functions, equations and inequalities. Bridging
gap.(15)special functions and cardinalities such as inverse, restrictions, extensions, image, and pre‐
image, equivalent(equipotent), countable (16) mathematical domains such as discrete mathematics
which is a form an important is an important and integral part of computer science. It has rich collection
of structures which play an important part in programming visual Studio.NET hence VB.NET 2005
(17)counting principles such as union, intersection and Cartesian product of sets, Pascal’s triangle (18)
RSA cryptosystem named after Ronald Rivest, Adi Shamir and Leonard Adelman). (19)Sorting and
searching, filtering and clustering algorithms (20) Characteristics of object oriented concept :
composition, inheritance(generalization), polymorphism (specialization), coupling, cohesion, aggression,
attribution, association, relationship, encapsulation(hiding the information or data), abstraction (Malik
and Sen 2004, Deitel and Deitel 2006), (21) Homomorphism of functions from qualitative disciplines

MICS 2008 216

especially the English language in terms of terms of parts of speech (verbs, modules, subroutines) such
as main(). The qualitative verbs, adjectives (properties) include all the sorting and searching and
algorithms used for database .(22) VB.NET 2005 has been cemented as a strong programming language
that can handle simple and complex computations.(23) support of institutions of higher learning
(colleges and universities) by incorporating discrete mathematics and data structures ad algorithms
into the curriculum within the field of computer science and other scientific related courses and topics
and subtopics, (24) Support of software, network and telecommunications, data communication,
hardware and procedure specialists and all types of end users(stakeholders), (25) computer
globalization or internationalization(26) social and economic disparity between the have and have‐nots(
the have‐nots are looking for a software application system to meet the financial limitations). (27)
contains within it over 2000 objects (controls, boxes, buttons) which accommodate OR/MS/DS:
simple(analytic) and complex(simulation) and (28) The database systems developed by VB.NET
2005(version 7) meet the standard measuring litmus test and 12 Rules of relational database specified
by Edgar Codd and OOEDRDBMSs specified by Date’s Twelve Rules for a DBMSs (Connolly and Begg,
2005, Rob and Caronel, 2009). In summary, VB.NET 2005 is easy to create: develop, analyze, design (i.e,
reengineer), implement (code), test, and maintain and understand.

 Philosophical and Phenomenological Issues and Justifications for the Strength of VB.NET 2005.

There are six element s of computer elements: software, hardware, data, networks and
telecommunications, procedures, and people (peopleware). Most of the emphasis and attention
concentrates on software, hardware, data, network and telecommunications, and procedures. Tembe
(2006, Parker and Chase 1993), however, point out the most neglected and often forgotten (not given
much or serious attention) computer element is the peopleware. Parker and Case (1993) confirms “the
people component of management information systems is overlooked or underestimated”. The paper
supports that philosophical issues which include moral, ethics, cognitive, emotive, supernaturalism,
metaphysics are interlocked with creation of software such as VB.NET 2005. Figure 3 shows the
interrelationship of the philosophical and phenomological issues (lived experiences) which are
intertwined in the creating of software such as VB.NET 2005.

The rationale for including philosophical and phenomenological issues is because many outstanding and
distinguished scholars in discrete and non discrete mathematics have included the life histories
(autobiography) of pioneers in the fields of OR/MS/DS (i.e; mathematics and computer
science)autobiography and found out that their academic resumes include studies and preparations in:
ethics, moral study, philosophy, music, moral science, metaphysics, anthropology, history, theology,
religion , and others, Malik and Sen 2004, Rosen 2007, Knuth 1998). It is further interesting to bring out
that some of distinguished scholars in quantitative OR/MS/DS were deacons, priests and ministers of
the gospel of churches. Some of these fields play a significant role in computing soft computing(SC) and
artificial intelligence (AI), forensics, computer security and information assurance, encryption (i.e; RSA).
Rosen (2007) cites the famous mathematician prodigy Srinivasa Ramanujan that” he considered
mathematics and religion to be linked…an equation for me has no meaning unless it expresses a thought
of God”. As lover of music and pianist, the distinguished and exceptionally talented scholar (guru)
Donald Knuth views computer science as both an arts and science. Phenomenology is defined in this

MICS 2008 217

paper as lived experience approach which advocates that ideal objects(natural)such as numbers as
conscious life (cultural world) enable mankind to find the know. Many scholars confirm that
phenomenology has had impact on quantitative and qualitative approaches of many OR/MS/DS fields of
study especially: mathematics, medicine, biology, chemistry, nursing, law, political science, architecture,
philosophy(ethics, moral, mathematics, religion, philosophy, natural science, ecology, theology,
economics, sociology, anthropology, physics, computer science(technology), gender education, culture,
ethnicity, literature(linguistics), geography, psychology, dance, sports, music, education, theatre and
film as early as mid 1890.The paper contends that phenomenological view points have contribute to the
traversal homomorphism and orthogonality of OR/MS/DS tools for the creation and powerful
functionality of VB.NET 2005. Some of the recently integrated and emerging areas in computer science
such as bioinformatics, computer and ethics, cognitive computing and programming, SC, AI, computer
forensics(FC) and many others can be considered as the by products of the concept of phenomenology.

The integration of ethics and moral play an important part into real world situations (i.e, curriculum,
government control). For instance, The USA Congress, has enacted laws pertaining to ethical code of
conduct such as Sarbanese‐ Oxley 2002 and USA Congress Ethics Act 2007. Such acts are control the
unfair (moral, unethical), socially, economic, cultural irresponsible using mathematical and programming
(software) and hardware (technological computation for business transactions elements of computer:
software, hardware, people, data, procedures and documentation.

MICS 2008 218

Visual
Studio.NET

Visual
Basic.NET 2005

Economics

Emotive

Social Moral &
Ethics

 Religion

Personality

Globalization

Power

Attitude

Metaphysics

Values
& Law

Authority
& Control

Culture

Phenomenology

Cognitive

Figure 3 Integrated Philosophical and Phenomenological Issues into VB.NET 2005

 The creation of virus by an end user to destroy for instance database systems is certainly dependant on
how the end user ethically or morally views the side effects of the virus.

The paper argues that economic, social, geopolitical, internationalization (globalization), moral science,
cultural, theological and religious, etc, are intertwined with creation of programming due to the role
played by the various view points and concepts from disciplines. Synergistic dependency,
interdependency and intra‐dependent within OR/MS/DS tools help in with the creation of software
(software development life cycle (SDLC) or also called program development life cycle (PDLC) such as
VB.NET 2005 within Visual Studio.NET. In summary, the issues can be termed as external and internal
generators.

Justification for the Selection of Database Application.

Many prolific writers and scholars such as (Shelly, et. al. 2006] indicate clearly that many experts
“estimate that eighty percent (80%) of the world’s computer application are database applications”.

MICS 2008 219

Although in this paper, there is no research to support this high outlier. The paper asserts that almost
every one using computer system is involved in database application(s) consequently the percentage
should be higher than 80 percent. In this paper database is broadly defined as a tool for storing,
recording, retrieving, accessing, securing and protecting data or information using sorting, searching,
filtering, collections, generics, clustering, iterate, algorithms methods(functions) and techniques.
Database and information systems are expressed as collection of file of libraries (cabinets, banks,
drawers, file cabinet).

Binary search and Sort Tree and Justification for Database Systems with VB.NET 2005

This section of the paper is devoted to the justification for selecting binary search and sort. Connolly and
Begg (2005)assert that a tree pattern(topology) is utilized as data structure for data or information or
indexes for much database management system (DBMSs). Though there are many types of trees such as
B+ ‐ trees, AA trees, etc, used in computer science for real‐world modeling for data base, in this paper
however, binary search and sort tree has been selected and utilized as the main candidate tool. The
main justification of using binary search and sort tree include: (1) an excellent tool for nornamalization
within the database with VB.NET 2005, (2) suitability for sorting and searching, clustering, filtering,
thinning using techniques and algorithms(functions, modules) for simple and complex computations
which advance data base systems (3) wholly embedded with algorithms from the OR/MD/DS:
qualitative and well as quantitative techniques play a significant part in simple and complex database
systems other computer related areas such as networking, software engineering, web programming,
computer security, pervasive computing, (4) facilities duplicate elimination(no redundancy allowed at
the node by intrinsically comparing, for instance, the OR/MS/DS methods from qualitative discipline
(linguistics) such as: the insert ()method is has the propensity and responsibility to eradicate any data
that attempts to be duplicated by comparing similar values,(5) can be used as conceptual framework to
swap(), merge(), list () sort (), compare(), heapfy(), reverse(), (6) much faster and most efficient
than other searching techniques such as sequential. (7) suitable for fast sorting Savitch (2004) confirms
that sorting is the most widely encountered programming tasks, and certainly the most thoroughly
studied”.

The diagram in Figure 4 is an example that shows a pictorial (visual, object, icon, image) representation
of binary search and sort tree. In compute science, the root node is the special node of the binary
search and sort tree, and is drawn at the top instead of bottom up. The tree has specific two main
routing links by using arrows (iterators, connectivity): (1) lLink (left rotation) for left as the starting from
the node, (2) rLink(right rotation) for right connectivity and navigability. The operation starts from the
left then to right. The left to right decomposition and linking is in conformity to the how the computer
computes and manipulate data (left to right algorithm).

MICS 2008 220

 Binary Tree

Root

Top bottom bottom up Bottom up Actual modeling

Figure 4 Binary search and Sort Trees

In summary, the binary search and sort tree is a typical example of a dynamic graph which is applicable
for OOEDRDBMSs. The most profound advantage of binary search sort and tree is that it plays an
important role the normalization of database system (data redundancy) which is the crux of the matter
in creating a real‐world model data base application. In this paper, it is referred to as binary search sort
tree, instead of the usual binary search tree. The justification is that within the Visual programming
language(s)code, search and sort are used combined as word search sort() algorithms.

Search sort Binary Tree

YT

U
I

R

 Figure 5 provides an elaborate structure how a binary Search Sort binary tree is decomposed to depict a
typical logical sequence. Generally the most usual approach to apply binary search sort tree is to
traverse or to visit every node of the binary search sort tree. The traversal must start at the root node
because the reference of the root node. There are three main recursive algorithms utilized recursive :

MICS 2008 221

inorder sequence, preorder, and post order sequence. In Figure 5 shows the recursive sequence of
binary search sort tree:

 Inorder Sequence : T U T Y I

Preorder Sequence : R T Y U I

Post order Sequence : U T I Y R

It is important to note that before the implementation of binary search sort tree as ADT for database
system , the following sequential algorithms in a form of protocol have to be followed: (1) determining
to find out if the binary tree is empty (2)searching the binary search and sort tree for a specific entity ,
(3) inserting the entity in the binary, (4) deleting or removing an item from the binary search sort tree,
(5) finding the height of the binary search sort tree, (6) finding the number of nodes in the binary search
sort tree (7) finding the number of leaves in the binary tree (8) traversing the binary search sort tree (9)
copying the binary search sort tree.

Findings:

The following are the findings: (1) There is cross pollination of objects (notations, symbols, characters,
strings, modules, structures, patterns, objects) from OR/M/DS tools and techniques into VB.NET 2005
which continue to make it popular, (2) There is high demand of VB.NET 2005 by many types of users (3)
user friendly, less costly, graphical, and OOD, OOPL, OOCA, (4) support innovative (theoretical and
practical experimentation) of VB.NET 2005 by institutions of higher learning as a tool for teaching,
learning, and training has made it stronger, (5) Good programming in VB. NET 2005 embraces: mental,
moral, ethical, health, security and safety, legal, physical, affective, emotive, cognitive, psycho‐motor,
and spiritual domains for the success of the students in the real world now and future, (6) economic,
social, geopolitical, internationalization (globalization), moral science, cultural, theological and religious,
etc are interlocked, dependent, intra‐dependent and interdependent with the creation of VB.NET 2005 .
Succinctly the issues are interrelated are synergistic, dependent, interdependent and intra‐dependent
with and for the creation of VB.NET 2005, for the success of student(s) now and in the future for
learning, research and teaching, (7) The convergence, symbiotic dependency, understanding and
application of mathematics contribute significantly to the critical success factors of students today and
in future for problem solving and decision making process in real world application using VB.NET 2005,
(8) experts estimate that over 80% of the world’s computer application are database application;
therefore many types of end users globally continue to use VB.NET 2005 database application, (9) lack of
using integrated objects(boxes, images, icons, pictures, buttons, colors) such the ones used in VB.NET
2005 has the pull and inertia to discourage many learners to successfully enjoy programming, (11)
OR/DS/MS tools and techniques are the determinant that are significantly important for the
understanding of the dynamic VB.NET 2005 and other VB.NET 2005 (versions), (14) almost all fields of
study are now inevitably dependent on the use of mathematics and the use of technology computer
science, informatics) and computational functionalities and supporting devices (peripherals), (15)
philosophical issues such as ethics, moral, cognitive, emotive, metaphysics, moral science, etc; and how
and where they are interlocked within Datalogy (computing devices, computer science, informatics) and

MICS 2008 222

(16)mankind loves to model by using real‐world objects (icons, images, pictures). In VB.NET
2005(version 7) there are over 2000 objects intrinsic and extrinsic objects (buttons, controls, boxes,
images, pictures which) within VB.NET 2005whichare attractive for programming. (17) phenomenology
plays an important role in the creation of computer science systems especially database programming
languages.

Recommendations:

 End users intending to be majors and minors in computer science and related areas of study should
understand how OR/MS/DS(quantitative and qualitative) tools, techniques and methodologies are
homomorphism and orthogonal into programming language. An understanding of OR/MS/DS tools and
techniques such as discrete mathematics(basic and advance), data structures, data abstraction, linear
mathematics, calculus, numerical analysis are important for creation of advance database systems with
Vb.NET 2005 because even the understanding of Oracle 10g is dependant on OR/MS/DS tools such as
discrete mathematics properties, calculus, relational algebra and Java program a sibling of VB.NET 2005
within Visual Studio.NET .

Summary and Future Prospect of VB.NET 2005.

The transversal homomorphism and orthogonality within and from OR/MS/DS tools into VB.NET 2005
will continue to be re‐engineered. VB.NET 2005 will be recognized as one of the visual software with
“tsunami power” amongst the visual programming languages within Visual Studio.NET. The propensity
of VB.NET 2005 to manipulate simple and complex data and information for real‐world applications in
many such areas as: telecommunication(remote sensing, mobile or cell phone, mobile entertainment),
multimedia and hypermedia (sound, music, video), networking, web development, quantum
computing, teleconferencing, artificial intelligence(AI), soft computing(SC), forensics and biometrics,
bioinformatics, bioethics, pervasive computing, security ad information assurance (secret
homomorphism, secret sharing of data as the RSA), self healing programming within self care
computers, nano‐technology, supply chain such as radio frequency identification(RDFI), software
engineering, business intelligence (data mining, data mart, data warehousing), will continue to be
realized (liquidated). VB.NET 2005 will and continue to have impact on: learning, teaching and research
for problem solving and decision making process ranging from simple to complex manipulations and
computations. VB.NET 2005 will dominate: multiprocessing, multithreading, on‐line processing,
multiprogramming, and multitasking processing systems. VB.NET is no longer be limited in some areas
OR/MS/DS computing and non computing areas.

Definition of Terms:

The following are terms, concepts and their definitions as used in this paper.

Aggression is term used to describe the concept of an object being composed of other objects

MICS 2008 223

Cohesion. The term cohesion used for OOD application refers the class member very obviously and

clearly belongs to that class and not possibly to some other related class. Cohesion in reality is one of
the concepts of transversal homomorphism and orthogonality.

Coupling. As used within OOD, and Unified modeling language(UML), coupling is a term that refers to

the number of relationships one class has with another class. Coupling is in reality is one of the concepts
of transversal homomorphism and orthogonality .

Datalogy. Datalogy is integrated computer science or data processing approach in which creators (all

types of end users) associated with creation (development, analysis, design,
implementation and maintenance) of computer systems have to consider using holistic
approaches such as the by the transversal homomorphism and orthogonality within
OR/MS/DS into the software(i.e., VB.NET 2005) coined in this paper as Transversal
Homomorphism and Orthognality within OR/MS/DS Integration (THAO OR/MS/DS I). (see the conceptual
framework, Figure 1).

Diffeomorphism. In mathematic diffeomorphism applies to mapping (linking, bundling) amongst

diverse inverse. It helps to bundle (blend) . However, in computer science, isomorphism has real‐world
applications in relational object oriented database systems. Typical examples include Many‐to‐many
relationship, database mapping, quantum computing useful for physics for space exploration such as
NASA, computer security, database security, Artificial intelligence (AI), soft computing (SC).

Isomorphism. Isomorphism is a mathematical function (method, module, bijection) that links
sets or groups of objects (entities) with similar (equal) attributes(state, qualities and properties,
shape). However, in computer science, isomorphism has real-world applications in relational
object oriented database systems. Typical examples include One-to-One relationship, database

mapping. Isomorphism is another name for automorphism which is an object that automatically links it
self to another but still retains it all identify (attributes, properties and state).

Homomorphism. Homomorphism mathematical concept associated with an application where one

similar array are embedded, linked and mapped into another such in the form into Venn diagram where

characters have relationship, composition, encapsulation, polymorphism, inheritance. Homomorphism l is

most applicable when handling coordinates, vectors spaces, groups, and rings that have similarities of patterns or
configurations. In real world application. Homomorphism has application to many-to-many relationship,

one-to-one relationship and one-to-many relationship database systems which are also OOERDBMSs.

Homomorphism includes OR/MS/DS: mathematical concepts such as automorphism, isomorphism,

homeomorphism and diffeomorphism.

Homeomorphism. In mathematics, homeomorphism is bijection with link that is continuous at the same time,
the inverse is also continuous. Homeomorphism is applicable in many areas of computer science such
as: networking, relational database (the emphasis of the paper). Homeomorphism is apart of
homomorphism

MICS 2008 224

Orthogonal. Orthogonal is mathematical term and as used in this paper , it is a structure with portions

that are extended, shared and integrated with another element at right angles but in straight lines
perpendicularly. In geometrical mathematics, the term orthogonal is most applicable when handling
coordinates and vectors.

Transversal. Transversal is a mathematical concept used for real‐world geometrical applications using

a line or many lines (objects, drawings) to link, connect , cross, intersect two or more coplanar lines to
help create homogeneous solution(s).

MICS 2008 225

References:

Anderson, R. David, Sweeney, J. Dennis, Williams A. Thomas and Martin, Kipp. [2008]. An
Introduction to Management Science: Quantitative Approaches to Decision Making. Thomson
.South‐Western. Mason. Ohio.

Bible: Revised Standard Version.

Burden, L. Richard and Faires, J. Douglas. [2001]. Numerical Analysis. Seventh Edition. Brooks/Cole:
Thomson Learning.Pacific Grove, California. USA.

Connolly, Thomas and Begg, Carolyn. [2005]. Database Systems: A Practical Approach to Design ,
Implementation, and Management. Fourth Edition. Addison Wesley. London.

Curwin, Jon and Slater, Roger. [1996].Quantitative Methods for Decision. Thomson Press. Fourth Edition.

Bradley, Case Julia and Millspaugh, C. Anita. [2007]. Advanced Programming Using Visual Basic
2005.McGraw‐Hill. Dubuque.

Bradley, Case Julia and Millspaugh, C. Anita. [2006]. Programming in Visual Basic. Visual Basic .NET 2005
Edition. McGraw‐Hill. Dubuque, IA.

Dale, Nell. [2003]. C++ Plus Data Structures. Third Editon. Jones and Barlett Publishers. Boston.

Deitel, H. M and Deitel, P. J.[2006]. Visual Basic 2005: How to Program. Upper Saddle River. New Jersey.

Knuth, E. Donald [1997, 1997]. The Art of Compute Programming The Art of Computer programmong.
Volumes 1-2. Addison-Wesley Professional. New York.

Donald, Knuth. [1998]. Volume 3: Sorting and Searching (2nd Edition), 1998. Addison-Wesley
Professional. New York.

Droezdek, Adam. [2005]. Data Structures and Algorithms in Java. Thomson:Course Technology. Boston.
Massuchettes.

Gaither, Norman and Frazier, Greg. [2002]. Operations Management. South‐Western:Thomson Learning.
Cincinnati. Ohio.

Gaddis,Tony and Irvine, Kip. [2009]. Starting Out with Visual Basic. Fourth Edition Pearson:Addison
Wesley. New York.

Hiller, S. Frederick, Hiller, S. Mark and Lieberman, J. Gerald. [2007]. Introduction to Management
Science: A Modeling and Case Studies Approach with Spread Sheets Irwin Mc‐Hill. Dubuque, Iowa.

Malik, D.S and Sen, M.K.[2004]. Discrete Mathematical Structures:Theory and Applications. Thomson.
Course Technology.

MICS 2008 226

Lafore, Robert. [2005]. Object Oriented Programming in C++. Fourth Edition. SAMS. Indianapolis.
Indiana.

Larson , Ron and Hostetle, Robert. [2004]. College Algebra. Sixth Edition. Houghton Mifflin Company.
Boston.

Larson , Ron, Hostetle, Robert and Falvo, C. David. [2007]. Algebra and Trigonometry.Seventh Edition.
Houghton Mifflin Company. Boston.

Larson , Ron, Hostetle, Robert and Edwards, H. Bruce and Heyd, E David. [2006]. Calculus: With Analytic
Geometry. Eighth Edition. Houghton Mifflin Company. Boston

Parker, Peter and Chase, Thomas. [1993]. Management Information Systems: Strategy and Action.
Second Edition. McGraw Hill.NewYork.

Reeve, S. Carl and Reeve, M. J and Fees, E. Philip. [2005]. Accounting 22e. Thomson. South‐Western.
Mason, Ohio.

Ricardo, Henry. [2003]. A Modern Introduction to Differential Equations. Houghton Mifflin Company.
Boston.

Rob, Peter and coronel, Carlos. [2009]. Database Systems:Design, Implementation, and Management.
Eighth Edition. Thomson :CourseTechnology. Boston. Massachusetts.

Rosen, H. Kenneth. [2007]. Discrete Mathematics and Its Applications. Sixth Edition. McGraw Hill.
Dubuque. Iowa.

Russell, S. Roberta and Taylor, III. W. Bernard. [2007]. Operations Management. Upper Saddle River,
New Jersey.

Savitch, Walter. [2007]. Problem Solving with C++: The Object of Programming . Sixth Edition. Pearson:
Addison Wesley. New York.

Shelly, B. Gary,J. Thomas ,Cashman and Starks, L. Joy. [2006]. Java Programming : Introduction
Concepts and Techniques. Third Edition. Thomson. Course Technology. Boston, MA.

Shelly, B. Gary and Vermaat, E. Misty. [2008]. Discovering Computers. Course Technology: Cengage
Learning. Boston .Massachusetts.

Slack, M. James. [2000]. Programming and Problem Solving with Java. Brooks/Cole.Pacific Grove.
California.

MICS 2008 227

MICS 2008 228

PID Control in a Real-Time Embedded Systems

Programming Course

Joseph Clifton
Computer Science and Software Engineering

University of Wisconsin – Platteville
Platteville, WI 53818
clifton@uwplatt.edu

Abstract

The Computer Science and Software Engineering department at the University of
Wisconsin – Platteville offers a course entitled Real-Time Embedded Systems
Programming. The focus is on the development of software for real-time embedded
systems; however, we also provide considerable hands-on experience with the hardware.
Example topics covered include microprocessors, languages, environments, real-time
operating systems, simulators, emulators, timers, counters, digital I/O, ADCs, interrupts,
reliability, fault tolerance, concurrency, process scheduling, synchronization, and
communication.

About four years ago, members of our Advisory Board suggested that we add some
control theory to our Real-Time Embedded Systems Programming course. From an
electrical and hardware engineering perspective, control theory is typically covered in a
semester-long course requiring several electrical engineering courses as prerequisites.
For us to take such an approach was clearly infeasible. So instead, we focused on the
digital implementation of the Proportional-Integral-Derivative (PID) controller. This
paper discusses how we integrated PID control into the course.

MICS 2008 229

mailto:clifton@uwplatt.edu

1. Background

Most computers exist not on the desktop, but embedded in other devices. The computers
in embedded systems can vary from tiny microcontrollers with a small amount of
programming, as found in “low-end” toasters, to big computers running millions of lines
of code, as found in large switching systems. As such, the issues in development of
software for embedded systems vary greatly. Computer scientists, computer engineers,
electrical engineers, and software engineers all have a somewhat different view as to
what constitutes a course in real-time embedded systems. Such courses in electrical and
computer engineering departments usually emphasize the hardware aspects of embedded
systems. Software development is at best a secondary concern and usually done in
assembly language. On the other hand, computer science departments that offer such a
course tend to focus on the real-time theoretical aspects, in many cases to the exclusion
of hardware. [2]

1.1 Real-Time Embedded Systems Programming Course

The Computer Science and Software Engineering department at the University of
Wisconsin – Platteville offers a course entitled Real-Time Embedded Systems
Programming. The name is somewhat of a compromise since it is specifically meant to
convey the fact that the emphasis is on software development and not on hardware
development. The name is somewhat deceiving since much more than just
"programming" is covered. The course is taught as a senior-level course. The pre-
requisites are:

• CS/SE 2630 - Object-Oriented Programming and Data Structures II,
• CS/SE 3430 - Object-Oriented Analysis and Design, and either
• EE 3780 - Introduction to Microprocessors, or
• CS 3230 - Computer Architecture and Operating Systems

Typically, students have completed several other Software Engineering and Computer
Science courses. The students are exposed to a wide range of topics associated with real-
time embedded software development. A significant laboratory experience gives hands-
on exposure to the topics. The students are expected to use analysis, design,
implementation, and testing techniques learned in previous courses.

1.2 Platforms

One aspect of the course that distinguishes it from other such courses is the "evolution"
approach to the platforms on which the students are expected to develop. There are five
laboratory projects and one final project. Students start by using a very small PIC
microcontroller (1K ROM, 64 bytes RAM) and programming in its assembly language.
Next, they are given a PIC-C compiler, a bigger PIC (8K ROM, 368 bytes RAM) and

MICS 2008 230

significantly more challenging programs to develop. The students spend about seven
weeks with the PIC, doing four laboratory projects. After that, they switch to an 8051-
based microcontroller with 32K ROM and 32K RAM. They are given a C-based
development environment with a source-level debugger, including a hardware simulator
and target monitor. They are required to do a large-sized multi-tasking program using a
tiny Real-Time Operating System (RTOS) as their last laboratory project. For the final
project, the students use an XScale processor running the Windows CE operating system
and the .NET Compact Framework. It has 64 MB RAM, 64 MB ROM, a touch-screen,
Ethernet, USB, and plenty of I/O. The students do a real-time UML design using
Rational Rose and develop in C# using Microsoft Visual Studio .NET. Some sample
final projects include an ATM, RFID cash register, milking parlor control system, sign
language interpreter, automatic bowling score keeping system, and sales and inventory
tracking system. There are multiple delivery dates for the last laboratory project and the
final project, and these dates are interspersed over the last eight weeks of the semester.

1.3 Topics Covered

The topics covered in the course come from several areas. They roughly fall into three
(somewhat arbitrary) categories: Overview, Practical, and Theoretical. [2]

The “overview” topics are those that generally include a listing of instances, brief
discussions, and comparisons and contrasts. The students get laboratory experience only
in a small number of the instances of a given topic. For example, the students will only
use four different processors. The course gives an overview of:

• Real-time and embedded system examples
• Special considerations required for embedded systems development
• Processors and systems
• Development languages
• Development environments
• Platforms and platform standards
• Real-time operating systems, real-time kernels, and tasking shells

The “practical” topics are those for which an overview is also given; however, the
students get more comprehensive laboratory experience. The practical topics generally
include hands-on experience and considerable experience with the hardware. It should
be noted, however, that this is not done at an electrical or computer engineering level.
The practical topics include:

• Debugging tools, such as simulators, emulators, ROM monitors, and target
debuggers

• Program loading: RAM, ROM, EEPROM, flash
• Timers, counters, interrupts, watch dog
• I/O: memory-mapped, port, DMA

MICS 2008 231

• Device drivers, UARTs, SPIs, PPIs
• Interfacing and communications

Theoretical topics are those that are primarily software in nature and are generally
hardware-independent. These topics allow traditional computer science material to be
applied to the unique problems of embedded systems software development. With the
exception of the last one, such topics are those that can be found in a text like [1]. The
theoretical topics include:

• Reliability, fault tolerance, exception handling
• Concurrent programming, tasks, threads
• Synchronization and communication
• Process and resource scheduling
• Resource control: semaphores, monitors
• Device and inter-processor communications: buses, networks
• Real-time UML and object-oriented design of embedded systems

1.4 Software Engineering Principles

Software engineering principles are stressed throughout the course. Software quality
notions such as survivability, safety, and fault tolerance are discussed in lecture. Tools
and environments, including tool analysis, selection, and operation are covered. For the
laboratory component, students work in small groups for three of the projects. Some
projects require the students to turn in requirements and design. Students are expected to
adhere to good modularity principles in all the languages that they use. Coding standards
are enforced. Methodical testing of functions, modules, methods, and objects is
expected. Note that given the use of multiple platforms, one measure of how well the
students have applied these principles is how easily their designs port to the next
platform. Students are required to produce project plans, test documents, use version
control, and log time spent on group projects.

2. Control Theory

About four years ago, members of our Advisory Board suggested that we add some
control theory to our Real-Time Embedded Systems Programming course. Our initial
reaction was that our course is already very challenging and there is not room to cover
another topic. The topics listed in Section 1.3 tend to fill the entire semester. However,
the advisory board members represent companies that hire our graduates, so it was
important that we attempted to cover the topic somehow.

From an electrical and hardware engineering perspective, control theory is typically
covered in a semester-long course requiring several electrical engineering courses as
prerequisites. For us to take such an approach was clearly infeasible. So instead, we

MICS 2008 232

focused on the digital implementation of the Proportional-Integral-Derivative (PID)
controller.

2.1 Control Theory Coverage

The PID control material discussed in the following section is covered in one lecture
period. After that, the students are expected to apply it to the last laboratory project,
which is implemented on an 8051-based microcontroller with a small RTOS. This
project was a natural place to incorporate the PID control topic. The students choose
their final project, so requiring it to be part of that project would not guarantee a thorough
experience. The PIC controller’s limited memory implies those laboratory projects are
necessarily limited in scope. Typically, PID control is only part of a given application, so
incorporating it into the laboratory project that uses multitasking is a good fit.

2.2 Proportional-Integral-Derivative Control Theory

A PID controller takes a measured value and a desired value as inputs and produces a
correction value as an output. It uses the instantaneous error, which is the difference
between the desired value and the measured value. For example, if the desired voltage is
3.5V and the measured voltage is 4.0V, then the instantaneous error is -0.5V. The value
to be controlled can be almost anything, such as temperature, pressure, current,
revolutions per minute, gallons per second, etc.

The correction value is applied to the controlling device. For example, the correction
value may be the Pulse-Width Modulation (PWM) output that controls a motor or the
amount to turn a valve to slow the flow of a liquid.

The PID control algorithm determines the correction amount using the sum of one or
more of three calculations, assuming execution of the control loop at fixed intervals:

• Proportional – constant times instantaneous error
• Integral – constant times sum of instantaneous errors
• Derivative – constant times the change in error

A PID control loop is generally set up to cycle at precise time intervals so that time
calculations for the integral and derivative terms can be incorporated into the PID
constants.

Coming up with the constants is referred to as “Tuning the PID loop”. “The nice thing
about tuning a PID controller is that you don't need to have a good understanding of
formal control theory to do a fairly good job of it. About 90% of the closed-loop
controller applications in the world do very well indeed with a controller that is only
tuned fairly well.” [3]

MICS 2008 233

2.2.1 Proportional

The proportional term is the easiest of the three PID terms. It is simply a constant times
the instantaneous error. It is most likely what one would attempt to use if they had no
knowledge of control theory. In fact, for some systems, using only a proportional term
will produce reasonable results. However, the convergence from the actual value to the
desired value often suffers from a couple of problems if only a proportional term is used.
If the constant chosen is too small, it can take a long time to achieve the desired value. If
the constant is chosen too large, there is a tendency to overshoot the desired value. A
strong overshoot that continues to travel back and forth is known as ringing. [3]

2.2.2 Integral

The integration term is a constant times the sum of the instantaneous errors. Technically,
because it is an integral, each sum factor should be multiplied by the time interval over
which the current measurement and the previous measurement took place. In practice,
the PID control loop is driven at a constant frequency so that the delta time factor is a
constant and can be rolled up into the integration term constant.

The integration term is responsible for smoothing out the error over time. It can be
thought of as the ‘history” of the error. For example, suppose that the actual value is
below the desired value. The longer the actual value stays below the desired value, the
larger the integration term grows. The integration term starts to decrease once the actual
value overshoots the desired value. However, since the integration term is still positive
once this happens, the tendency of the proportional term to drive the system to an
overshoot on the other side and/or a ringing state is diminished.

In practice, the integration term can often grow to very large positive or negative values.
Therefore, the integration term is typically restricted to a range that is generally
symmetric about zero, that is, it is restricted to a maximum absolute value. So besides
coming up with an appropriate integration term constant, use of an integration term also
requires the choice of limiter constants.

The integral term is rarely used by itself and is usually used in conjunction with the
proportional term. A PID controller that only uses the proportional and integral terms is
appropriately referred to as a PI controller. Reference [3] makes the following claim
about the time sample accuracy needed for a PI controller:

“Because the integrator tends to smooth things out over the long term you can get
away with a somewhat uneven sampling rate, but it needs to average out to a
constant value. At worst, your sampling rate should vary by no more than 20%
over any 10-sample interval. You can even get away with missing a few samples
as long as your average sample rate stays within bounds. Nonetheless, for a PI

MICS 2008 234

controller I prefer to have a system where each sample falls within 1% to 5% of
the correct sample time, and a long-term average rate that is right on the button.”

2.2.3 Derivative

The derivative term is a constant times the change in error. Technically, because it is a
derivative, the term should be divided by the time interval over which the current
measurement and previous measurements took place. In practice, the PID control loop is
driven at a constant frequency so that the delta time factor is a constant and can be rolled
up into the derivative term constant.

The derivative term gives the instantaneous rate of change of error. It can be thought of
as the “slope” of the error function, that is, as an estimate of future error. As the actual
value initially moves towards the desired value, the proportional and integral terms will
have the same sign but the derivative term will have the opposite sign. For example, if
the current error is 10 and the previous error is 20, the derivative term will be -10 times a
constant. This helps lessen the overshoot that can occur from the other two terms. Note
that if the desired value is fixed, then the change in error becomes the difference between
the previous actual value and the current actual value, and in this case, the derivative
term is how fast the actual value is changing, that is, a prediction of the next actual value:

 (Desired – Current) – (Desired – Previous) = Previous - Current

The derivative term tends to be the most difficult of the three. As stated in reference [3]:

“Differential control is very powerful, but it is also the most problematic of the
control types presented here. The three problems that you are most likely going to
experience are sampling irregularities, noise, and high frequency oscillations…
When you use differential control you need to pay close attention to even
sampling. I'd say that you want the sampling interval to be consistent to within
1% of the total at all times-the closer the better.”

2.3 Proportional-Integral-Derivative Control Algorithm

Assuming that the PID loop is executed at a constant rate, the PID control algorithm is
surprisingly simple:

 currentError = desiredValue – currentValue
 pTerm = Kp * currentError
 iSum = iSum + currentError
 if iSum > iSumMax then

MICS 2008 235

 iSum = iSumMax
 elsif iSum < iSumMin then
 iSum = iSumMin
 iTerm = Ki * iSum
 dTerm = Kd * (currentError – previousError)
 previousError = currentError
 controlOutput = pTerm + iTerm + dTerm

The developer is responsible for choosing the three PID constants Kp, Ki, and Kd, and
the integration limiters iSumMax and iSumMin.

3. Project Description

As stated in Section 2.1, PID control was incorporated into the project that uses the 8051-
based microcontroller and a small RTOS. The author chose to use a simulated analog
device to control. This gave a cheap and easy way to introduce PID control. What
follows is part of the description of the project given in the spring of 2007.

Implement a feedback loop to control a simulated analog device. The output of the
device is an analog signal in the range of 0 to 4 volts. The output voltage is controlled
via four discrete inputs (connected to 8051 outputs) whose functions are:

1. Decrease the voltage relatively quickly
2. Increase the voltage relatively quickly
3. Decrease the voltage slowly
4. Increase the voltage slowly

Writing a one activates an input, writing a zero deactivates it. For the "relatively
quickly" inputs, the longer a one is written, the faster the rate of increase or decrease.
The result of writing ones to multiple inputs is unspecified.

The feedback loop must drive the current output reading close to the desired output
reading in a "timely" manner. When the current output reaches the desired output, it
must be relatively stable and cannot bounce around much. You must use a PID loop as
discussed in class.

You must have an LCD display as follows:

 column 0123456789012345
 R:r.rrr NNNN
 D:r.rrr

The actual reading (from the ADC) is on the first row. It is displayed as a floating-point
number to three decimal places, even though that accuracy cannot be achieved. The 8051

MICS 2008 236

boards have 10-bit A/Ds. I have connected the reference ground and reference voltage
to 0 and 5 volts, respectively. The value to display is: 5.0 * ADC_value / 1024.0

The NNNN field is the integer value sent over a serial channel. It is only for display. It
cannot be used in any calculations or the PID loop. The desired reading is displayed on
the second row, again as a floating-point number to three decimal places. It is based on
keypad inputs from the user corresponding to the following keys:

 1. Increase desired by 1.0
 2. Increase desired by 0.1
 3. Increase desired by 0.01
 A. Increase desired by 0.001
 4. Decrease desired by 1.0
 5. Decrease desired by 0.1
 6. Decrease desired by 0.01
 B. Decrease desired by 0.001

Ignore the rest of the keys. Be sure to cap all desired values between 0.0 and 4.0.
Update the display after each key press.

The serial data from the PIC is sent at 9600 baud, 8N1, not inverted. The target debugger
uses the serial port on the 8051 board, so you must write a software serial driver that
implements a handshake with the simulated device. When it is time to read and display
serial data, enable external interrupt 0 (which is Port 3, pin 2) and then put a one on the
serial enable pin (Port 3, pin 3) which will signal the PIC to send the serial data. Reset
the serial enable to zero after the first bit arrives. When the interrupt for the start bit
occurs, disable external Interrupt 0 and then enable Timer1 and its interrupt to read in the
bits. Each bit occupies 104 microseconds. Sample approximately in the middle of each
bit. The 8051 is clocked at 10 KHz, but it takes six clocks for each instruction cycle.
Therefore, each instruction cycle is 0.6 microseconds. Each tick of Timer 1 is one
instruction cycle.

The serial port data occupies two bytes, representing one 12-bit unsigned number. The
format is:

 first byte: 10xxxxxx, where xxxxxx are the low 6 bits of the data
 second byte: 01xxxxxx, where xxxxxx are the high 6 bits of the data

The bits are sent little endian (low bit first). Not counting the first start bit, you need to
read 18 bits: 8 bits for the low byte, a stop bit, a start bit, and 8 bits for the high byte. If
the high two bits of either byte are not correct, toss the data and display 9999 on the
LCD. You must account for the possibility that the serial input wire could be broken.

You will be using the C515C boards, RIO MP boards and Keil uVision2 C. You must
use RTX 51 Tiny. Besides the main task, you must have at least four other tasks that:

MICS 2008 237

1. Reads the voltage from the ADC - used in PID calculations and for display
2. Gets serial data and displays it, and also displays the ADC voltage reading
3. Handles reading keys and updating desired voltage
4. PID Control - attempts to drive actual voltage to desired voltage

Note that you will need semaphores to guard the LCD, current reading, and desired
reading.

4. Conclusion

The laboratory project has been a good way to introduce the students to some control
theory. By using a simulated device, the author can change the characteristics of the
device as well as the control inputs, assuring that the control constants do not migrate
from semester to semester. The group that produces the best results is awarded a few
extra points, which helps assure that the constants do not migrate between groups.

One improvement that could be made to the coverage of PID theory is that different
methods of tuning could be discussed. Currently, the students are given little guidance
on this beyond the suggestion to use trial and error, and to consider the output “units” to
help judge the size of the coefficients. If the author chooses to cover tuning techniques in
the spring of 2008, they will be discussed at the presentation.

References

[1] Burns, A. and Wellings, A, Real-Time Systems and Programming Languages,

Addison-Wesley, 2001.
[2] Clifton, J., "A CS/SE Approach to a Real-Time Embedded Systems Software

Development Course", SIGSCE Bulletin, Volume 33 Number 1, March 2001, pp.
278-281.

[3] Wescott, T., “PID Without a PhD”, Embedded Systems Programming, October 2000.

MICS 2008 238

Simulation of & Development of a
Range Control Center Information Display System

For UAS Operations in North Dakota

Ron Marsh, Ph.D.
Steve Buettner
Kirk Ogaard

Computer Science Department,
University of North Dakota

Grand Forks ND 58203
rmarsh@cs.und.edu

steven.buettner@und.nodak.edu
kirk.ogaard@und.nodak.edu

John Nordlie
Regional Weather Information

Center,
University of North Dakota

Grand Forks ND 58203
nordlie@rwic.und.edu

Abstract

The University of North Dakota (UND), in cooperation with the Federal Aviation
Administration (FAA), is developing airspace within the state of North Dakota where
unmanned air systems (UASs) can be tested/operated without the need for an on-board
sense and avoid system or temporary flight restrictions (TFRs). The Computer Science
Department has been tasked with developing a majority of the system software, including
an airspace simulation and the range control center (RCC). Microsoft’s Flight Simulator
X was selected as a cost-effective solution for the airspace simulation, while OpenGL
was selected for development of the display system. Since the Air Force wants UND to
explore “new” ideas for information display systems (IDS), replication of an existing
ATC system was deemed unsuitable. Thus, the UND RCC IDS is being designed from
“scratch.”

This paper provides an overview of the proposed system and the requirements and design
of the RCC IDS.

MICS 2008 239

mailto:steven.buettner@und.nodak.edu

1. Introduction

The University of North Dakota, in cooperation with the Federal Aviation
Administration, is identifying airspace within the state of North Dakota where
organizations interested in developing UASs can test/operate their systems without the
need for an on-board sense and avoid system. Taking advantage of a relatively low
population density, UND and the state of North Dakota are working to provide more than
13,000 square miles of airspace suitable for all manner of UAS operations without the
need for implementation of temporary flight restrictions (TFRs).

Unmanned aerial systems (UASs) offer a unique range of features. Their small size and
weight create lower manufacturing and operating costs; this also allows them to stay aloft
for long periods of time. With no pilot on board UASs can be used in dangerous
situations or for very routine and mundane operations. While the military applications of
UASs are obvious, there are also many commercial applications that are being explored
as well. In September of 2001 a proof of concept flight of a Pathfinder-Plus UAS over a
plantation in Kauai, Hawaii was done to collect digital imagery indicating the ripeness of
coffee beans [1]. In another proof of concept application a UAS was used to fly over the
five thousand acre San Bernabe vineyard in Monterey County, California. The UAS was
equipped with an infrared imaging system that was able to determine frost conditions in
the vineyard and report them to a control station [2].

However, flying UASs in National Airspace can be problematic as current FAA
regulations are not applicable to unmanned aircraft [3]. Therefore operations are limited
to a lengthy Certificate of Authorization process that requires the UAS pilot to reliably
see-and-avoid other air traffic in the area of operation [4]. There is also the issue of safety
that UAS operators must contend with. A prior analysis of ground and midair collision
risk found that most UAS operations would not meet FAA target levels of safety without
the incorporation of a mitigation strategy. Mitigation techniques being considered include
operating restrictions, mission scheduling, fault detection and accommodation, path
planning and execution elements with a focus on emergency scenarios; including and not
limited to collision avoidance and forced landings [5].

The John D. Odegard School of Aerospace Sciences, with funding from the United States
Air Force UAV Battle Lab, is developing a ground-based ganged phased array radar
system capable of detecting low observable aircraft such as sailplanes and hot-air
balloons and is developing the software to optimally display the information to range
controllers and operators of UASs. While previously available ground-based radar
systems have not been sufficient for the Federal Aviation Administration to approve their
use for airspace de-confliction mitigation, this system will employ new technology that
will enable UAS operators to see potential conflicts before they become a problem and
safely maneuver their craft away from non-cooperative aircraft. Sophisticated algorithms
are being developed to determine optimum scan patterns, rates and data assimilation to
provide the most comprehensive "picture" of the operating environment.

Funding of the program will allow UND to develop a comprehensive system that

MICS 2008 240

incorporates all available data into the big picture. Ultimately, UND hopes to provide an
interim mitigation strategy to allow UAS research and development outside restricted
airspace thus aiding the Federal Aviation Administration in its efforts to develop
appropriate regulations relating to UAS operations and certification.

2. Background

There are many challenges to developing a comprehensive system for managing the
airspace. The biggest challenge is that the ground-based radars are not yet in-place, yet
we must forge ahead with the development of the RCC IDS and related system software.
Thus, we have turned to software to simulate the expected environment. Several software
simulations have been developed, including a radar simulation, a network simulation, and
an airspace simulation. Of interest here is the airspace simulation. The airspace
simulation must model the flight characteristics of the UASs, the airspace, and manned
air traffic. The cost of developing such a simulation package must also be considered. We
investigated several UAV/UAS simulation packages for potential applicability and found
that Microsoft’s Flight Simulator X (FSX) was the most cost-effective solution for the
airspace simulation for our application, while OpenGL was selected for development of
the RCC IDS.

2.1 UND Risk Mitigation Architecture

The prototype architecture for the UND risk mitigation system is shown in figure 1. The
core of the system is the three ganged phased array radars. Conceptual plans are to locate
the radars in Park River, Nekoma, and Lakota ND, forming a triangular shaped airspace
as shown in figure 2. Data from the radars and an ADS-B receiver would be fused and
forwarded to the RCC (location TBD). Data from a weather station located at the UAS
operations airport and Doppler weather radar would also be forwarded to the RCC.

MICS 2008 241

Figure 1. UND risk mitigation prototype architecture.

MICS 2008 242

Figure 2. UND risk mitigation study area.

2.2 UND FSX Simulation Facility

Our primary task was to develop an FSX simulation of the airspace that included a
human-controlled unmanned aircraft (in our case a UAS), several manned aircraft

MICS 2008 243

(varying from private aircraft to commercial), and an air traffic control center (ATC). To
accomplish our task, we installed Microsoft XP and FSX on three computers connected
by Ethernet, as shown in figure 3. The intent was to operate FSX in multiplayer mode and
have the leftmost computer generate the artificial intelligence-controlled manned aircraft,
the center computer act as the ATC, and the rightmost computer support the human-
controlled unmanned aircraft (note the joystick in figure 3). However, when operating
FSX in multiplayer mode the ability to create artificial intelligence-controlled aircraft is
disabled. Fortunately, Microsoft has an extensive suite of tools included with the FSX
deluxe edition and we were able to use the SimConnect API to create the artificial
intelligence-controlled manned aircraft while operating in multiplayer mode. Using
multiplayer mode with FSX, we are able to recreate a good rendition of the airspace.

Figure 3. Phase 1 UND FSX simulation facility.

The first task in using SimConnect is to create the aircraft by calling a function named
SimConnect_AICreateNonATCAircraft. This function requires a SimConnect handle and
the name of the type of aircraft created, such as a Douglas DC-10 or Mooney Bravo. An
initialization structure called Init requires an initial longitude, latitude and altitude for the
aircraft. The second step in the process is setting up the flight plans for each of the
aircraft. These plans are sent using a SIMCONNECT_DATA_WAYPOINT structure as
an array. Each element in the array contains latitude, longitude, altitude, and speed in
knots. A flag is also used that will allow the speed of the aircraft to change; another flag
will make the plane loop back to the first waypoint. After the points have been entered

MICS 2008 244

into the SIMCONNECT_DATA_WAYPOINT array, the data must be passed to a
function called SimConnect_SetDataOnSimObject. The third step is to use the
MyDispatchProcSO function to connect to FSX to create the aircraft and load the flight
plans.

For demonstration purposes, we also incorporated a model of the RQ-1 Predator UAS
into FSX. The core of the model was purchased on-line. However, we encountered
several problems with the model as the gMax modeling and rendering software and its
FSX development plugin were not entirely compatible. Thus, the instrument panel does
not render correctly. However, we did get the resulting model files integrated with
aircraft performance and definition files to create a usable RQ-1 Predator simulation for
FSX.

Using FSX in multiplayer mode we are able to recreate a good rendition of the airspace.
However, the value of FSX can only be fully realized if we can extract the FSX airspace
information and send it to the Linux-based RCC IDS. Thus, we must derive some
mechanism for extracting second-by-second aircraft information (location, altitude, etc)
from FSX such that it can be sent via a socket to the under-development Linux-based
RCC IDS. To date, we have been only marginally successful at this task and we have
begun to also consider using Flight Gear (open source, but not as capable as FSX) for the
airspace simulation.

RCC IDS

The design of RCC IDS is not as obvious as one might think as there is no one model to
follow. As a 2004 DOT/FAA technical report sites [6], there are several different types of
IDSs in use throughout the FAA’s ATC facilities: towers, Terminal Radar Approach
Controls (TRACONs), Air Route Traffic Control Centers (ARTCCs), and Flight Service
Stations (FSSs) all have different IDSs. The variety of IDSs may be expected given the
variety of tasks each FAA facility is expected to perform, however what is not expected
is that supposedly identical IDSs have different interfaces depending on who the
contractor was. Yet, one can argue that is to be expected given the work of Nielsen [7]
who concluded that “No design standard can ever specify a complete user interface” and
the work of Ahlstrom and Longo [8] who point out that the same (interface) standard may
be implemented in a variety of ways.

Given the lack of a uniform IDS model and the unique requirements of UND’s RCC IDS
(as understood at this time: a 3-D display with the ability to rotate the view, the ability to
predict flight paths for advanced deconfliction alerts, the ability to overlay Doppler
weather radar, the use of MIL-STD-2525B Change 1 or NATA Specification APP-6A
military symbols, the ability to incorporate ADS-B data and/or FAA air traffic data, and
the ability to graphically show UAS operational boundaries), it seems prudent to design
an IDS from first principles using a spiral model (such as Boehm’s) where the IDS
designers can work directly with those developing the rest of the system and with those
who will use the resulting IDS.

MICS 2008 245

Using the 2004 DOT/FAA technical report as a guideline, we see that an IDS should be
well organized and that organization of the information and controls greatly affects the
operator’s ability to effectively use the system. The IDS must be navigable and
consistent. The IDS should clearly indicate when pertinent information was last updated.
Information displayed should be complete and relevant. Use of color and color
combinations should be consistent. Buttons should be represented in shades of gray and
use a consistent font size and font type. Hardware selection is also an important issue as
the use of a keyboard for any required data entry should only be provided to operators
who have the authority to enter data. The use of a mouse or trackball versus a touch
screen display has advantages and disadvantages. Both facilitate interaction with the IDS.
However, use of a mouse/trackball requires the operator to coordinate the position of the
physical device with the icon on the screen and when used with multiple displays the
operator can momentarily loose track of the icon during the screen-to-screen transition.
Use of a touch screen can be problematic if the screen has a low touch resolution. Use of
a touch screen also requires some form of adjustable mounting as the operator’s arm will
fatigue. Use of a touch screen also requires frequent cleaning to remove fingerprints
which obscure information. The report indicates that touch screen users often preferred to
use a trackball over their finger/stylus or a mouse. Screen size and resolution must be
sufficient to clearly display the relevant information.

We have also investigated the use of color for altitude representation and are considering
the work of Johnston, Horlitz and Edmiston [9] whose 1993 paper concluded that color is
better than achromatic for altitude indication and that both discrete color bands or
continuous color bands were applicable (depending on the situation/application). We
have also reviewed the work of Xing [10] whose 2006 report cites the non-standard use
of color schemes by the different manufacturers of ATC displays and whose report
proposes guidelines for use of color in IDSs such as:
• Use color to capture attention. However, the effectiveness of color in this manner is

highly dependant on the luminance and chromaticity differences of the colors used
(i.e. how reliably and quickly can the colors on the screen be named) and on the
consistent use of specific colors to represent specific situations across all components
in the IDS.

• Use color to identify certain types of information to improve the operator’s
effectiveness in retrieving relevant information in complex/cluttered displays.

• Use color to segment complex display scenes to organize/cluster related information.
However, in some cases segmentation is better achieved through a reorganization of
the display.

However, there are also potential negative effects of the use of color:
• As the number of colors used in the IDS is increased, their effectiveness diminishes.
• Multiple colored objects that require attention should not be onset simultaneously

within the visual field.
• Colors should be used in accordance with controller’s experience.
• The luminance contrast between text and the background must be considered

regardless of the desire to use color.

MICS 2008 246

• Color alone should not serve as the sole method to convey meaning.

We are currently developing a prototype RCC IDS that renders the applicable airspace in
2-dimension (figure 4). The RCC IDS currently has the ability to:
• Acquire and display weather information (temperature, wind speed, barometric

pressure, and wind gusts) on 5 minute intervals. The weather information is retrieved
from a UND website that archives weather information from sensors located at a field
research site in eastern North Dakota.

• Acquire and display Doppler weather radar. The Doppler weather radar is retrieved
from the NOAA on a 15 minute interval.

• Import and display GIS shape files. Data currently exists for political boundaries,
roads, railroads, towns, and terrain. We have also manually created GIS -like data
files for high tension utility lines, schools, airports, and towers (TV/radio
transmission and wind power generation).

• Import and display areas such as Military Operations Areas (MOA’s). Data currently
exists for the Tiger North and Tiger South MOA’s. We also have the ability to create,
import, and display UAS operational areas.

• Be menu-driven. The RCC IDS is completely menu-driven allowing the operator to
display or to not display a variety of objects and allows the operator to pan, scroll,
zoom-in, and zoom-out.

Once the Prototype UND RCC IDS has the ability to import real-time data from the UND
FSX simulation facility, it will be incorporated into the FSX simulation facility

Figure 4. Prototype UND RCC IDS.

MICS 2008 247

Conclusion

UND is developing airspace within the state of North Dakota where UASs can be
tested/operated without the need for an on-board sense and avoid system or temporary
flight restrictions (TFRs) and the Computer Science Department has been tasked with
developing a majority of the system software, including an airspace simulation and the
RCC IDS. Since the Air Force wants to explore “new” ideas for IDSs, and since the
current standards have not resulted in any one model to follow, replication of an existing
ATC system was deemed unsuitable. Furthermore, the Air Force wants UND to develop
a RCC IDS that is designed such that it reduces the workload on the operator. Obviously,
given that UND does not yet have radars nor the supporting infrastructure in place, a
dynamic simulation of the airspace is required for RCC IDS development and evaluation.
Microsoft’s Flight Simulator X was selected as a commercially developed, cost-effective,
adaptable, interactive, Internet-capable, and graphically rich solution for the airspace
simulation and OpenGL for development of the display system. Use of FSX has greatly
streamlined our development efforts. Much of the RCC IDS has been prototyped and a
UAS operator IDS will be developed next.

References

[1] S. R. Herwitz, L. F. Johnson, S. E. Dungan, and G. Witt, “Orchestrating a Near-Real-
Time Imaging Mission in National Airspace using a Solar-Powered UAV,” 2nd AIAA
Unmanned unlimited Systems, Technologies, and Operations-Aerospac, 15-18, San
Diego, California. 2003.

[2] S. R. Herwitz, K. Allmendinger, R. Slye, S. Dunagan, B. Lobitz, L. Johnson, and J. A.
Brass, “Nighttime UAV Vineyard Mission: Challenges of See-and-Avoid in the NAS,”
AIAA 3rd, “Unmanned Unlimited” Technical Conference, Workshop and Exhibit, 20-23,
Chicago, Illinois. 2004.

[3] R. E. Weibel and R. John Hansman, Jr., “Safety Considerations for Operation of
Different Classes of UAVs in the NAS,” AIAA 4th Aviation Technology, Integration and
Operations (ATIO), Forum 20-22, Chicago, Illinois. 2004.

[4] R. E. Weibel and R. John Hansman, Jr., “An Integrated Approach to Evaluating Risk
Mitigation Measures for UAV Operational Concepts in the NAS,” Infotech@Aerospace
26-29, Arlington, Virginia. 2005.

[5] P. Narayan, P. Wu, D. Campbell, and R. Walker, “An Intelligent Control Architecture
for Unmanned Aerial Systems (UAS) in the National Airspace System (NAS),” 2nd
Australasian Unmanned Air Vehicle Systems Conference, 20-21. Melbourne, Australia.
2007.

[6] T. Yuditsky, F. Friedman-Berg, and A. Smith, “Design of Information Display
Systems for Air Traffic Control,” Federal Aviation Administration, William J. Hughes

MICS 2008 248

Technical Center, Atlantic City International Airport, NJ. Retrieved from
http://hf.tc.faa.gov/products/bibliographic/tn0433.htm on June 2, 2007.

 [7] J. Nielsen, "Do Interface Standards Stifle Design Creativity?," Jakob Nielsen's
Alertbox, August 22, 1999. Retrieved from http://www.useit.com/alertbox/990822.html
on Feb 5. 2008.

[8] V. Ahlstrom and B. Kudrick, “Human factors design standard,” Federal Aviation
Administration, William J. Hughes Technical Center, Atlantic City International Airport,
NJ. Retrieved from http://hf.tc.faa.gov/hfds/default.htm on June 2, 2007.

[9] J. C. Johnston, K. L. Horlitz, and R. W. Edmiston, “Improving Situation Awareness
Displays for Air Traffic Controllers,” Proceedings of the Seventh International
Symposium on Aviation Psychology, Ohio State University.1993.

[10] J. Xing, “Color Analysis in Air Traffic Control Displays, Part I. Radar Displays
(DOT/FAA/AM-06/22),” Civil Aerospace Medical Institute, Federal Aviation
Administration, Oklahoma City, OK. 2006. Retrieved from
http://www.faa.gov/library/reports/medical/oamtechreports/2000s/media/200622.pdf on
October 18, 2007.

MICS 2008 249

An ANNTI (Artificial Neural Network Text Image) Spam

Filter

Abstract

Spam is an enormous problem in the information age. Spammers have begun to avoid

traditional text analyzing spam filters by sending image files that display text messages.

Since these so-called “text images” typically require more space and bandwidth than text-

only spam messages, this newer type of spam presents a serious problem. Interestingly,

text images typically have a large percentage of sharp contrasts across their pixel

elements. This property allows OCR (object character recognition) techniques to detect

characters within these images. Consequently, we devised a filtering algorithm that uses

an OCR module and a Bayesian spam filter to recognize text image spam. We analyzed

images built from an actively used e-mail message box to measure the algorithm’s

performance.

Jeremiah Barr and

Charles Ashbacher

Department of Computer

Science and Mathematics

Mount Mercy College

Cedar Rapids, IA 52402

jrb62307@att.net and

cashbacher@yahoo.com

MICS 2008 250

Introduction

Over the last few years, spam sent in the form of images displaying text has begun to

replace traditional text-only spam messages. While e-mail filtering software packages

can now filter some text image spam messages with rejection rules based on image

checksums and similar filtering techniques, spam still presents a major issue as it

accounts for approximately 70 percent of all e-mails on the Internet (Zeller). At the same

time, spammers continue to produce new images with random noise in an attempt to slip

past the rule-based filters. Worse yet, the new wave of text image spam requires more

bandwidth than traditional text messages, which presents a major issue for system

administrators and end-users alike in this age of bandwidth hungry Internet applications.

To help in the fight to protect valuable bandwidth and save the many millions of Internet

users the time cost associated with deleting spam, this work describes an algorithm for

recognizing spam text images based off of their contents. The algorithm incorporates

OCR and a Bayesian classifier, which we will consider in brief. Afterwards, the results

of an initial implementation will be discussed along with possible areas of improvement

and future research directions.

1. The OCR Module

In general, OCR software must find and recognize characters within an image document.

The OCR module considered here makes use of a BFS algorithm to find text image

characters and an SOM (self organizing map) set to recognize character patterns. The

character location algorithm roughly models the way the human eye tracks character

objects and receives character information, while the SOM set roughly models the way

the human brain processes that information to recognize words, phrases, sentences, etc…

The OCR module’s text image content approximation algorithm begins processing at the

upper left hand corner of a given image. After locating a character pixel pattern, the

OCR module determines the pattern’s boundaries and scales the pattern to a specified

size. All scaled patterns posses the same dimensions so that the OCR module exhibits

scale invariance for individual characters. An SOM set accepts the pattern vector and

recognizes its contents to produce a literal text character. By literal text character, we

mean some character with a text encoding such as Unicode as opposed to an image

representation. The recognized characters belonging to a single word – as determined by

the spacing between characters in the text image – are concatenated in series. The OCR

content approximation algorithm concatenates these words together with space separators

to produce a single result string. The OCR process terminates upon reading the bottom

right hand corner of an image and returns the result string. In short, the OCR module

maps text images to string approximations of their text contents. We will first analyze

the primary subcomponent of the OCR module, the SOM set, and then glimpse the

functionality of the OCR module as a whole.

MICS 2008 251

1.1 The Artificial Neural Network: An SOM

Many different architectures exist for performing pattern recognition. Neural networks

represent an attractive choice due to their statistical classification power and ease of

implementation. Furthermore, due to the nature of the text image classification problem,

where we have documents displayed by images that we must read in order to accept as

legitimate content or reject as spam, pattern recognition techniques that roughly model

the process of a human being reading a piece of paper and recognizing the characters

with biological neural networks represent intuitive solutions. Let’s now turn to the

reasoning behind the selection of the SOM neural network architecture.

1.1.1 On the Choice of ANN

In choosing a neural network architecture for character pattern recognition, we kept the

following implementation requirements in mind:

1. Light computation load – Considering the large number of pattern recognitions

that can take place during a single image analysis, the neural network must not

require excessive computational resources or the filtering application will become

impractical for daily use. Moreover, the network training process must not

interfere with the usability of the application.

2. Low memory overhead – The filtering application must store a large dictionary of

e-mail words, all the while maintaining images and their vector representations in

memory. Therefore, the application could require a prohibitive amount of

memory if it utilizes a space hungry ANN architecture.

3. Tolerable accuracy – The implemented ANN must provide reasonably accurate

character recognition capabilities, up to the point where the Bayesian filter can

classify document text approximations with a tolerable accuracy.

With these constraints in mind, the first requirement renders the use of a multi-layered

statistical ANN based on three layers – an input layer, a hidden layer with either tanh(…)

or sigmoid(…) activation functions, and an output layer – impractical. Statistical ANNs

of two layers with tanh(…) or sigmoid(…) activation functions in either or both layers do

not provide accurate enough pattern recognition results. Threshold based ANNs akin to

the classical McCulloch-Pitts architecture also lack sufficient accuracy and they display

poor generalization characteristics.

The SOM due to Teuvo Kohonen (Kohonen) marks the most promising architecture

surveyed here which meets the above constraints without extensive optimization.

Furthermore, in contrast to statistical and threshold based ANNs, most training

algorithms for this architecture take place in an unsupervised setting. This means that the

SOM merely clusters input patterns into classes, or literal text characters for our

purposes, without the user providing the desired outputs. In short, the SOM described

here does not need user intervention.

MICS 2008 252

The SOM has many applications, some of which include data compression, document

organization, stochastic information processing, and the visualization of high dimensional

data (Kohonen). The SOM also plays the role of a theoretical model of biological brain

structures. In this work, we focus on the pattern recognition capabilities of this ANN.

1.1.2 The SOM in Brief

The structure of the SOM consists of two layers of nodes: an input layer and an output

layer. The input layer of nodes is indexed 1, 2, … , n, and each node contains a real

value. Now, let x = (x1, x2, … , xn) ∈ [-1, 1]
n
 be a stochastic input pattern vector

normalized to length 1. For a vector y = (y1, y2, … , yn) ∈ ℜℜℜℜ
n
, we attain the normalized

vector x with x = y / || y || , where || y || = (y1*y1 + y2*y2 + … + yn*yn)
½

 denotes the

Euclidean norm of y. To process an input pattern vector x from the set {x}, we first set

the values of input nodes with indices 1, 2, … , and n to x1, x2, … , and xn respectively.

The output layer is similar to the input layer, in that each node is labeled by an index

from 1, 2, to an integer d. Each output node represents a certain class, so that the SOM

maps the vectors in {x} to particular classes. Each output node i contains a normalized

reference vector mi = (mi,0, mi,1, … , mi,n) ∈ ℜℜℜℜ
n
. In a sense, the reference vectors serve

as the memory of the SOM. The output algorithm for this SOM determines the index c of

the output node with the reference vector most similar to x with x
T

. mc = max i = 1,2,..,d

{(x
T
. mi)}. Here,

T
 denotes the transpose operator. Consequently, only one output node

activates for an input – the node with index c. We can then use the index c as an index to

an ordered set of classes, like an array of literal text characters.

Notice that we treat the dot product x
T

. mc as a measure of similarity between x and mc.

To understand this assertion, observe that x
T

. mc = ||x || || mc || cos(θ), where θ represents

the mutual angle between x and mc. Since both x and mc have length equal to unity, x
T

.

mc = cos(θ). Provided x ≠ (0, 0, … , 0) ≠ mc, if θ equals π / 2 , so that x

and mc are

orthogonal and thus linearly independent, then x
T

. mc = 0. On the other hand, if θ equals

0, so that x and mc lie on each other and thus constitute the same vector or a scalar

multiple thereof, then x
T

. mc = 1. In this way, the more x
T

. mc differs from 0, the more

similar x is to mc. Since this SOM uses the dot product as the measure of similarity, it

can be deemed a “dot product SOM”; other SOMs exist (Kohonen).

For the SOM to map character image patterns to output nodes, we must train the network.

Training consists of varying reference vectors such that the SOM maps similar character

pattern vectors to the same output node and thus to the same text character. To do so, we

collect a set of normalized training input vectors {x}. Each x denotes the vector training

pattern of a particular text character that we desire the OCR module to recognize. These

patterns get mapped from training image pixels. Next, the reference vector components

get set to random values. The training algorithm then enters a process consisting of a

series of reference vector adjustment cycles. During every cycle, each training vector x is

considered. The algorithm seeks to find the winning output node with index c for each x

MICS 2008 253

and to adjust its reference vector such that x and the reference vector become more

similar. Therefore, it takes

mc(t+1) = [mc(t) + α x]

 || mc(t) + α x || ,

and sets all other mi(t+1) = mi(t), where t + 1 denotes the time of the current adjustment

cycle. The variable α ∈ (0, 1] expresses the learning rate of the algorithm. In the

implementation, we let α = 0.5. The training algorithm terminates when it completes a

predetermined cycle count or when the biggest component change for all vectors mc(t+1)

falls below an arbitrary amount. We chose a maximum cycle count of 10,000 and a

component change minimum of 1E-5. In this way, the training algorithm develops the

SOM reference vector values such that the SOM classifies input patterns as their

corresponding text characters.

Generally speaking, a great plethora of training algorithms for the SOM exist. For

instance, we can modify the current algorithm such that α denotes a continuous function

of t that decreases monotonically. The implemented algorithm was chosen for its ease of

computation.

1.1.3 The SOM Set

While an individual SOM can recognize the characters of different fonts, recognition

accuracy tends to fall when the font of the training set does not represent the fonts

displayed in actual text images well. For example, an SOM trained to recognize

characters of the Courier font may perform unacceptably when tasked to recognize Arial

characters. The OCR module’s design reflects one solution to this problem: the use of a

set of SOMs where each individual SOM recognizes characters from a particular

representative font. Observe that the set need not contain an SOM for all fonts, but rather

the fonts which best represent those applied in text images sent to a filter user.

Recall that the OCR module locates characters and sends their patterns to the SOM set

for recognition. Each SOM in the set performs pattern recognition with a character

pattern to give the corresponding literal text form of the character. Of course, this literal

text character has a correspondence with a training pattern, so the OCR module compares

the character pattern with the corresponding training pattern for each SOM’s text

character result. The output of the SOM with the training pattern most similar to the

character pattern becomes the output for the entire SOM set. The measure of similarity is

given by the ratio of the number of equal values between the vectors at each element

index to the total number of elements in an individual vector. Keep in mind that all

character images are scaled to have the same dimensions during both training and usage,

so the image vectors possess the same number of elements. When the OCR module

selects an SOM’s output it increments a so-called vote counter for that SOM. Prior to

reading an input image, the counters of all the SOMs get set to zero. Then, by the end of

reading a document, the counter with the highest value serves as an indicator of the font

MICS 2008 254

used in the entire document. Overall, the cross-comparison between SOMs gives the

OCR module a degree of font invariance.

1.2 On the OCR Module

To reiterate, the SOM set recognizes located character patterns and translates them into

literal text characters. In turn, the OCR module concatenates the character belonging to

any single word together and then concatenates recognized words together with space

delimiters to form a single result string for a given text image. We will now consider

how the OCR module locates character patterns in text images and see the details of the

interaction between the SOM set and the OCR module.

The OCR module does not accept images of jpeg, gif, png, or bmp formats directly.

Instead, the OCR module requires text images to enter a feature extraction phase prior to

processing. Feature extraction consists of converting an image I of width w and height h

into a binary vector v ∈ {-1, 1}
wh

. This means that I gets mapped into a monochromatic

representation, v. Moreover, the character searching algorithm expects the “background”

of a text image to posses the color white, denoted as -1, and the characters to have a black

color value of 1. If the opposite case holds true – as detected by a frequency analysis of

white and black pixel counts in v based on the fact that background pixels tend to fill the

majority of a text image – then the components of v with a value of -1 get set to 1 and

vice versa.

The conversion of I from a full color image to a monochromatic representation serves

two purposes. First, the reduction in the dimensionality of I’s data leads to faster OCR

execution. Second, this conversion gives the content approximation algorithm a degree

of color invariance so as to remove the need to train the SOM set with patterns of

different colors. More importantly, this conversion tends to filter out non-character

graphical elements that could cause substantial OCR errors; however, in images where

characters do not contrast greatly from background graphics, character data might get

filtered out as well. Therefore, while the conversion process has many benefits, it can

also result in the loss of significant information.

The OCR module accepts a binary vector v as an input, along with the dimensions of I.

Character pattern locating begins at the upper left hand corner of the text image. The

location algorithm traces out the bottom and right sides of successively larger squares in

v with upper left hand corners corresponding to that of the original text image. Tracing

continues until the algorithm finds a position p of black color. Assuming that such a

position exists, a sub-algorithm determineRegionBounds is invoked to determine a

boundary rectangle that contains p and its neighboring black pixels, along with their

neighboring black pixels, and so on. determineRegionBounds represents a breadth

first search algorithm, wherein a scan of the neighbors to pixels polled from the head of a

queue finds neighboring black pixels which in turn get inserted at the end of the queue.

In this way, determineRegionBounds determines the groups of adjacent pixels that

define character patterns. The left most, right most, top most, and bottom most pattern

MICS 2008 255

pixel coordinates get stored in a rectangle data structure. This structure essentially

consists of a 4-dimensional vector of integers where the first two components correspond

to the x and y positions of the rectangle’s upper left-hand corner and the second two

represent the x and y positions of the rectangle’s bottom right-hand corner. The

populated structure gets returned. The design of the sub-algorithm relies on the

assumption that character patterns possess contiguous groups of pixels. Note that while

characters such as “i”, “;”, “?”, and “!” do pose a problem given this supposition, the

search for neighboring pixels can extend toward the top or bottom of the text image by an

arbitrary amount of pixels. Consequently, this search extends to 7 pixels above the most

recently polled pixel and 3 pixels below. The pseudo-code for

determineRegionBounds follows.

Code Section 1.2.1: determineRegionBounds: (Text image vectors, position

vectors) →(rectangle vectors).

Given a text image vector v and initial character pattern pixel position p,
begin
 if p is null then
 return null
 let L, R, T, and B denote the left, right,top, and bottom
 coordinates of boundary rectangle enveloping the current
 character pattern
 let Q be a queue of 2-dimensional integer vectors denoting pixel
 positions
 let visited be a static boolean array equal in size to v which
 persists throughout an execution of the OCR module on a single
 image
 set L = infinity
 set R = -1
 set T = infinity
 set B = -1
 insert(Q, p)
 visited[x(p) + y(p)*w] = true
 while not empty(Q) do
 let u be a pattern pixel position
 set u = poll(Q)
 let l, r, t, and b be integers denoting the boundary
 coordinates of the current scan area
 set l = max{x(u) - 1, 0}
 set r = min{x(u) + 1, w - 1}
 set t = max{y(u) - 7, 0}
 set b = min{y(u) + 3, h - 1}
 for j = l..r do
 for i = t..b do
 if v[j + i*w] is 1 and not visited[j + i*w] then
 let v be a pattern pixel position
 set v = (j, i)
 insert(Q, v)
 set visited[j + i*w] = true
 if x(v) < L then
 set L = x(v)
 if x(v) > R then
 set R = x(v)
 if y(v) < T then
 set T = y(v)
 if y(v) > B then
 set B = y(v)
 return (L, T, R, B)
end

MICS 2008 256

The returned rectangle is then used to extract the character pattern into a vector on which

the SOM set performs pattern recognition. The literal text values get concatenated onto

the end of a temporary string called buffer. Subsequent to recognizing a character, the

next pattern pixel position p is calculated by traversing the pixels of a rectangle to the

right of the previous character pattern boundary rectangle. At this point,

determineRegionBounds executes again with the new value of p. On the other

hand, if such a point p does not exist in that rectangle – which has a width equal to the

average space width between characters in a word and a height equal to the average

character height – the algorithm considers the region enclosed by the rectangle a space

and thus deems the string contained in buffer to be a single word. The matched string

then gets inserted at the end of a result buffer, and buffer gets set to an empty string.

The character pattern locating algorithm executes the same buffer reading and resetting

process whenever it encounters the right boundary of an image. Additionally, the

algorithm begins reading at the left hand side of the image and at the bottom of the

previous line of character patterns and searches for new patterns in the same way the first

located character of the image is found.

OCR execution ends after the right hand side of the bottom most readable line is read.

For the sake of concreteness, Code Section 1.2.2 gives a pseudo-code description of the

text image content approximation algorithm.

Given a text image vector v, an image width w and an image height h,
begin
 let resultBuffer be the result string
 let buffer be a temporary string for storing located words
 let r denote rectangle structure bounding a character pattern for
 analysis
 let r' be the rectangle structure to store the prior instance of r
 let p be a 2-d vector representing a point found in a located
 pattern
 let p' be a 2-d vector for the first point from which to search when
 analyzing the line of character patterns below the one under current
 analysis
 let SOMSet be the SOM set
 let aveSpaceWidth be the average width of the spaces between adjacent
 characters belonging to one word
 set p = the located coordinate of the first found pattern
 set r = determineRegionBounds(v, p)
 if p is not null then
 set buffer = SOMSet.recognize(v, r)
 set p' = (0, bottom(r) + 1)
 while r is not null do
 set p = (right(r) + 1, top(r))
 set p = the located coordinate of the next character pattern to the
 right of p
 set r' = r
 set r = determineRegionBounds(v, p)

 if p is not null and p is not on the right boundary of the image then
 set aveSpaceWidth to new average space width including the
 distance between right(r') and left(r)
 set buffer = buffer + SOMSet.recognize(v, r)
 else if p is null then
 set r = (right(r'), top(r’), right(r') + aveSpaceWidth, bottom(r'))
 set resultBuffer = resultBuffer+ " " + buffer
 set buffer to be an empty string

MICS 2008 257

Code Section 1.2.2: ocr_execute: (Text image vectors, integers, integers)→Strings.

With the above functionality, we can approximate the text contents in a text image. Next,

we shall see how to classify such images.

2. The Spam Filter: A Bayesian Classifier

Researchers have conducted studies of text classifiers employing Bayesian methods for

well over a decade. Amidst this body of work we find e-mail spam filters which classify

messages into one of multiple categories, including different types of legitimate messages

and spam messages (Sahami, et al.). The success of these classifiers has reached the

point where many commercial level filters either rely solely on Bayesian techniques or

use them in conjunction with user-configured rules.

2.1 Bayesian Spam Filter Background

Before we delve into the design of the spam filter, let’s consider some preliminary

definitions along with Bayes’ theorem. Let x and y be a pair of events or observations.

We label the probability that x occurs as P(x) and we call the probability that both x and y

occur, P(x,y), the joint probability of x and y. Furthermore, the probability of x occurring

given that y occurs, denoted P(x | y), is called the conditional probability, which we

define as P(x | y) = P(x, y) / P(y). Two basic rules in probability are the sum rule and the

product rule, which we express as P(x) = ∑y P(x, y) and P(x, y) = P(y | x)P(x),

respectively. Notice the relationship between the definition of conditional probability

and the product rule. Onto Bayes’ theorem: P(x | y) = [P(y | x) P(x)] / P(y). Of course,

P(y) = P(x, y) + P(~x, y) by the sum rule of probability, where ~x means the

complementary event of x. Therefore, P(x | y) = [P(y | x) P(x)] / [P(y | x) P(x) + P(y | ~x)

P(~x)] gives an alternative formulation of Bayes’ theorem. We can classify spam with

these definitions, Bayes’ theorem and some additional assumptions.

Using these concepts, we will now consider the spam filter. The inspiration for this filter

stems from Sahami et al., Graham, and Shiffman.

 else if p is located at the right boundary of the image then
 set resultBuffer = resultBuffer + " " + buffer
 set buffer to be an empty string
 set p = the located coordinate of the first found pattern
 located on the character line below the previously analyzed one
 set r' = r
 set r = determineRegionBounds(v, p)
 if p is not null then
 set buffer = SOMSet.recognize(v, r)
 set p' = (0, bottom(r) + 1)
 return resultBuffer
end

MICS 2008 258

2.2 The Spam Filter in Brief

To begin, we shall discuss the foundation of the spam filter’s structure and behavior. To

this end, every message is represented by a vector of word strings s = (s1, s2, … , sn). We

treat each word si as a feature of the message. Each message s may belong to one of two

classes: the spam class S or the legitimate e-mail class L. The basic assumption made in

calculating the probabilities associated with message classification is that each

probability P(s ∈ S | si ∈ s) is statistically independent of all other P(s ∈ S | sj ∈ s), where

i ≠ j. This basic supposition places the spam filter in the class of Naïve Bayesian

classifiers. Note that more sophisticated feature dependence assumptions are possible.

Furthermore, to simplify the filter’s computations, we assume that the a priori probability

P(s ∈ S) = P(s ∈ L) and that P(s ∈ S | sj ∈ s) is the same regardless of whether s ∈ S or s

∈ L; in these assumptions, s represents a random message variable. We desire to create a

framework wherein we attain the probability P(s ∈ S | s) so as to flag s as spam or

legitimate. To achieve this goal, the spam filter must have a mechanism to measure P(s

∈ S | s). Bayes’ theorem gives us that mechanism.

That is, Bayes’ theorem plays a role in calculating the probability that a message

represented by s is spam given that it contains a particular word, P(s ∈ S | si ∈ s). We

determine this probability as follows:

P(s ∈ S | si ∈ s) = P(si ∈ s | s ∈ S) P(s ∈ S)

 P(si ∈ s | s ∈ S) P(s ∈ S) + P(si ∈ s | s ∈ L) P(s ∈ L)

 = P(si ∈ s, s ∈ S)

 P(si ∈ s, s ∈ S) + P(si ∈ s, s ∈ L) ,

as given by Bayes’ theorem and the product rule. Therefore, in determining P(s ∈ S | si ∈

s), the Bayesian filtering algorithm must calculate the probability that s is a spam

message and the word si belongs to s, P(s ∈ S, si ∈ s), and the probability that s is a

legitimate message and the word si belongs to s, P(s ∈ L, si ∈ s).

To find the required probabilities, the Bayesian filter training algorithm analyzes two text

corpuses comprised of words from messages belonging to S and words from messages

belonging to L. Now, let B represent the number of words contained by messages from

S, G express the number of words in messages belonging to class L, b(i) denote the

number of times the word si occurs in the spam word corpus and g(i) indicate the number

of times si occurs in the legitimate word corpus. The filtering algorithm can thus apply

the relative frequency b(i) / B to approximate P(s ∈ S, si ∈ s) and g(i) / G to approximate

P(s ∈ L, si ∈ s). After some substitutions, we have P(s ∈ S | si ∈ s) ≈ [b(i)/B] / [b(i)/B +

g(i)/G].

For the calculation of P(s ∈ S | s), we rely on our independence assumptions and the

supposition that P(s ∈ S) = P(s ∈ L). Based on these assumptions, the approximation of

P(s ∈ S | s) is given by:

MICS 2008 259

 P(s ∈ S | s) = ∏i P(s ∈ S | si ∈ s)

 ∏i P(s ∈ S | si ∈ s) + ∏i [1 - P(s ∈ S | si ∈ s)]

 ≈ ∏i ([b(i)/B] / [b(i)/B + g(i)/G])

 ∏i ([b(i)/B] / [b(i)/B + g(i)/G]) + ∏i ([g(i)/G] / [b(i)/B + g(i)/G]) .

In the implementation, a message s receives a spam marking whenever P(s ∈ S | s) ≥

0.50. While the 0.50 threshold may appear exceptionally low relative to the thresholds

used by traditional text e-mail Bayesian spam filters, this selection allows the filter to

compensate for OCR errors. Additionally, the implementation’s filtering algorithm only

uses the 30 words in s with the greatest probability of belonging to a spam message or a

legitimate message while approximating P(s ∈ S | s).

2.3 The Interaction between the SOM Set and the Bayesian Filters

Each SOM in the set possesses a specific Bayesian filter. The voting system discussed at

the end of section 1.1.3 The SOM Set determines which filter analyzes or trains on the

OCR result string for a text image. That is, during the training phase, the filter belonging

to the SOM with the greatest number of votes subsequent to an OCR pass over a training

text image serves as the filter that gets trained. Throughout the usage phase, the SOM

with the greatest number of votes provides the filter that accepts or rejects the recently

read text image. This measure allows the various filters to learn the OCR errors of their

respective SOMs during training and to account for said errors during analysis. During

implementation verification it was found that when the entire SOM set shares a single

filter, recognition performance tends to fall below reasonable usage standards.

3. Results

The verification process for the ANNTI spam filter implementation was comprised of

five tests and a control run. Four out of the five tests corresponded to a particular font.

That is, the first test required the implementation to filter text images in the Arial font, the

second test required the filtering of text images in the Courier font, the third test consisted

of analyzing text images in the Sans Serif (SS) font, and the fourth test was comprised by

the filtering of text images in the Times New Roman (TNR) font. The fifth test required

the filtering of a text image set with images containing text in a particular font

individually but where the font varied from image to image. The fonts used in the mixed

set were the ones mentioned above. The assignment of text image fonts in the mixed set

was selected at random: 359 contained Arial text, 321 had Courier text, 341 possessed SS

text, and 330 were composed of TNR text. Note that the test text images did not contain

graphical objects besides characters such as pictures of people. No rotation of text image

characters was performed either. The control run served as a measurement baseline for

OCR accuracy where the Bayesian spam filter analyzed the original text comprising the

text image sets instead of the text read by the OCR module.

MICS 2008 260

Multiple datasets were compiled to verify the ANNTI spam filter. One such dataset

consisted of images of the characters belonging to the Latin alphabet, the numerals 0-9

and the punctuation characters !, ", #, $, %, &, ', (,), *, +, ,, -, ., /, :,

;, <, =, >, ?, @, [, \,], ^, _, `, {, |, }, and ~ in the Arial, Courier, SS,

and TNR fonts. The training process for the SOM set produced the necessary reference

vectors for four distinct SOMs to recognize image patterns containing single characters of

a particular font. The same reference vector sets were used during each test for the sake

of consistency.

The message box under analysis did not contain a sufficient number of text images to

conduct a reliable test, so we employed a converter application to generate a series of gif

images displaying the body text of each individual message. The spam filter training

algorithm analyzed five text corpus pairs built by the OCR module from the generated

text images. Each pair corresponded to a particular font; within the pairs, one text corpus

contained the text from spam messages while legitimate message text comprised the other

corpus. Throughout each test, the implementation trained with 677 text images and

analyzed 674 total test messages made up of 321 spam images and 353 legitimate images.

In the case of the control run, the original text contents of the 677 training text images

acted as the learning set while the 674 test messages had the same treatment. Summaries

of the results now follow.

Test – Message Group Total

Correct

Percent

Correct

Arial – Spam Messages 307 95.6

Arial – Legit Messages 312 88.5

Arial – All Messages 619 91.8

Courier – Spam Messages 306 95.3

Courier – Legit Messages 320 90.7

Courier – All Messages 626 92.9

SS – Spam Messages 314 97.8

SS – Legit Messages 323 91.5

SS – All Messages 637 94.5

TNR – Spam Messages 306 95.3

TNR – Legit Messages 327 87.4

TNR – All Messages 633 93.9

Mixed – Spam Messages 262 81.6

Mixed – Legit Messages 321 90.9

Mixed – All Messages 583 86.5

Control – Spam Messages 287 89.4

Control – Legit Messages 335 94.9

Control – All Messages 622 92.3

Table 3.1: A summary of the accuracy attained by the implementation while filtering the

test and control sets.

MICS 2008 261

 P = 0.0 0.0 < P ≤ 0.1 0.1 < P < 0.5 P = 0.5 0.5 < P < 0.9 0.9 ≤ P < 1.0 P = 1.0

Arial – Freq. 208 114 4 79 9 36 224

Relative Freq. 0.309 0.169 0.006 0.117 0.013 0.053 0.332

Courier – Freq. 244 80 11 3 12 56 268

Relative Freq. 0.362 0.119 0.016 0.004 0.032 0.083 0.398

SS – Freq. 202 125 3 93 13 54 184

Relative Freq. 0.300 0.185 0.004 0.138 0.019 0.080 0.273

TNR – Freq. 210 128 4 81 4 84 163

Relative Freq. 0.312 0.190 0.006 0.120 0.006 0.125 0.242

Mixed – Freq. 197 179 4 74 5 72 143

Relative Freq. 0.292 0.266 0.006 0.110 0.007 0.107 0.212

Control – Freq. 239 119 11 10 20 84 191

Relative Freq. 0.355 0.177 0.029 0.015 0.030 0.125 0.283

Table 3.2: The frequencies (freq.) for intervals of spam probabilities assigned to test text

image messages and the control run’s plain text messages. P = P(s ∈ S), where s denotes

a random message variable across a particular test/control set.

As Table 3.1 suggests, the implementation may function well enough for some users.

However, while the spam recognition rate tended to fall within acceptable limits, the rate

of misclassification of legitimate messages would probably prove too high for most users.

Moreover, since spammers and legitimate message senders will vary message fonts, the

mixed font test results suggest that the current implementation may need a very large

training dataset to give useful classifications of real text image e-mails.

The difference in spam message recognition performance between the control run and the

tests indicates that the Bayesian filter can perform better in classifying some messages

read by the OCR module than in classifying their plain text counterparts. This apparent

anomaly may arise from OCR errors since the Bayesian filter must account for these

errors when analyzing text images. That is, the errors captured during text image filter

training may have caused the filter to assign unnecessarily high spam probabilities to

some words. This would explain why the implementation classified legitimate messages

with better accuracy during the control run than during any of the tests. Along the same

lines, the message box under analysis contained many spam messages constructed to

cause misclassification by Bayesian filters. Such messages have large counts of

unnecessary words that could indicate message legitimacy. The determination of the

exact cause(s) of these recognition anomalies may require an intricate analysis.

The message spam probabilities tended to fall close to 0.0 or 1.0. In most tests, a

substantial set of images also had probabilities close to 0.5, which implies that such

images are neutral. Since most of these neutral images actually belonged to the spam

class, the selection of a 0.5 classification threshold for the Bayesian filter proved

appropriate for this dataset. Unfortunately, this threshold choice also led to a large

number of false positives. We conjecture that filter training should also consist of

modeling a threshold function that varies with message attributes like the sender and the

message header.

MICS 2008 262

4. Conclusions and Further Work

In regards to creating a commercial grade text image filter, the initial performance of the

implementation falls short of most users’ needs. Most notably, the false positive rate

presents a practical issue. Many users of traditional spam filters do not check the junk e-

mail folder to recover the lost messages. Additionally, in tests involving text images

containing graphical data besides characters, the OCR module performs far worse. By its

very construction, whenever the text image reading algorithm encounters say a picture of

a person, it traces the entire picture’s pixels and attempts to recognize the pattern as a

character. Furthermore, the SOM set does not possess strong enough generalization

capabilities to recognize rotated characters. OCR performance also suffers when

characters overlap. These issues will need resolution before the implementation can

serve the general public.

On the other hand, as an initial attempt at solving the spam problem with artificial

intelligence tools, the performance of the implemented filter shows promise. The ANNTI

spam filter may require little modification to solve the problems mentioned above. The

OCR character location algorithm could read different image vectors corresponding to

each distinct color channel, e.g. red, green and blue, while approximating the content of a

text image. This solution may alleviate the severity of the overlapping character

problem. The SOM set could also recognize characters as collections of specific

components – such as an edge – in a hierarchical fashion so as to recognize the various

features of characters independent of their orientation or size, much like biological neural

networks. The ability to distinguish graphical objects besides characters may arise from a

different OCR location algorithm that will abort upon reading a graphic that lacks

subcomponents matching any learned character pattern. Finally, the implemented spam

filter represents a degenerate Bayesian classifier in the sense that it only applies Baye’s

theorem to calculate the conditional spam probabilities for given words, but not entire

messages. A full Bayesian treatment could produce more accurate results. The filter

could also take into account message features such as e-mail headers and sender fields.

In summary, the ANNTI spam filter gives us a nice foundation on which to build more

sophisticated text image filters.

References

Bishop, Christopher M.. Pattern Recognition and Machine Learning. 1st. New York:

Springer Science+Business Media, LLC. 2006.

Bishop, Christopher M.. Neural Networks for Pattern Recognition. 1st. New York:

Oxford University Press Inc. 1995.

Graham, Paul. "A Plan for Spam." Paul Graham. 2002. 10 November 2007.

<http://www.paulgraham.com/spam.html>.

MICS 2008 263

Heaton, Jeff. Introduction to Neural Networks with Java. 2007. 14 December 2007.

 < http://www.heatonresearch.com/articles/series/1>.

Kohonen, Teuvo. Self-Organizing Maps. 3rd. Berline, Heidelberg, New York: Springer.

 2001: 1-328.

Sahami, Mehran, S. Dumais, D. Heckerman, and E. Horvitz. "A Bayesian Approach to

Filtering Junk E-mail." AAAI'98 Workshop on Learning for Text Categorization.

1998.

Shiffman, Daniel. "Bayesian Filtering." daniel shiffman. 07 February 2006. 24 November

2007. <http://www.shiffman.net/teaching/a2z/bayesian/>.

Somervuo, Panu. "Redundant Hash Addressing of Feature Sequences Using the Self-

Organizing Map." Neural Processing Letters. 10. 1999: 25-34.

Zeller, Tom. “The Fight Against V1@gra (and Other Spam).” New York Times. 21 May

2006.<http://www.nytimes.com/2006/05/21/business/yourmoney/21spam.html?pa

gewanted=1&_r=2&adxnnlx=1194278478-jjggJZE%20qfIJlGxuI7xv1g>.

MICS 2008 264

Reflections on a Classic Trio of Graph Problems

Thomas E. O'Neil
Computer Science Department

University of North Dakota
Grand Forks, ND 58202-9015

oneil@cs.und.edu

Abstract

CLIQUE, INDEPENDENT SET, and VERTEX COVER are a classic trio of NP-
Complete graph problems. There are polynomial-time reductions between these
problems, and the reductions are so direct that they have traditionally been considered to
be alternate definitions of a single underlying problem. This conventional belief was
challenged by Richard Stearns and Harry Hunt in 1990. They conjectured that when a
graph is represented with an adjacency list, CLIQUE is actually an easier problem than
the other two.

In this paper we examine the reductions among the three problems to reaffirm their unity.
The distinction between CLIQUE and the other problems demonstrated by Stearns and
Hunt is completely dependent on using a list of edges to represent a graph. We could just
as easily use the list of missing edges to fully define a graph, and when we do, there is no
reason to believe one problem is harder than the others. We then reexamine the trio of
problems giving the edges and missing edges equal emphasis.

MICS 2008 265

1 Introduction

The graph problems CLIQUE and INDEPENDENT SET are classic NP-complete
problems [1, 3]. They were used so frequently in reductions among combinatorial
problems that Garey and Johnson [2] classified them as core problems in the NP-
complete class. They are also very closely related, and for many years they were
considered to be different descriptions of the same underlying problem, both sharing the
same complexity. In 1990 Stearns and Hunt [5] challenged that conventional wisdom.
They defined power indices as a measure of complexity among NP-complete problems,
where problems with lower power index have lower complexity. They determined that
CLIQUE has an algorithm with complexity O2n1/2

 (index one-half), while most NP-
complete problems, such as the SATISFIABILITY problem for Boolean expressions,
have complexity O(2n) (power index one), and there are no known linear reductions from
index-one problems to index one-half problems. Since there was a known linear
reduction from SATISFIABILITY to INDEPENDENT SET and there was no known
linear reduction from INDEPENDENT SET to CLIQUE, this led to the conclusion that
CLIQUE is actually a simpler problem.

The reduction from INDEPENDENT SET to CLIQUE requires the construction of the
complement of a graph's edge set. A graph contains an independent set of k vertices if
and only if the complement graph contains a clique of k vertices. Considering a graph G
= (V, E) with n vertices in V and e edges in E, we expect e to be O(n) or O(n2). When
reducing INDEPENDENT SET to CLIQUE, the worst case occurs when e is O(n) and the
set of missing edges Ē has size O(n2). The reduction is quadratic, not linear. Of course,
as Stearns and Hunt point out, if we represent graphs with adjacency matrices, the
reduction is linear, and we could claim that INDEPENDENT SET has index one-half
along with CLIQUE. But the adjacency matrix is not a space-efficient representation if e
is O(n), and it is not acceptable to claim a lower complexity for a reduction or algorithm
by choosing an inefficient representation for the input. So Stearns and Hunt concluded
that CLIQUE is an easier hard problem than INDEPENDENT SET, and they advised
against using CLIQUE for reductions in NP-completeness proofs, which which would
presumably "reduce" an easier problem to a harder one. This result was considered
significant enough for Richard Stearns to feature it in his Turing Award Lecture [4] in
1994.

It is obvious that representations play a major role in these complexity comparisons.
CLIQUE is easier than INDEPENDENT SET if adjacency lists are used to represent
graphs, but not if adjacency matrices are used. In the next section we consider another
possible representation. A graph could be represented by a list of missing edges.

2 Non-Adjacency Lists and INDEPENDENT SET

A graph G = (V, E) is a structure containing vertices and edges. The vertices are specified
by the set V, and the edges are denoted as unordered pairs of vertices in the set E ⊂ V × V.
If |V| = n, then the number of edges cannot exceed n(n-1)/2. The edge set is

MICS 2008 266

conventionally represented by a list of edges (adjacency list) or by an n × n matrix (an
adjacency matrix). We could, however, also represent the edge set with a non-adjacency
list – a list of missing edges Ē, where |Ē| = n(n-1)/2 − |E|. We could even argue that this
is the most direct and efficient graph representation for solving the INDEPENDENT SET
problem, where we are looking for the largest subset of vertices that are not adjacent to
one another. Actually, this is just a restatement of the classic reduction from
INDEPENDENT SET to CLIQUE: the largest independent set in a graph G is the largest
clique in the complement graph G = (V, Ē). If a graph is represented by a missing edge
set instead of an edge set, we solve INDEPENDENT SET by finding the largest clique in
the missing edge list. The point is that if CLIQUE has power index one-half, then so
does INDEPENDENT SET.

The result that INDEPENDENT SET has power index one-half can be rigorously proven
without resort to reductions. The algorithm and complexity proof are directly analogous
to those employed by Stearns and Hunt [5] for the CLIQUE problem. The MaxIS
algorithm below selects a vertex, computes a largest independent set S1 that contains the
vertex and a largest independent set S2 that does not contain the vertex, and returns the
larger of S1 and S2. The input is the set of vertices and a list of missing edges.

Algorithm MaxIS (V, Ē)
// Given a non-empty list of vertices and a list of missing edges for the graph
// G = (V, E), this algorithm returns a largest independent set of vertices in G

1) if |Ē| = |V|(|V|-1)/2 // all edges are missing ⇒ V is an independent set
2) return V
3) x = a vertex from V with fewest missing edges in Ē
4) if |Ē| = 0 // no edge is missing ⇒ any single vertex is a maximal independent set
5) return {x}

// Compute a largest independent set containing x.
6) V' = V − {x} − {y | (x, y) ∉ Ē and (y, x) ∉ Ē } // remove x and its neighbors
7) Ē1 = Ē − {(v, w) | v ∉ V' or w ∉ V'} // restrict Ē to V'
8) if |V'| = 0
9) S1 = {x}
10) else
11) S1 = {x}∪ MaxIS(V', Ē1)

// Compute a largest independent set not containing x:
12) Ē2 = Ē − {(v, w) | v = x or w = x}
13) S2 = MaxIS(V − {x}, Ē2)
14) return the larger of S1 and S2

Theorem 1. INDEPENDENT SET has complexity 2O nk , where n is the number of
vertices and k is the number of edges missing from the input graph.

Proof. The proof follows the same method as used by Stearns and Hunt to prove the
corresponding theorem for the analogous CLIQUE algorithm. We observe that the
number of procedure calls during execution of MaxIS cannot exceed 2n for a graph of n
vertices, since for each activation of the procedure, two recursive calls are made with

MICS 2008 267

graphs of fewer vertices. We proceed to prove the following proposition by induction on
the number of vertices in graph G: the number of procedure calls during an execution of
the MaxIS algorithm on input (V, Ē) is no greater than n⋅22k , where G = (V, E), |V| =
n, Ē is the set of edges missing from G, and |Ē| = k.

Basis. |V| = 1. In this case there are no edges and no missing edges. The condition
tested at line 1 is true and V is returned. There are no additional procedure calls. So we
have 1 ≤ 1⋅20 .

Inductive Hypothesis. We assume the proposition to be true for any graph with n − 1
vertices, where n > 1.

Inductive Step. We now consider a graph G = (V, E) with n vertices represented by the
set of missing edges Ē, where |Ē| = k. For convenience, we define Ē(x) to be the subset of
edges from Ē that mention vertex x. We examine two cases below.

Case 1. |Ē(x)| < 2 k . Here the number of vertices not adjacent to the selected vertex
x is less than 2 k . The set S1 is calculated using only these vertices, so the number of
calls to calculate S1 is strictly less than 22k . The set S2 is calculated from V − {x}, so
we can invoke the inductive hypothesis to establish that the number of procedure calls in
the calculation of S2 is strictly less than n−1⋅22k . The total number of procedure
calls is 1 + #calls(S1) + #calls(S2), which is no greater than 22k + n−1⋅22k =

n⋅22k .

Case 2. |Ē(x)| ≥ 2 k . Since x is a vertex with fewest missing edges, we are assured
that ∑

v∈V
∣E v∣ ≥ n⋅∣E x∣ ≥ n⋅2 k . We also know that the sum of the missing

edges over all vertices will count each missing edge twice, so ∑
v∈V

∣E v∣ = 2k.

Combining these observations, we have 2k ≥ n⋅2 k ⇒ 2 k ≥ n. This bound on n
allows us to bound the number of procedure calls at no more than 22k , which is no
greater than n⋅22k .

Having successfully bounded the number of procedure calls, we observe that each
activation of the procedure performs a fixed number of operations on Ē, and no operation
takes more than k 2 steps. So the total number of steps for MaxIS is less than

c nk 2⋅22 k for some constant c. Since k cannot exceed n(n-1)/2, we can express the
upper bound as p n⋅22 k for some polynomial p, which is 2O k . The input to the
algorithm has size n + k, and certainly k is less than nk . So the total number of
steps is 2O nk .�

Theorem 2. The power index of INDEPENDENT SET is one-half when a graph is
represented by a non-adjacency list (under the assumption that SAT has index one).

MICS 2008 268

Proof. Theorem 1 implies that the upper bound on the power index of INDEPENDENT
SET is one-half when a graph is represented by a vertex set and a non-adjacency list.
Reductions from SAT can be used to establish a lower bound for the power index. A
sequence of textbook reductions can be applied to an instance of SAT to derive an
instance of INDEPENDENT SET. The total step count is a sum of polynomials, and the
size of each representation along the way is a linear function of the size of the previous
representation. The entire process comprises a linear size reduction from SAT to
INDEPENDENT SET. The final step, however, produces an adjacency list for a graph.
When the adjacency list of size e is converted to a non-adjacency list, the size of the new
representation is Oe2 in the worst case, and the composition of a linear reduction
with conversion to a non-adjacency list results in an On2 reduction from SAT to
INDEPENDENT SET where n is the length of the original expression. This reduction
establishes that one-half is a lower bound for the power index of INDEPENDENT SET
using the non-adjacency list representation. �

Thus the result that CLIQUE has index one half can be duplicated for INDEPENDENT
SET if we represent the graph with a non-adjacency list instead of an adjacency list. Can
we claim that a non-adjacency list is less efficient than an adjacency list? Figure 1
contains a comparison of the space requirements for adjacency lists, non-adjacency lists,
and adjacency matrices. Adjacency lists are most efficient for sparse graphs, all three
representations are equally efficient for balanced graphs, and non-adjacency lists are most
efficient for dense graphs. We can claim that the matrix representation is generally less
efficient, since it is never better than Θ(n2). But there is no distinction between the two
list representations -- their efficiency characteristics are symmetric.

3 Observations on VERTEX COVER

The third problem in the classic trio is VERTEX COVER. A vertex cover in a graph G =
(V, E) is a subset of the vertices that covers every edge. A set covers an edge if either end
point of the edge is in the set. There is a well-known and very direct reduction between
VERTEX COVER and INDEPENDENT SET. If IS ⊆ V is a largest independent set in
G, then VC = V − IS is a smallest vertex cover. This reduction is easy to justify -- there
are no edges between vertices in the independent set, so all edges are covered by the
vertices that aren't in the independent set. It doesn't matter whether you search for an
independent set or a vertex cover -- when you find one, you've found the other.

Graph type Edge count Missing edge
count

Size of
adjacency list

Size of non-
adjacency list

Size of
adjacency matrix

Sparse O(n) Θ(n2) O(n) Θ(n2) Θ(n2)

Balanced Θ(n2) Θ(n2) Θ(n2) Θ(n2) Θ(n2)

Dense Θ(n2) O(n) Θ(n2) O(n) Θ(n2)
Figure 1: Space requirements for graph representation.

MICS 2008 269

So the vertex set for a graph can be partitioned into the largest independent set and the
smallest vertex cover. It is interesting to consider what set is represented by the vertices
that are not in the largest clique. Shouldn't there be a fourth graph problem for finding
this set? Actually, it's another vertex cover. But it covers the missing edges, not the
edges. This leads to an analysis that eliminates one graph problem from the trio instead
of adding a fourth. We need VERTEX COVER and either CLIQUE or INDEPENDENT
SET, but not both. We'll choose CLIQUE and adopt the following notation for a graph G
= (V, E):

CL+ is the largest clique in the edge set E,
CL− is the largest clique in the missing edge set Ē,
VC+ is the smallest vertex cover for E, and
VC− is the smallest vertex cover for Ē.

The vertex set V can be partitioned into either CL+ and VC− or CL− and VC+. We have

V = CL+ ∪ VC− = CL− ∪ VC+,
CL+ ∩ VC− = ∅, and

CL− ∩ VC+ = ∅.

Step counts for a CLIQUE search are highest for a dense graph. Unfortunately, step
counts for a VERTEX COVER search are highest for a sparse graph. When posed with
the problem of finding CL+ in a dense graph, there is nothing to be gained by looking for
VC− instead. It would be much easier to find CL−, but not much is known about the
relationship between CL+ and CL−. It's a relationship that should be investigated, since
it's possible that a search for CL+ could be expedited by knowledge of what was in CL−.
Figure 2 below illustrates the relationship between the four subsets of V.

CL+ CL−

VC−

VC+

Figure 2: Subsets of V.

MICS 2008 270

It's interesting that CL+ and CL− can share at most one vertex. If the intersection of CL+

and CL− contained two vertices, then they would have to be both connected to one
another and not connected to one another at the same time. In some graphs we can find a
CL+ and a CL− that are disjoint. It is unknown whether we can always find a CL+ and a
CL− that have a shared vertex. When a graph is dense, we expect CL+ to be hard to find
and CL− to be easy to find. We could search for CL+ by finding CL− first, searching the
neighborhoods of the vertices in CL− , and then searching the graph with CL− deleted. It
would be interesting to compare this approach empirically with the Stearns and Hunt
algorithm [5], which chooses a vertex of lowest degree, searches its neighborhood, and
searches the rest of the graph with the low-degree vertex removed.

4 Conclusion

The CLIQUE, INDEPENDENT SET, and VERTEX COVER problems have been
studied for decades. They are excellent examples of seemingly simple graph problems
that are intractable. There may be more to learn about these problems if we are willing to
look at the missing edges in the graph instead of or in addition to the edges. We have
seen that when the missing edge list is used to represent a graph, the INDEPENDENT
SET problem has the same complexity as CLIQUE, and there is no reason to believe that
one of these problems is harder than the other. We also speculate that for sparse or dense
graphs, there may be an advantage to solving CLIQUE or VERTEX COVER for the edge
list and the missing edge list simultaneously, allowing information from the shorter
search to expedite the longer search.

References

[1] S. Cook, "The Complexity of Theorem-Proving Procedures", Proceedings of the
Third ACM Symposium on Theory of Computing, ACM, New York (1971), pp. 151-
158.

[2] M. Garey and D. Johnson, Computers and Intractability: A Guide to the Theory of
NP-Completeness, Freeman Press, San Francisco, CA (1979).

[3] R. Karp, "Reducibility Among Combinatorial Problems", in Complexity and
Computer Computations, ed. R. E. Miller and J. W. Thatcher, pp. 85-103, Plenum
Press, New York (1972).

[4] R. Stearns, "It's Time to Reconsider Time", Communications of the ACM, Vol. 37,
No. 11 (1994), pp. 95-99.

[5] R. Stearns and H. Hunt, "Power Indices and Easier Hard Problems", Mathematical
Systems Theory 23 (1990), pp. 209-225.

MICS 2008 271

Generative Programming Considerations for the
Matrix-Chain Product Problem

Andrew A. Anda
Computer Science Department

St. Cloud State University
St. Cloud, MN 56301

aanda@stcloudstate.edu

1 March 2008

Abstract
Many who utilize C++ matrix classes which implement overloaded arithmetic operators are
unaware that by allowing the matrix-chain product expressions they code to be evaluated
via the multiplicative operator’s intrinsic associativity, the performance of the evaluation
might be significantly suboptimal relative to the performance of the optimal ordering. We
propose that such a matrix class should be augmented to automate the process of identify-
ing matrix-chain products in source code, determining an efficient ordering, and evaluating
the matrix-chain using that ordering. We discuss considerations concerning: the influence
of special algorithms and matrix types, the completeness of static specifications, the imple-
mentation environment, and future language standards.

Andrew A. Anda
Computer Science Department

St. Cloud State University
St. Cloud, MN 56301

aanda@stcloudstate.edu

MICS 2008 272

1 Introduction

1.1 Overview
When a specialist in any specific discipline, an application domain, needs to formulate and
implement a computational solution to a problem in that domain, they will specify, analyze,
formulate an algorithm, then encode that algorithm into some programming environment,
translating syntax and semantics from their domain into that of the programming environ-
ment. The more correlated the syntax and semantics of the programming language is to
the application domain, the more efficient and reliable that process should prove to be,
and the less the domain specialist is required to know about how to efficiently and reliably
perform that translation to the programming environment. One aspect of the evolution of
high-level programming languages is the ongoing goal of further deskilling the program-
mer, by automating routine tasks, raising the abstraction level of the interface, establishing
reasonable, common, and expected (overridable) defaults, and enhancing the insulation of
the programmer from implementation details. Seminal early high-level programming lan-
guages targeted specific broad application domains, e.g. COBOL for business and FOR-
TRAN for science and engineering. Soon thereafter, the goal of more specific domain
expression was satisfied via the development of source libraries of related modular subpro-
grams. Examples in the context of numerical linear algebra include the BLAS, EISPACK,
and LINPACK. Some years later, the trend emerged to design high-level languages to be
primarily general-purpose. For these languages, external facilities for domain-specific spe-
cialization are essential. The class facility in object-oriented languages representing an
abstract data type has evolved from the preceding library paradigm as the means to repre-
sent specialized domain knowledge and operability.
C++ evolved from C as an alternative to SIMULA67.[19] First classes, then operator over-
loading and templates were introduced. Operator overloading furthers the goal of matching
the syntax and semantics of a specific application domain to that of the programming lan-
guage. The operator overloading facility in C++ is not as general as one might want, as
the set of overloadable operators is restricted to a well defined subset of the set of intrinsic
operators with no allowance for overriding the default precedence and associativity of and
operator (e.g. overloading the caret ‘ˆ’ operator for exponentiation yields the wrong as-
sociativity). Templates, introduced to support generic programming, accidentally included
an ability to perform static (compile-time) computations and even code generation.[25]
Templates can contain recursive expressions. In fact, the template layer itself provides
Turing-completeness. [22, pp. 312–313] [8, p. 407]

1.2 The Matrix Arithmetic Domain
Computational problems in an extensive set of disciplines are routinely solved via at least
partial formulations as the solution of matrix algebra problems. A matrix facility in a pro-
gramming language will better match its targeted domain if the arithmetic operators for
addition, subtraction, and multiplication are overloaded for scalars, vectors, and matrices.
Whereas matrices and their arithmetic operators are intrinsic in Fortran90 and its succes-
sors, in C++ these must be defined as extrinsic classes. Object oriented programming raised

1

MICS 2008 273

the overall abstraction level, but at the expense of run-time performance.
Templates can provide type genericity, i.e. static specializations that allow the arithmetic
operators to abstract commonality by processing different types of matrices, with mini-
mal code duplication, uniformly or specially.[2] Additionally, templates can be exploited
generatively to statically handle special cases and conditionals, evaluate expressions, and
optimize code for execution (e.g. temporary reduction or loop unrolling) – this is termed
metaprogramming. [24, 23, 25, 18, 8, 7, 1] Early matrix class libraries exploited tem-
plates for their generic facility only. Subsequent and more contemporary matrix class li-
braries (e.g. Blitz++, POOMA, MTL, and GMCL) implement templates metaprogramming
methodologies to optimize run-time performance on a variety of matrix types.[26, 18, 17, 6]
Matrices can multiply inherit a wealth of common properties including

precision e.g. single, double, quad

number algebra type e.g. integer, rational, real, complex

symmetries e.g. symmetric, non-symmetric, per-symmetric, Hermitian

density e.g. dense, sparse

patterned e.g. diagonal, banded, (upper/lower): triangular, Hessenberg

storage format e.g. CSR, CSC, recursive (tiling pattern: RBR, RBC, Hilbert, Z-Morton)

rank e.g. full rank, rank-one, rank-two, ...

structure e.g. circulant, Hankel, Vandermonde, Cauchy, Toeplitz, Fourier

special e.g. Hilbert, Krylov, stochastic

shape e.g. square, rectangular

spectral properties e.g. SPD

blocking

Without generics, a library handling each case would suffer from exponential combinatorial
bloat. However, templates can be exploited to manage this complexity automatically. E.g.
the GMCL library provides multiple template parameters for the matrix type and feature
categories covering 1840 kinds of matrices with roughly 7500 lines of code.[26] Different
matrix types and features are handled by a matrix configuration generator which is called
by a matrix expression generator wherein overload operators construct expression objects
representing the structure of the expression they are used in. The evaluation of the tree of
expression objects is handled by the assignment operator.[8]
The overarching principal is that if a property is available at compile-time, it can be ex-
ploited at compile-time. Therefore, we can at compile-time perform partial, or even total,
expression evaluation.

2

MICS 2008 274

2 Motivation
If users learn about the properties of matrix algebra in a typical linear/matrix algebra course
in the mathematics curriculum, they most likely learn that with respect to multiplication,
matrices in general don’t commute. But, matrices do associate. So, all associative orderings
of the matrix-chain product of conformal matrices,

n∏

i=1

Aki×ki+1 (1)

will give the same answer. However, math students are seldom introduced to the property
that in general, for a matrix-chain product of conformal matrices, some of which are not
square, associativity does not hold with respect to the total number of scalar operations.
It is likely that a specialist, in a domain unrelated to computer science and combinatorics,
would not know that by relying on the default left-to-right associativity of the multipli-
cation operator, they might be performing an excessive and sub-optimal number of scalar
products. For that reason, this instance of specialized matrix domain knowledge should be
integrated into a generative matrix library. That goal is the focus of this paper.
The task of determining exhaustively the optimal (fewest operations) associative ordering
becomes infeasible for longer product chains of matrices because the number of possible
orderings grows proportional to the sequence of Catalan numbers which grow at the ex-
ponential rate of Ω(4n/n3/2).[5, pp. 331–349] The optimal ordering can be determined in
polynomial time Ω(n3) and space Ω(n2)[16, 10, 5] by performing dynamic programming
[3] or memoization [5, pp. 347–349]. Hu and Shing developed lower complexity optimal
solution algorithm with O(n logn) O(n) space requirements.[14, 15] Other lower com-
plexity optimal matrix-chain algorithms have been developed which require either parallel
processing, or finding a sufficiently optimal approximate solution.[4, 9]

3 Proposal
The preceding section motivates a proposal for research and development towards the fol-
lowing objective: create an C++ facility which

1. identifies matrix-chain products in source code,

2. determines an efficient ordering,

3. evaluates the matrix-chain using that ordering,

via C++ template metaprogramming.

3.1 Considerations
3.1.1 Static/Dynamic

The proportion of work that can be performed at compile-time will be dependent on the
degree of completeness of the set of parameterized features at compile-time. If any of the

3

MICS 2008 275

matrices are dynamic or if any array slice dimensions are only known at run-time, then
the class can perform the full ordering determination only at run-time. However, fully
static subchains can be processed statically for optimality as any optimization problem
amenable for solution via dynamic programming exhibits optimal substructure, i.e. an
optimal solution comprises optimal subproblems.[5, p. 339]
The class will establish a default algorithm for the ordering determination. As it is likely
that most matrix-chain products will be short, the simplest efficient algorithm should suf-
fice. More efficient ordering algorithms, if they are part of the class, could either be selected
through declaration by the user, or could be selected conditionally based on chain length.
Additionally, a user could select an approximating algorithm. A facility whereby the user
may optionally provide their own algorithm via functor would add desirable extensibility.

3.1.2 Binary product operation counting

Current examples of implementation of the matrix-chain product assume that the standard
cubic complexity binary matrix product is applied to a fully dense and general rectangular
matrix. However, if more specific characterizations of any of the two operands of a binary
matrix product such as those itemized in the far-from-exhaustive list [1.2] of matrix types,
those characteristics can be exploited by a more efficient algorithm yielding lower operation
counts and/or execution rates than the standard general product algorithm. Even general
matrices can be multiplied more efficiently, and with a lower computational complexity,(if
square) via one or more recursive applications of the Strassen-Winnograd matrix product
algorithm.[11, 13] Similarly, the more efficient 3M algorithm can be used for general com-
plex matrix products.[13, pp. 437–438] If accurate operation counts for the products of
special matrices and algorithms are provided to the ordering optimizer, then the optimal
ordering may change. Therefore there should be a facility which provides a reliable exact
or approximate operation count for any pair of matrices and product algorithm on those
matrices. The operation counts could be generated a priori or alternatively, benchmarking
can be used to generate functions which estimate runtime performance. Because of the
significance of locality on modern computer architectures for algorithm performance, the
relationship between operation count and performance is not as tightly coupled as it was
pre-NUMA.

3.1.3 Implementation environment

Rather than start from scratch, this project would be more feasibly performed by aug-
menting an existing metaprogrammed C++ matrix library. Although, a stand-alone class
could be feasible and practical if it is restricted to ordinary dense general matrices and the
standard product algorithm. This might be a good target for a proof-of-concept project.
Because the current template facility is Turing-complete, it is certainly powerful enough
to perform everything we propose. However, certain essential generator and type related
facilities have to be performed rather awkwardly and opaquely in the current C++ stan-
dard. The next major revision of C++ [C++0X] will add critical syntax and semantics
(e.g. concepts) that will permit a more elegant implementation of generic and generative
metaprogramming techniques.[12]

4

MICS 2008 276

3.1.4 Beyond matrix-chain products

A more general project would be to parse matrix expressions to extract other optimizable
sub-expression types. E.g. matrix polynomials of the types

n∑

i=1

aiX
i (2)

n∑

i=1

Aix
i (3)

n∑

i=1

AiX
i (4)

can be evaluated efficiently via Horner’s method in conjunction with the binary power
algorithm. However, equation [2] can be evaluated more efficiently than by Horner’s.[13,
pp.102–103] [16, 21] In fact, any function of a matrix can be extracted and evaluated with
some being identified as having more efficient solution algorithms known. [11, Chap. 11]
Additionally, existing generative matrix arithmetic and algebra libraries can be augmented
and extended to include any of the almost inexhaustible supply of not-yet-handled matrix
types for which efficient product algorithms are known.

4 Summary
Because many who use matrix classes (having overloaded arithmetic operators) are un-
aware of the criticality of the associative ordering of the matrix-chain product expressions
they code, we propose that the class should be augmented to automatically identify and
evaluate the matrix-chain product using the optimal or a close-to-optimal ordering. This
objective can be implemented via C++ template metaprogramming. This project can be
partitioned into a set of coupled sub-projects. Extensions of this project to specific matrix
types and expression types could spawn a wealth of related projects.

References
[1] ALEXANDRESCU, A. Modern C++ Design: Generic Programming and Design Pat-

terns Applied. Addison Wesley, Boston, MA, USA, 2001.

[2] BARTON, J. J., AND NACKMAN, L. R. Scientific and Engineering C++: An Intro-
duction with Advanced Techniques and Examples. Addison Wesley, Reading, MA,
USA, 1994.

[3] BELLMAN, R. E. Dynamic Programming. Princeton University Press, Princeton,
New Jersey, USA, 1957.

[4] CHIN, F. Y. An o(n) algorithm for determining a near-optimal computation order of
matrix chain products. Commun. ACM 21, 7 (1978), 544–549.

5

MICS 2008 277

[5] CORMEN, T. H., LEISERSON, C. E., RIVEST, R. L., AND STEIN, C. Introduction
to Algorithms, second ed. The MIT Press, Cambridge, MA, USA, 2001.

[6] CZARNECKI, K. Generative Matrix Computation Library home page. 2006, http:
//nero.prakinf.tu-ilmenau.de/˜czarn/gmcl.

[7] CZARNECKI, K., EISENECKER, U., GLÜCK, R., VANDEVOORDE, D., AND VELD-
HUIZEN, T. Generative programming and active libraries (extended abstract). In
Generic Programming. Proceedings (2000), M. Jazayeri, D. Musser, and R. Loos,
Eds., vol. 1766 of Lecture Notes in Computer Science, Springer-Verlag, pp. 25–39.

[8] CZARNECKI, K., AND EISENECKER, U. W. Generative Programming: Methods,
Tools, and Applications. Addison Wesley, Boston, MA, USA, 2000.

[9] CZUMAJ, A. Very fast approximation of the matrix chain product problem. J. Algo-
rithms 21, 1 (1996), 71–79.

[10] GODBOLE, S. S. On efficient computation of matrix chain products. IEEE Transac-
tions on Computers C-22, 9 (1973), 864–866.

[11] GOLUB, G. H., AND VAN LOAN, C. F. Matrix Computations, third ed. The Johns
Hopkins University Press, Baltimore, MD, USA, 1996.

[12] GREGOR, D., JÄRVI, J., SIEK, J., STROUSTRUP, B., REIS, G. D., AND LUMS-
DAINE, A. Concepts: linguistic support for generic programming in c++. SIGPLAN
Not. 41, 10 (2006), 291–310.

[13] HIGHAM, N. J. Accuracy and Stability of Numerical Algorithms, second ed. the So-
ciety for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, USA, 2002.

[14] HU, T. C., AND SHING, M. T. Computatation of matrix chain products. part i. SIAM
Journal on Computing 11, 2 (1982), 362–373.

[15] HU, T. C., AND SHING, M. T. Computatation of matrix chain products. part ii. SIAM
Journal on Computing 13, 2 (1984), 228–251.

[16] PATTERSON, M. S., AND STOCKMEYER, L. J. On the number of nonscalar multipli-
cations necessary to evaluate polynomials. SIAM Journal on Computing 2, 1 (1973),
60–66.

[17] SIEK, J., AND LUMSDAINE, A. Software engineering for peak performance. C++
Report (May 2000), 23–27.

[18] SIEK, J. G., AND LUMSDAINE, A. The matrix template library: Generic components
for high-performance scientific computing. Computing in Science and Engineering
1, 6 (Nov/Dec 1999), 70–78.

[19] STROUSTRUP, B. The C++ Programming Language, third ed. Addison Wesley,
Reading, MA, USA, 1997.

6

MICS 2008 278

[20] UEBERHUBER, C. W. Numerical Computaton 1: Methods, Software, and Analysis.
Springer-Verlag, New York, NY, USA, 1997.

[21] VAN LOAN, C. F. A note on the evaluation of matrix polynomials. IEEE Trans.
Automat. Control AC-24, 2 (1979), 320–321.

[22] VANDEVOORDE, D., AND JOSUTTIS, N. M. C++ Templates: The Complete Guide.
Addison Wesley, Boston, MA, USA, 2003.

[23] VELDHUIZEN, T. L. Expression templates. C++ Report 7, 5 (1995), 26–31.

[24] VELDHUIZEN, T. L. Using c++ template metaprograms. C++ Report 7, 4 (1995),
36–43.

[25] VELDHUIZEN, T. L. C++ templates as partial evaluation. In Proceedings of
PEPM’99, The ACM SIGPLAN Workshop on Partial Evaluation and Semantics-
Based Program Manipulation, ed. O. Danvy, San Antonio, January 1999. (Jan. 1999),
University of Aarhus, Dept. of Computer Science, pp. 13–18.

[26] VELDHUIZEN, T. L., AND GANNON, D. Active libraries: Rethinking the roles of
compilers and libraries. In Proceedings of the SIAM Workshop on Object Oriented
Methods for Inter-operable Scientific and Engineering Computing (OO’98) (York-
town Heights, New York, 1998), SIAM Press.

7

MICS 2008 279

Simulation of Nitrogen Flow Using the St. Olaf
Beowulf Cluster

Anthony Waldschmidt
St. Olaf College

Class of 2008
waldschm@stolaf.edu

Dr. Richard Brown
Computer Science
St. Olaf College
rab@stolaf.edu

Dr. John Schade
Biology

St. Olaf College
Northfield, MN 55057

Abstract
Riparian zones, or strips of vegetation located adjacent to flowing water, are vital ecosystem
resources that benefit surrounding areas primarily by managing nitrogen runoff. Although
the mechanism is unclear, researchers have demonstrated an empirical relationship between
riparian plant root mass and levels of denitrification [3]. Denitrification is the export of
nitrogen to the atmosphere by riparian plants and is the mechanism utilized to mitigate
nitrogen runoff. Dr. Schade simulated these nitrogen dynamics and discovered that riparian
zones appeared to fail at high nitrogen loads.

In order to explore the generalizability of this finding, Dr. Schade’s model of nitrogen
flow[4] was translated into the C language and adapted to run on the St. Olaf Beowulf
cluster: Helios. An implementation of MPI was utilized to parallelize the algorithm once it
had been translated to C.

This implementation was the first attempt to parallelize an existing scientific model on
the helios cluster. A primary concern therefore was to establish guidelines and advice for
repeating the process in the future. As expected, the implementation presented a plethora
of technical and conceptual challenges.

The results of these cluster runs indicated that a wide array of riparian plant species with
varying physiological characteristics experience this breakdown of riparian zone function
at high nitrogen levels. Future research is needed to verify these findings and also to poten-
tially expand this research to an ecosystem level (riparian linking) and into the classroom.

MICS 2008 280

1 Introduction
In order to provide a meaningful understanding of the aims of this research project, it is
necessary to briefly explain the basic ecological unit under investigation: the riparian zone.
Riparian zones, as mentioned previously, are strips of vegetation adjacent to a body of
continuously flowing water. Riparian vegetation may occur naturally, but in many cases
farmers and natural resource managers plan and preserve these zones to act as biofilters for
nearby agricultural fields, buffering the flow of excess nitrogen runoff.

The two processes that define the outcome of the nitrogen cycle in these zones are deni-
trification and plant uptake. Denitrification is the process of converting organic nitrogen
to its atmospheric form at which point it escapes the ecosystem. While soil bacteria are
the organisms actually responsible for this process, riparian plants modulate denitrification
by virtue of their root mass. A low root mass will stimulate denitrification and thereby
raise nitrogen export. Conversely, if root mass is high, denitrification will be lowered along
with nitrogen export. Plant uptake, a process in which the plant draws in nitrogen through
the roots and incorporates it into its tissue, has a direct relationship with root mass unlike
denitrification.

The major concern presented by this model is the feedback cycle predicted when nitrogen
runoff is too high. Under these circumstances, denitrification plummets, the riparian zone’s
nitrogen export is drastically reduced, and excess nitrogen unfortunately flows into the
adjacent body of water. Dr. Schade uncovered this phenomenon during an initial, single-
processor simulation[4]. The goal of this investigation was to utilize the St. Olaf Beowulf
cluster to expand the preliminary sensitivity analysis and examine the generalizability of
the discovered riparian failure.

2 Implementation

2.1 Model Types
In order to isolate the impact of the plant’s response in terms of its nitrogen uptake, two
model types were implemented. The first was the control type in which the plant was
not allowed to adjust root size or tissue nitrogen levels. This constant control facilitated a
comparative analysis against the response group in which the plant was allowed to respond
physiologically.

2.2 Translation and Parallelization
Progressing from a model in a paper to a fully functional, parallel program presents a range
of technical and conceptual challenges. As a result, a primary concern of this project was
to establish guidelines for parallelizing future scientific papers and models on the Helios
cluster. The created guides are available on the wiki for the St. Olaf Beowulf project [2].
This process consisted of two major stages.

MICS 2008 281

The first stage was algorithm comprehension and extraction. Losing perspective in the sci-
entific minutae of the model was a potential concern; however, it was assumed that under-
standing the scientific basis of the model would be vital to correctly implement the model
and to maximize the efficiency of our runs. After careful examination of Dr. Schade’s
paper presenting the model [4], it became clear that some of the details of the algorithm
were not articulated with sufficient detail to easily repeat the implementation process. This
problem was solved when Dr. Schade provided us with the original MATLAB files used in
the single-processor simulation.

The second stage of this process was the actual coding and parallelization. Dr. Schade’s
model was translated from MATLAB to C and was parallelized with MPI. The paralleliza-
tion component consisted of dividing the parameter space equally, sending the appropriate
parameter space to each node on the cluster, processing this space, and then returning the
data to the head node for further analysis.

2.3 Technical Complications
During the course of the implementation process, which spanned from spring to fall during
2007, one major technical complication arose.

Aside from the relatively high downtime and frequent wipes of the cluster during the spring,
a major technical obstacle did not arise until multi-processor runs were attempted. The
issue appeared to be with the MPI software package installed on the experimental Castaway
cluster. Although the model had been correctly implemented using the MPI framework, the
mpirun command refused to correctly allocate runs to more than a single processor. This
issue was ultimately resolved by a migration to the Helios cluster in Fall 2007. Sun Grid
Engine was installed on this cluster and facilitated easy scheduling and multi-processor
runs.

2.4 Conceptual Complications
Two unexpected complications arose during the implementation of this model. Parameter
space sampling was the first dilemma we encountered. The 6 parameters we were varying in
our model runs unfortunately had no readily available natural limits. Our initial approach
to sampling was to perform a geometric progression ranging from 25% to 400% of our
baseline value for each parameter. Nothing in the nitrogen flow system dictates a geometric
pattern and this progression choice was therefore somewhat arbitrary. Our plan to address
this issue in the future is to use a series of geometric progressions to find a viable parameter
space before performing a uniform linear progression across this space for comparison.

The second unforeseen complication we ran into involved early termination of the model.
Termination occurs either after five years, or when plant productivity reaches a steady state.
After performing several test runs in which a large proportion of the steady state model sets
returned NaN (not a number) values, further investigation revealed that these outputs were
occurring in cases where steady state was reached before denitrification ever started. It

MICS 2008 282

makes sense that this would occur in cases where the parameter for maximum plant pro-
ductivity Pmax was too low to allow the plant to physiologically respond to low nitrogen.
However, we would like to investigate this phenomenon further to discover which other
types of parameter sets may cause this early termination.

3 Model Results
After implementing Professor Schade’s model in the C language and parallelizing the al-
gorithm using the MPI interface, a large set of simulations were conducted on the Helios
cluster over the course of several weeks in the Fall of 2007.

Each parameter’s interval was sampled using a geometric progression ranging from 25% to
400% of each parameter’s base value (provided by Dr. Schade). The initial results of this
investigation appeared to uphold Dr. Schade’s findings.

7,086,244 parameter sets were simulated creating approximately 43GB of output data. If
each parameter set’s simulation was allowed to run for 5 years, 100% of these sets exhibited
the switch between feedback types at high nitrogen levels. If these sets were instead run
until steady state was reached (defined as a state where plant productivity changes by less
than .001 / day), 97.98% exhibited the expected feedback switch observed by Schade.

4 Conclusions
Dr. Schade’s research into the dynamics of nitrogen nutrient cycling represents an area
of pressing concern in ecology. Riparian zones are vital instruments for the mitigation of
nitrogen runoff from human sources and are exploited for this purpose worldwide. The
implications of riparian failure at a certain nitrogen threshold are far-ranging.

The ’Conceptual Complications’ section of this paper has already outlined two areas for
potential future exploration: new parameter space sampling methods and investigation of
early steady state termination. These are two concerns that will need to be addressed before
this research can be published and applied to current landscape planning practices.

Research may also extend this nitrogen model in new directions. Spencer Debenport’s
research during the ’07 summer session illustrates this potential. Spencer’s work aimed
to extend my initial inquiry by simulating linkages between sequential riparian plants [1].
This project may be useful in discovering dynamic interactions between plants and under-
standing the wider ecosystem as a whole.

References
[1] DEBENPORT, S., BROWN, R., AND OTHERS. Application of beowulf cluster comput-

ing to problems in biology.

MICS 2008 283

[2] PROGRAM., S. O. C. S. Beowiki. Retrieved March, 2008 from
http://devel.cs.stolaf.edu/projects/bw/wiki.real/index.php/Docs (2008). Excerpt of Be-
owiki Documentation.

[3] SCHADE, J. D., FISHER, S., AND GRIMM, N. The influence of riparian shrub on
nitrogen cycling in a sonoran desert stream. Ecology 82, 12 (2001), 3363–3376.

[4] SCHADE, J. D., AND LEWIS, D. B. Plasticity in resource allocation and nitrogen-use
efficiency in riparian vegetation: Implications for nitrogen retention. Ecosystems 9
(August 2005), 740–755.

MICS 2008 284

The Player is Always Right

Stephen Marquis
Department of Computer Science

Lawrence University
Appleton, WI 54912-0599

stephen.g.marquis@lawrence.edu

Abstract
Working on a game design for any project can seem daunting. Finally putting together
your work is a great success, until you see the final result. It does not feel right. The
main question: what is wrong? The problem can be attributed to different problems: poor
implementation, design flaws, or even incorrect modeling. In this paper, we aim to focus on
problems in design that may slip notice, even for a well thought-out and organized project.
We point out common aspects of design affected by differing ideas of intuition. Intuitively
game designers think a well-modeled world effectively translates into good gameplay, but
we suggest a flaw in this thinking. Computers are very precise and accurate, to a degree
which humans are not. This paper points out several examples of this idea apparent in many
modern game styles, as well as specific examples of this problem in our work.

MICS 2008 285

1 Introduction
In game design, one of the most important aspects is player intuitiveness. Everything must
feel natural perceptually. One of the larger conflicts that can arise from this necessity is
human versus computer sensations. As developers we trust in the exactness of computers
and almost feel that it is natural to be extremely precise in how we model ideas. This does
not account for human feeling, however, and leaves much to be desired in the player expe-
rience for a game. Humans are not exact creatures and are imprecise by default. This must
always be considered when diving into the world of game development.

Over the course of ten weeks we developed a 3-dimensional rendition of the classic game
Asteroids. For the first half of the project, we did an in-depth study in the OpenGL graphics
library [4] and common techniques used within. The focus was then shifted to game design
and world modeling. When first working on the 3D asteroids project, we thought that a lot
of the design would be a straightforward modeling problem. The controls turned the ship
or gave it an immediate acceleration and everything was simulated in a 3D environment.
We figured the rest should take care of itself. Once this was all coded up, however, it did
not feel right at all. Emulating the real world exactly cannot work, because in real human
experience there are three other senses which are not being triggered during a game. The
three main subjects we will discuss that are affected by this need for a human feel are:
reference frames, computer reaction times, and camera control.

1.1 Structure
we will first provide a brief background on the asteroids project that this paper is largely
based upon, before discussing the main point. The first design element we considered was
how the game world should be modeled in 3D. Since the objects in the game had to wrap at
the world edges, we chose to model the world in the Real 3-dimensional Projective Space
(RP 3). This way the player would not experience any invisible walls in the game, but
instead have a finite game world which wraps around, to play in.

Figure 1: Any object leaving the sphere will reemerge on the other side.

This allowed us to place the ship at the center of a sphere, and have all movement calcula-
tions be relative to the non-moving ship. Once this was done we constructed the ship and
asteroid models. We then began on the other design aspects of the game. Movement was

MICS 2008 286

done through mouse-controlled turning and forward movement through the space bar. We
will go into further detail on the aspects of movement in the following sections.

2 Reference Frames
The first basic thing that must be coded is a model of the 3D world. This model should
have something more than a direct translation to the world in it; for example, any sort of
movement in the game. The programmer’s intuition may be that if you have a 3D world
and move the models through that world, the player will experience movement. This is not
necessarily the case. Some sense of movement in humans occurs physically even with their
eyes closed, which cannot be done while playing a game. Thus the need for much clearer
reference frames arises. For any visual reference frame, every possible direction of move-
ment must be taken into account. If a player cannot explicitly see evidence of movement in
each direction, then the experience will not feel natural to the player.

Take as an example walking down a textured hallway in some game. A simple design
decision such as the orientation of the texture on the wall can help improve the feel of the
game. If the walls are textured with designs that do not change with horizontal movement
along the hall, then the feeling of movement is greatly reduced. Even if you can see the end
of the hallway, the speed at which it is approached is much harder to recognize, because
you have no further visual cues. Now if one added varying cracks in the wall, or even verti-
cal lines as the texture, suddenly there is always movement on the screen. This in turn gives
the player the feeling of true movement. This was the first important lesson we learned.

For Asteroids, the problem is even worse, because there were not even walls that you pass
by. With just the asteroids floating in the distance there is no way to tell how far away they
are and thus how fast everything is actually moving. It was not apparent immediately what
was wrong. This seemed to model the vacuum of space correctly, which was our original
goal. In looking at other space fliers, we saw that they are easy to use and did not seem to
have any special attributes, however, there were always wisps of clouds, or broken debris
in the air – something that is a consistent size, and common enough that one can judge dis-
tance to said object. To deal with this problem we developed a particle system. Succinctly,
“A particle system is a collection of individual elements...that act mostly autonomously that
is they don’t care about what other particles are doing”[1]. Our solution to the problem was
to add a particle system of white particles randomly distributed around the world, as seen
in Figure 2. Now movement through space was always apparent, and there was no loss of
data from the model’s conception to the user.

MICS 2008 287

Figure 2: Comparison: In the second image, the circled points were particles in the 3D
space, to accentuate movement.

3 Reaction times
In programming a game it is natural and usually easier for one to implement a design that
does not take human ability into account; however, this does not always create a coherent
interaction between what is happening and what the player feels in the game. For exam-
ple, take any game that has computer opponents that are supposed to be the same as the
player’s character. The easiest design would be to give all available information in the en-
vironment to this opponent, and through some manner of search and heuristic find the best
move to make. While any other approach may be difficult to implement and a less desir-
able design choice, this means information can be calculated incredibly fast. Any player of
this game will immediately notice this gap in knowledge, however. From the information
given on the screen, one cannot possibly have as much data as the opponent does. This
gives an immediate disadvantage to the player as well as an overtly automated feel to the
game. To apply a player intuitive approach to the design, one must consciously reduce
reaction times. In a player’s intuition, any other players in the game should appear to take
time to think about things. This is especially evident in first person shooters. Even if we
have a situation where the opponent is only updated every frame of the game in a game
with sixty frames per second, the computer only takes one sixtieth of a second to react to
new surroundings. If this involved all correct decisions, then it is not a well-designed game.

There are two approaches to this problem: constrain the data available to the opponent,
or delay reaction times. By constraining data, the computer does not have the ability to
optimally react to every stimuli. While this does not mean that the calculations will take
longer, they will not be as accurate due to the constraints, and thus possibly require multi-
ple calculations to get a full understanding of the situation. By delaying reaction times, one
more closely approximate human behavior. Even a simple hack of giving a half-second
delay between calculation and implementation would give the player a much better feel
towards the game.

MICS 2008 288

4 Camera Movement
Another example of where a different viewpoint is needed in game design is camera move-
ment. In our design of Asteroids, we have a system which rotates the camera around the
ship based on the location of the mouse. Initially, this rotation was too sudden. When we
move the mouse back to the center, the ship stops turning immediately and no feedback is
given to that effect. In contrast, when one turns a car, the driver does not keep his or her
head locked straight ahead as the car turns, but instead looks back in order to get a broader
view during the turn. We were curious about why things still looked so unnatural when
turning, and it was this lack of familiarity with the turning process.

Take a look at any well-produced game and the camera has a distinct lag behind the player.
When the player finishes turning, the camera catches up to them. It can be seen in ear-
lier games that this was lacking. For example, in early first person shooters, there was no
head-bob effect[3]. While many may claim that the games appear lower quality due to
todays graphics standards, we see a larger factor in the way these effects were streamlined,
whether there are more polygons or not. This blurs the line of when movement precisely
stops. By using this approximation effect, we can have a huge impact to playability and
once again the intuitiveness that a player feels when playing a game.

Another closely related aspect of camera movement is dealing with movement parallel
to player direction. This adds even more to the aforementioned movement sensation. If
the camera is just a fixed entity around the player, then it is too rigid. It must react to
acceleration and show a noticeable lag between player control and display.

Figure 3: The overlaid(lighter) image shows the ship when not accelerating. Notice the
camera is zoomed out on the accelerating ship.

When the player hits the space bar in Asteroids, an acceleration is given to the ship. With
the particles, motion was much easier to spot and allowed for a constant appraisal of speed.
Acceleration however is a different matter. The change in motion is a shorter process, and
needs to be accentuated to catch the player’s attention. We added a simple animation that
pulled the camera away from the ship while accelerating. This simple technique allowed
for the game to announce what was happening without being distracting.

MICS 2008 289

5 Conclusion
We seek to instill in beginning developers the importance of usability and player feel. We
must always consider the approach from a player’s point of view. By making experiences
explicit(which in the real world may be merely implicit), we are approaching design from
a player’s point of view rather than a programmer’s. By taking this approach game design
becomes a job for the consumer and producer, creating more realistic and engaging games.

6 Acknowledgments
Many thanks to the Provost and Dean of Faculty, David Burrows, for making it possible to
present this paper and attend this conference. Thanks to Professor Joseph Gregg for advis-
ing me throughout the project and to Professor Kurt Krebsbach for reading and correcting
many drafts of this paper.

References
[1] ASTLE, D., Ed. More OpenGL Game Programming. Thompson Course Technology

PTR, Boston, MA, 2006.

[2] HILL, JR., F., AND KELLEY, JR., S. M. Computer Graphics Using OpenGL: Third
Edition. Pearson Prentice Hall, Upper Saddle River, NJ, 2007.

[3] ID SOFTWARE. Wolfenstein 3d. Apogee Software, 1992.

[4] SHREINER, D. OpenGL(R) Reference Manual: The Official Reference Document to
OpenGL, Version 1.4. Addison-Wesley Professional, Reading, Massachusetts, 2004.

MICS 2008 290

Chess AI

Josh Odom

Computer Science

University of Wisconsin - Parkside

Kenosha, WI 53141

odom0002@uwp.edu

Abstract

This was a research project to study game theory as it applies to computer chess, to use

that theory to create a working implementation of a chess AI with a graphical interface,

and to study the various efficiencies that could be applied to it.

MICS 2008 291

1

1 Introduction

The purpose of this research project was to study the various aspects of Artificial

Intelligence related to the problem of playing chess and to create a working chess AI.

Over the course of the project, I was able to create a working implementation of a chess

AI complete with a graphical front-end. I also did a significant amount of research on the

various efficiencies that could be implemented on the program, the strengths and

weaknesses of such efficiencies, and the changes to the code necessary to implement

them.

2 Chess Theory

The reason that the game of chess can be solved by a computer is because it is a solvable

finite problem. The game of chess can be thought of as a tree of possible moves with

each move node having a finite number of children and each leaf node representing a

game-over position. However, since the game-tree complexity of chess has a calculated

lower bound of 10
120

 [5], a full tree evaluation would take an astronomical amount of

time using any conceivable hardware. Because of this, the process used by computers is

to evaluate the game tree only to a certain depth from the current node, and then to make

an educated guess about the strength of the leaf nodes of the search. The educated guess

is typically an evaluation of the static board made by using heuristics to rate each player's

material and the placement of their pieces. Thus, the strength of a chess program will be

limited only by its search depth and static evaluation strength. These are both only

limited by the time it takes to process them. Therefore, the principal challenge of

building a computer chess AI is one of efficiency.

The minimax algorithm is used to search a game tree for the optimal move. It will find

the best possible ending position (for the search depth) for the current player assuming

that both sides make the strongest move they can. Since the minimax algorithm has to

test each of the leaf nodes, and since a typical chess position has a branching factor of

around 30 [5], then increasing the search depth by one ply (the move made by one player)

will increase the computation time for a single position by a factor of about 30.

Alpha-beta pruning is an optimization to the minimax algorithm which will keep

positions from being evaluated when data shows that those positions do not affect the

strength of the current possible move. Intuitively, alpha-beta pruning will prune off sub-

trees when it can be shown that the sub-tree in question can only be reached if one (or

both) of the players make a weaker move than one already evaluated. Once the optimal

move has been found, most sub-trees can be proven to be sub-optimal and little time is

wasted calculating them.

MICS 2008 292

2

3 Program Design

3.1 Language

The decision of which language to use was a crucial one. My criteria for a language was

that it needed to be cross-platform (because of the variety of operating systems I was

using to develop in), that it needed to compile to be efficient and optimized, and that it

needed to be flexible and modular so the code could easily adapt to new optimizations. I

decided that Objective-C fit all three of these requirements. Objective-C can be compiled

cross-platform because it can be compiled by GCC, and GCC has many optimization

features which can be enabled [1]. Objective-C is a set of extensions to C which give it

full object-oriented capabilities [2].

The decision of the language turned out to have advantages and disadvantages. The main

advantages were that all of my code that was strictly Object-Oriented was very clean and

readable (even if much of the procedural code was arcane) and that I had very few

syntactical errors when developing the project. The main disadvantage lay in

Objective-C’s dynamic message-passing: namely, the expense of calling a method, since

Objective-C must determine which method to call on the fly. Since efficiency was only a

problem in the bottlenecks of the program, it was straightforward to replace the few

frequently-called methods with C-style functions.

3.2 Design Decisions

Figure 1: UML Diagram

MICS 2008 293

3

My original design decisions ultimately led to many of the efficiencies and problems

inherent in my program. First, I decided to implement the tree with each node

representing a board object in memory, each board holding all positional information and

a heap of child positions. If a heap has children, then its static value is that of the optimal

choice of its children. If it has no children, its value is based on material. When

performing the depth-first minimax search, it starts with the most optimal move as

determined by the previous search, so the optimal move for the current search is likely

one of the first to be evaluated. This allows alpha-beta pruning to efficiently prune the

weaker moves on the tree.

Additionally, the boards are always represented as white's turn to move. This is done by

flipping the board vertically between moves and changing the color of each of the pieces.

The advantage of this is that only one move-generation method needed to be written.

However, the disadvantage is that all of the board data needs to be copied and inverted

between turns.

Because the game tree is stored in memory and since each game position contains all of

the board data, doing a full 5-ply search can cause the engine to use a full gigabyte of

ram. Therefore, this implementation is effectively limited to a 5-ply search, on modern

computers.

3.3 Program Logic

The most critical logic of the program is the move-generation code. It is a monolithic

method which examines each piece on the board and determines which

movement/capture rules apply to that piece. For each possible move, it creates the child

board position dictated by the move and adds it to the current board's heap of moves.

Normally, the child move only differs from the parent in terms of placement of the

board's pieces. However, sometimes the child board also includes information about the

move which was made. For example, when a pawn is advanced two spaces from its

starting position, this is recorded so that en passant captures are possible. Also, whenever

the king or a rook is moved out from its starting position, this is noted so that castling

rules are upheld.

Another important section of the program is the logic to determine if the king is in check.

This code was introduced late in the development cycle. My original plan was to

determine whether a player's king was in check based on the outcomes of each move's

child nodes. If any of its children resulted in the king being taken, then obviously the

player put him or herself into check, so the current move should be flagged as invalid.

Logically, if each board position evaluated possible moves before they gave the value of

the position and if any of those moves caused the king to be captured, then the child

could propagate a message back to its parent, informing that it was an invalid move.

Thus, no invalid moves would be evaluated by the minimax algorithm.

The problem arose when I tried to implement castling. Castling cannot be performed

when the king is in check, and check is only determined by whether the king can be

MICS 2008 294

4

captured if the side in question forfeits a turn. To implement this, I would have needed to

create a way to forfeit a turn and a way to do all move generation except castling (to

prevent infinite recursion). I decided that it would be more practical and would make my

code more readable and efficient to just create standalone logic to determine if the king is

in check.

It turned out that the worst bottleneck in the program is the static evaluation code. This is

because it tallies up the values of the pieces by checking each space on the board, and it

gets called on every node. Code which determines check is called on each leaf node, but

need not check each board square. Position-generation code, although more complex and

processor-intense than static evaluation, only gets called on non-leaf nodes. Since I use

only a naïve static evaluation of the board, I still get proper results if I keep track of a

board's value by noting value changes made by captures. This bypasses the static

evaluation function altogether.

3.4 Profiler

After I completed a basic working game (albeit lacking many features), I determined that

the program efficiency (based on its implementation) was essential to the project. In lieu

of an actual code profiler, I wrote custom profiling code which performed instruction

counts per method. The profiling code is enabled at compile time, so it does not affect

performance when profiling is disabled. As useful as it was in measuring program

efficiency and locating bottlenecks, it made all of the code much less readable.

3.5 Interface

My initial interface for the engine was a simplistic one, which would textually provide a

list of possible move choices and would make the operator choose from that list.

Although this worked, it was very tedious. To be able to easily play a game, it required

an operator to act as a mediator between the program and a physical chess board. Even

so, move entry was slow.

When I started working on the GUI, my first idea was to make the engine to interface

with XBoard/WinBoard (a free chess GUI client). That way, I would not have to bother

with making any graphical software. However, because my engine's design was

inherently incompatible with XBoard/WinBoard's interface, I determined it would be

more straightforward to instead write my own GUI as a wrapper for the textual interface

which I already implemented. Consequently, the graphical front-end turned out to be a

kludge, more than anything.

I wrote the graphical front-end in Java, using the Java Swing API. I chose Java because

it’s cross-platform and because I've had considerable experience creating Java Swing

GUIs. The GUI itself is an 8-by-8 grid of buttons, labeled per piece and colored to look

like a chess board. The inter-process communication between the GUI and the engine is

done by the GUI spawning the engine as a child process and getting a handle on the

engine's I/O. It then sends move instructions to the engine’s standard input when the user

MICS 2008 295

5

makes a move, and the graphical board gets updated when the engine returns with new

board data.

4 Difficulties

Because of the complexities of the rules of chess, along with the number of calculations

needed to produce a single answer, the greatest difficulty I encountered was determining

whether or not my code contained logical errors. This is because the program would still

produce a legal move even with the errors, but the move would not be optimal. In other

situations, the game would allow for invalid moves or would deny valid moves in

obscure cases. These difficulties were only overcome through rigorous testing.

I had one such error after I implemented alpha-beta pruning. I had initially overlooked

my program's side-swapping (between turns) when I coded the algorithm, and this caused

the tree to be pruned based on arbitrary data, instead of being pruned from valid data.

Thus, the game would make very foolish moves, and very quickly. However, since this

was corrected, the program only prunes branches that can be proven to not contribute to

the decided move.

5 Further Improvements

I did not implement many algorithmic optimizations to my program, but the testing and

the code optimizations I did gave me an idea of how different optimizations will affect

the program, and which would be more beneficial than others.

One good modification would be to modify the static evaluation function to pay attention

to positional information, instead of merely material. This would result in the program

playing much stronger even if no further modifications were done.

As far as implementation goes, it would be best to convert the code to pure C or C++.

This would consist of turning all Objective-C methods into C-style functions or C++

classes, which would make method-calling more efficient. The code could be modified

so the board stays represented from the same side between turns and merely indicates

whose turn it is. Also, moves could be stored as a listing of the pieces that were moved.

Thus, the game data would not need to be copied between moves. A single game board

would be used to represent all game positions. The board would be modified to reflect

the current position in the tree. Additionally, an index could be kept of pieces and their

positions so a brute-force search through the board isn’t necessary to find the position of

a single piece. A transposition table could be kept so that board positions which occur

multiple times need only be calculated once.

If all that were done, since evaluating moves would be considerably cheaper, there would

be no reason to keep the tree in memory. It would be optimal to implement the MTD(f)

modification to alpha-beta pruning. MTD(f) efficiently guesses at what the value of the

best move is, and when it chooses its value, MTD(f) finds the proper branch to take.

MICS 2008 296

6

Because it is guessing at a single value each pass, it can prune any sub-tree which cannot

evaluate to that value. This efficient pruning is what leads to the efficiency of this

algorithm as a whole [4].

Once this has been implemented, the program will inherently be very scalable. It would

be straightforward to make the evaluation section of the code only evaluate a specific

child (or specific children) of the root node, and thus you could have multiple threads

evaluating at the same time. One could even implement a slave application which can sit

on remote computers and can process sub-trees which are sent to them.

Finally, one could complement the rest of the optimizations by adding an opening and

end-game database. If all of this is implemented, I predict that the program will be a very

challenging opponent.

6 Psychological Effects

I found two interesting psychological phenomena that resulted from this project. First, all

of the people who played a full game against the program ended up referring to it as "he"

during their game(s). My naïve guess as to why this happens is that my program passes

the Turing Test [3] in a way: a chess player interacts with the computer no differently

than he/she would interact with a human chess player, especially if a human operator is

making moves on behalf of the computer.

Secondly, I have found that after looking at thousands of chess positions without context

of logical reasoning (e.g. when debugging), I can no longer bring myself to logically

analyze chess moves. I have not determined the cause for this.

7 Conclusion

Because of the complexity of the game of chess, computers will not play a perfect game

of chess in the conceivable future. Although my particular implementation is far from

optimal, it's a working program which can play a perfect game up to 5 plies ahead. Since

the code was modular, it would be a good base for starting future chess AI projects.

MICS 2008 297

7

References

[1] GCC 4.3.0 Manual. Free Software Foundation, Inc. 10 Feb. 2008

<http://gcc.gnu.org/onlinedocs/gcc-4.3.0/gcc/Optimize-Options.html#Optimize-

Options>.

[2] The Objective-C 2.0 Programming Language. Apple, Inc. 10 Feb. 2008: 11

<http://developer.apple.com/documentation/Cocoa/Conceptual/ObjectiveC/ObjC.

pdf>.

[3] Oppy, Graham and David Dowe. "The Turing Test." The Stanford Encyclopedia of

Philosophy (Winter 2005 Edition). Ed. Edward N. Zalta. 10 Feb. 2008

<http://plato.stanford.edu/archives/win2005/entries/turing-test/>.

[4] Plaat, Aske. MTD(f). 10 Feb. 2008 <http://home.tiscali.nl/askeplaat/mtdf.html>.

[5] Shannon, Claude. "Programming a Computer for Playing Chess." Philosophical

Magazine 41.314 (1950): 4.

MICS 2008 298

Course Scheduling with Genetic Algorithms

Carl Davidson
Computer Science Department

Simpson College
701 North C St. Box 4473

Des Moines, IA 50125
carl.davidson@simpson.edu

Abstract

This paper describes a research project using a genetic algorithm to generate schedules
for college courses. The task to generate schedules for college courses is a combinatorial
constraint satisfaction problem. The constraints include the requirements needed to
graduate, the prerequisites of each course, the courses available each semester, the
number of semesters before graduation, and the number of courses a student can take
each semester. In the algorithm, a generation of schedules is created by permuting an
array of requirements and replacing requirements in the array with courses that fulfill
them. The algorithm then selects schedules from the population using a rank-based
selection method that favors fit schedules. Fitness is determined by the ability to
complete the most requirements in the least amount of time. Selected schedules
crossover courses with one another to create a new generation of schedules. Schedules in
this new generation may then be mutated by switching times courses are taken, removing
repeated courses, and adding omitted courses. The algorithm creates new generations this
way for a predetermined number of times and returns the best schedule created over all
generations.

This paper discusses the organization of the data and the specifics of the basic steps in the
genetic algorithm: creating the initial population, computing fitness, selection, crossover,
and mutations. The paper also examines the effectiveness of the implemented algorithm
through experiments performed under several different college scheduling scenarios. In
the experiments, the algorithm demonstrated it could successfully generate several
schedules in a short amount of time that would fulfill all requirements needed to graduate
in tested scenarios.

MICS 2008 299

Introduction

Graduating from college with particular majors often requires strategy to finish before a
given year. One effective strategy consists of creating a schedule for the next semester,
based on what times courses are available, followed by creating possible schedules for
each semester afterwards, based on whether courses are offered in the spring and fall, and
whether courses are offered only every other year. The schedules for each semester are
closely related—the schedules for which course hours are known affect what courses
must be taken later, and schedules for which course hours are not known affect what
courses must be taken before there is no other time in which the course is available. A
common goal among students is to fulfill all requirements to graduate in the least amount
of time. Depending on the situation, this goal may override any preference the student
has for courses. Rather than continuing to manually create schedules in this manner each
semester, a program was developed to perform the task.

Schedule generation is often a complex task without a definite goal. The task is further
complicated when accounting for additional constraints that must be considered while
scheduling college courses, such as times in which courses can be taken, and
prerequisites needed before courses can be taken. As a result, typical approaches are
often difficult to implement or inefficient to perform. However, genetic algorithms have
been demonstrated to solve problems without easily defined solutions, including those
involving schedule generation. It was decided that a genetic algorithm would be used to
generate the schedules of college courses in the program.

Genetic Algorithms

Genetic algorithms are used to find favorable solutions for problems among many
potential solutions, in a manner inspired by natural selection. Genetic algorithms were
first conceived in the 1960s by John Holland at the University of Michigan, and since
then they have been employed in a wide variety of optimization problems, including
coordinating robotic cameras, monitoring gas pipelines, developing more effective
antennas, developing stealth planes, and decoding secret messages (Goldberg, 1989; R.
Haupt & S.E. Haupt, 1998). Though many variations of genetic algorithms exist, the
majority of genetic algorithms consist of four main operations: creation, selection,
mating, and mutation (R. Haupt & S.E. Haupt, 1998). Each operation hosts a series of
development decisions to be made.

In the creation operation, a series of potential solutions is randomly created. Each
solution, known as an “individual” or “chromosome,” consists of a string of values that
codes for characteristics of the solution. The series is collectively known as a
“population.” Multiple development decisions relate to this operation, including how
many individuals will be in a population, how chromosomes will represent solutions to
the problem, how chromosomes will be generated, and whether to employ advanced
techniques used in nature, such as diploidy or multiple chromosomes (Goldberg, 1989; R.
Haupt & S.E. Haupt, 1998).

MICS 2008 300

In the selection operation, individuals are selected to become the basis for a new
population, using a chosen selection method. Selection favors individuals representing
good solutions to the problem at hand, which are said to have higher “fitness.”
Development decisions related to this operation include how fitness will be analyzed, and
what selection method will be chosen, including the rank-based, roulette wheel, elitist, or
tournament methods (Goldberg, 1989; R. Haupt & S.E. Haupt, 1998).

In the mating operation, a new population is created by mixing portions of the individuals
selected during the selection operation. The combination of chromosome segments is
referred to as “crossover,” the individuals participating in the crossover are known as
“parents,” and the individuals produced in the crossover are known as “children,”
“siblings,” or “offspring.” Development decisions related to this operation are limited to
how many parents may contribute their chromosome to a single sibling, and how
chromosomes are combined, such as through a fixed locus, random locus, or random two
point locus method (Goldberg, 1989; R. Haupt & S.E. Haupt, 1998).

Finally, in the mutation operation, a percentage of individuals of the new population are
randomly selected and alterations are randomly made to their chromosomes.
Development decisions related to this operation include what percentage of the
population receives mutation, whether individuals with high fitness are excluded from
mutation, and how chromosomes are altered during mutation (Goldberg, 1989; R. Haupt
& S.E. Haupt, 1998).

The selection, mating, and mutation operations are then repeated until a condition is met.
One such repetition is known as a “generation.” Assuming the designed algorithm is
appropriate for the problem it is designed for, the section of the population with the best
fitesses will increase with the population. This is summarized in what is known as The
Fundamental Theorem of Genetic Algorithms:

M(H,t+1)>=M(H,t)(f(H)/F)(1-p1-p2)

M represents the number of individuals in a population with a particular pattern in their
solution (or scheme), H is a scheme, t is a population, f is the average fitness of all
individuals with a particular scheme, F is the average fitness of all strings in the
population, p1 is the probability that any scheme will be destroyed during crossover, and
p2 is the probability that any scheme will be destroyed during mutation. In summary, the
number of fit individuals will increase with population (Goldberg, 1989). Over many
repetitions, the highest fitness in the population should also increase, and an individual
should eventually solve the problem to a satisfactory degree.

Previous Schedule Generation Using Genetic Algorithms

While no known research has investigated the use of genetic algorithms in generating
college course schedules, some previous research has investigated the use of genetic

MICS 2008 301

algorithms in general schedule generation. The two problems closest in resemblance to
the problem at hand are the Traveling Salesman Problem and the Job Shop Scheduling
Problem.

In the Traveling Salesman Problem, the most efficient route is determined through a
series of cities that must be visited. In the context of schedule generation, the most
efficient schedule is determined given a set of required objectives. The most common
genetic algorithm used for the Traveling Salesman Problem represents individuals as an
array of numbers representing objectives, in which each objective is mentioned only once
throughout the array. During the creation method, permutations of a list of objectives are
randomly generated to produce an initial population. During the mating method, two
individuals in a mating population are copied. The two copied individuals exchange
objectives at a random locus, which produces one duplicate objective in both individuals.
The individuals then exchange objectives at the locus of one of the two duplicate
objectives, which in turn produces additional duplicate objectives. Duplicate objectives
are repeatedly exchanged this way until there are no duplicates remaining, at which point
two new siblings are created with objectives from both parents. Finally, during the
mutation method, pairs of random objectives are exchanged between loci in the
chromosome of a randomly selected individual, producing a slightly different individual
(R. Haupt & S.E. Haupt, 1998).

In the Job Shop Scheduling Problem, the most efficient schedule is determined given a
set of objectives and a set of machines to perform them. Each objective has a set of
activities that must be performed to fulfill the objective (Jackson, 1996). There have
been many techniques used to solve the Job Shop Scheduling Problem. For instance, in a
binary representation of the Job Shop Problem, the sequence of operations is represented
by a binary array representing all possible links between operations, with two operations
representing the start and stop of the sequence. Crossover could then occur as it does in
basic genetic algorithms, provided that it was followed by a function to repair any broken
sequences. In a permutation representation of the Job Shop Problem, sequences could be
represented by an integer array, where each integer represents the operations themselves.
Sequences could then be generated, reproduced, and mutated in a manner similar to the
Traveling Salesman Problem (Yamada & Nakano, 1997).

Additional representations of problems could be implemented with the Job Shop
Problem, though many such representations are not applicable to scheduling college
courses. While the course-scheduling problem investigated here is very similar to the Job
Shop Problem, there is only one machine doing the work—that being the student taking
the courses. As a result, only the representations of the Job Shop Problem that can
represent one-machine scenarios are applicable to the course-scheduling problem.

MICS 2008 302

College Course Schedule Generation Using Genetic Algorithms

A Java program was developed to generate schedules for college courses using a genetic
algorithm. The program consists of several classes relevant to the operation of the
genetic algorithm. A driver class, ScheduleGeneratorDriver, interprets information from
files and user input in a command line interface, then passes the information to the class
housing the genetic algorithm, ScheduleGenerator. A storage structure, Set, stores
information relevant to course scheduling in a manner that can be easily rearranged
randomly—an important feature when searching for a random course that fulfills a
requirement. The class known as Set stores objects of the type SetValue, of which there
are three subclasses: Course, Session, and Requirement.

Objects of the Course class represent college courses, objects of the Session class
represent times at which college courses are available, and objects of the Requirement
class represent conditions that must be fulfilled before graduation, usually by taking a
given number of courses from a given list. The Course class stores a string representing a
course title, an integer representing the number of credit hours awarded for a course,
several Booleans representing when a course is available, a set of courses representing
prerequisites, a set of requirements representing what a course fulfills, a set of sessions
representing lectures available for a course, and a set of sessions representing labs
available for a course. The Session class stores an integer representing how many
semesters into the future a session will be offered, an integer representing start time, an
integer representing end time, and several Booleans representing days of the week in
which a session will be available. The Requirement class stores a set of courses that can
fulfill a requirement, along with an integer for the number of courses from the set that
must be taken before a requirement is fulfilled.

Interface

The program begins by asking the user for the desired/likely number of semesters needed
before graduation, the desired/likely number of courses that should be taken per semester,
and a number designating whether the current semester is during the fall or spring, on a
year whose numerical representation is even or odd. The program then asks the user for
the names of three files.

The first file notates general course information. Every one to three lines of this file are
dedicated to information on a single course, including the name of a course, credit hours
awarded for a course, availability of a course during certain semesters, prerequisites for a
course, times for a course’s lectures, and times for a course’s labs. The second file
notates information on the courses needed to graduate with the student’s desired major,
including the list of courses that can fulfill a requirement, and the number of courses from
the list needed to fulfill a requirement. The last file only notates courses that have
already been taken. After receiving the three file names, the program processes the
information from these files into objects of class Set. The program then uses the sets,
alongside additional user input, to invoke the genetic algorithm.

MICS 2008 303

For each generation of the genetic algorithm, the program displays the number of
generations computed, the highest fitness found in a generation, the lowest fitness found
in a generation, and the time it took to compute the current generation. After a desired
number of generations, the program displays the best schedules up to a number specified
by the user. If the schedules are not satisfactory, the user can choose to continue the
proccess. Upon exiting, the program displays, in a more detailed form, the courses in the
best schedule of the last generation.

Chromosome Representation

The representation used for the course-scheduling genetic algorithm most resembles the
permutation representation of the Job Shop Problem. The representation was chosen for
its previous use in scheduling, its applicability to one-machine scheduling problems, and
its similarity to the well studied genetic algorithm used for solving the Traveling
Salesman Problem.

In the genetic algorithm, schedules are represented as arrays of objects known as nodes.
Each node stores the name of a course, the name of a requirement intended to be fulfilled
by that course, the name of a session at which the course can be taken, and the name of a
lab the course the course may need. Each name is a numeric value, either determined by
converting the string name of a course into a number (such as in the case of courses), or
by the order in which they were read from input files (such as in the case of requirements,
sessions, and labs). Names are set to zero by default, which bears different meaning
depending on what else is stored in a node. Nodes storing class names of zero, termed
“blank nodes,” show that the student would have wanted to take a course, but did not.
Nodes storing class names of nonzero values, but storing session and lab names of zero,
represent a course planned to be taken in a semester in which session and lab times are
not known.

Arrays are subdivided into sections representing semesters prior to the student’s
anticipated graduation. The size of each section is equal to the desired/likely number of
courses to be taken each semester, and the number of sections is equal to the
desired/likely number of semesters before graduation. As a result, the size of each array
equals the desired/likely number of courses to be taken each semester multiplied by the
number of semesters before graduation.

Creation

During the creation operation, a two-dimensional array is initialized to represent the
population. The length of the array equals the size of the population, specified by the
user, while the width of the array equals the size of each schedule, specified in the
manner previously mentioned. While the population is not full, new schedules are

MICS 2008 304

created and added to the array. Schedules are created by finding courses to fulfill
requirements in a permutation of an array of requirements needed to graduate.

Originally, schedules were created by first cloning the requirements set into a temporary
set in which SetValues could be removed without repercussion. Then, while
requirements were still present in the requirement set, an applicable requirement, course,
and session would be randomly selected from the requirement set, course set, and the
chosen course’s lecture and lab set. If no applicable course could be found, a blank node
would be created. Otherwise, the requirements fulfilled by the course would be removed
from the temporary requirements set. When either no more requirements remain, or no
more space in the schedule’s chromosome remains, the schedule would be added to the
population.

While this method created valid schedules, the time required to run the method was
disproportionately large when compared with the rest of the program. As a result, a new
method was devised. In the new method, an array of requirement names was created
from the requirements set. For each schedule in the array, contents in the array of
requirement names randomly switch positions to produce a permutation of the array.
Courses and/or sessions available at that section of the array are found to fulfill the
requirements named in this permutation, turning the array of requirement names into a
schedule. If a course cannot be found to fulfill the requirement, a blank node is created.
Modifications are then made to the schedule to accommodate for differences in size
between the array of requirements names and the schedule. If the size of the array of
requirements is greater than the size of schedules in the population, the schedule is
truncated to fit into the population array. If the size of the array of requirements is less
than the size of the schedules in the population, the remaining portion of the schedule is
filled with blank nodes to fit into the population array.

Selection

During the selection operation, the existing population array becomes the old population
array, and a new population array is created to replace it. Individuals from the old
population are selected by a combination of elitist and rank-based selection methods,
favoring fit individuals that were recently created. Elitism was chosen for its ability to
prevent the loss of individuals with high fitness. Rank-based selection was chosen for its
ability to control the specific probabilities of certain individuals entering the mating
population, which permits experimentation with the algorithm. Selected individuals are
then used to fill the first half of the new population array, which represents the mating
population. The first half of the array was used to store the mating population in order to
prevent the loss of individuals with high fitness.

Originally, a tournament method was implemented in the selection operation, in which
random pairs of individuals were selected, and the individual with the greatest fitness in
the pair would enter the mating population. However, individuals with greater fitness
would occasionally compete with one another, causing some individuals with high fitness

MICS 2008 305

to be excluded from the mating population, in turn causing average fitness to steadily
decline over several generations.

Later, a standard rank-based selection method was implemented, in which the old
population would be divided into a given number of groups based on fitness. Groups
would be selected through a weighted random method, and individuals from the chosen
group would be selected through an unweighted random method. However, some
individuals with high fitness would still be excluded from the mating population, again
causing average fitness to steadily decline over several generations. The probabilities
were altered so that individuals with higher fitness would have a greater chance of
entering the mating population, but then only clones of individuals with high fitness
would exist after a small number of generations. No arrangement of probabilities was
found that consistently increased the greatest fitness in populations, while maintaining the
lowest fitness in populations for genetic diversity.

To solve this problem, the rank-based selection method was altered to automatically
select a given number of individuals within a given range of the best fitness in the
population. Because of this alteration, the selection operation now employs a
combination of elitism and rank-based selection. As a result, the highest fitness in a
population increases while the lowest fitness in a population vacillates over several
generations.

Mating

During the mating operation, the second half of the new population array is created by
crossing over individuals of the first half of the new population array. Cross over occurs
in a manner similar to the genetic algorithm used in the Traveling Salesman problem.
Two individuals from the first half of the new population array are randomly selected to
represent parents. Two new individuals are then initialized to represent siblings. The
two siblings begin as identical copies of these two parents. A random locus in the
chromosomes of the two individuals is then selected for exchange. After the nodes at the
loci are exchanged between the two siblings, one of the siblings is searched for any
duplicate requirements that were created from the exchange. The nodes at the loci of this
duplicate requirement are then exchanged. This is repeated until no duplicates remain.

Mutation

As with other operations, the mutation operation employs a technique from the genetic
algorithm used to solve the Traveling Salesman Problem. In this method, a given
percentage of the population are selected, based on a mutation rate given by the user.
Two loci in the chromosome of a chosen schedule are selected randomly, and the
requirements at the loci are exchanged. Finally, applicable courses are randomly chosen
to fulfill the exchanged requirements.

MICS 2008 306

Refining

Throughout the genetic algorithm, two operations are invoked for each schedule created
or altered: an operation refining schedules, and an operation analyzing fitness of
schedules. The refining operation attempts to improve the fitness of a schedule that is
passed to it. This nonstandard operation was implemented to prevent the degradation of
average fitness throughout several generations as a result of an increase in duplicate
courses, blank nodes, and unfulfilled prerequisites. Originally, duplicate courses would
appear when multiple requirements could be fulfilled by a single course, or when one
requirement could be fulfilled only by taking multiple courses. Blank nodes would occur
when a schedule that completes all requirements mates with a schedule that does not
complete all requirements. Unfulfilled prerequisites would occur when a prerequisite is
moved in a schedule’s chromosome during mutation. However, these issues were
eliminated when the refine operation is implemented.

During the refining operation, any duplicate or inapplicable courses are replaced with
blank nodes. Then, any requirements not fulfilled by the schedule are found, and any
blank nodes are replaced with applicable courses that fulfill such unfulfilled
requirements. Finally, any remaining blank nodes are moved to the end of the portion of
the chromosome that represents the semester they are in. This last step improves the
schedule’s fitness for reasons that will be discussed while explaining the fitness
operation.

Fitness

Fitness, used during the selection operation, is stored in an array of integers with the size
of the population. In the array, the fitness value of an individual is stored at the same
index as the individual stored in the population array. A fitness value in the array is
determined by a fitness operation.

As with the refining operation, the fitness operation is invoked whenever a schedule is
created or altered. For each filled node in the chromosome, requirements fulfilled by the
course in the node are removed from the requirements set. This is done until there are
either no more cells to examine in the chromosome, or no more requirements to fulfill. If
all requirements are fulfilled, then the schedule is valid. In this case, the fitness value is
returned as a positive number, representing the number of cells that remained before the
desired date of graduation is encountered. If, however, unfulfilled requirements remain,
the schedule is invalid. The fitness value is returned as a negative number, representing
the number of requirements that remain.

To encourage invalid schedules to become valid, an additional factor was added to fitness
values. Because invalid schedules typically occur when blank nodes exist in a schedule’s
chromosome, and because it is rare for the mating and mutation operations to
successfully replace such blank nodes with courses, fitness values must also consider the

MICS 2008 307

number of blank nodes that occur in each schedule’s chromosome. Invalid schedules are
more likely to become valid schedules if they have fewer blank nodes, so the fitness
values for invalid schedules are decreased by the number of blank nodes in their
chromosomes. However, valid schedules are more likely to improve when they have
more blank nodes, so the fitness values for valid schedules are enhanced by the number
of blank nodes in their chromosomes.

Experiments and Results

Best fitness and worst fitness were examined for 50 generations for two simplified real-
life scenarios. In the first scheduling scenario, a sophomore attempts a double major in
Computer Science and Environmental Science. The scenario begins in the spring of an
even-numbered year with some credits earned through a combination of AP courses,
transfer courses, and courses from three previous semesters at the college. The scenario
must be completed in five semesters, with five courses each semester. In the second
scenario, a freshman attempts a major in Sociology and a double minor in Marketing and
Spanish. The scenario begins in the fall of an even-numbered year with some credits
earned through AP courses. The scenario must be completed in eight semesters, with five
courses each semester. Each scenario was processed with population sizes of 100, 500,
and 1000 members while the mutation rate was 5%. Afterwards, each scenario was
processed with mutation rates of 1% and 10% while population size was 500. Figures 1
and 2 display the results of each scenario.

Table 1: Scenario 1 Fitness Ranges in Several Generations
 Under Different Population Sizes and Mutation Rates

Population
Size

100 500 1000

Mutation
Rate

5% 1% 5% 10% 5%

Range Limit Upper Lower Upper Lower Upper Lower Upper Lower Upper Lower
1 -2.2 -10.2 -1.2 -12.2 -1.2 -11.2 4.1 -10.2 4.2 -11.2

2 4.2 -9.2 -1.2 -12.2 4.2 -11.2 4.1 -10.2 4.2 -10.2

3 5.0 -8.2 4.2 -12.2 5.0 -11.2 4.1 -9.2 4.2 -10.2

4 5.0 -7.2 6.0 -12.2 5.0 -8.2 4.1 -7.2 4.2 -10.2

5 5.0 -7.2 6.0 -12.2 6.0 -8.2 4.1 -7.2 4.2 -9.2

6 5.0 -6.2 6.0 -7.2 6.0 -8.2 5.0 -6.2 5.0 -8.2

7 5.0 -6.2 6.0 -6.2 6.0 -6.2 5.1 -6.2 6.0 -7.2

8 5.0 -6.2 6.0 -5.2 6.0 -6.2 5.1 -6.2 6.0 -6.2

9 5.0 -5.2 6.0 -4.2 6.0 -6.2 5.1 -5.2 6.0 -6.2

10 5.1 -4.2 6.0 -6.2 6.0 -5.2 5.1 -5.2 6.0 -5.2

20 6.0 -2.2 6.0 -4.2 6.0 -4.2 6.0 -5.2 6.0 -5.2

30 6.0 -2.2 6.0 -3.2 6.0 -3.2 6.0 -3.2 6.0 -4.2

40 6.0 -2.2 6.0 -4.2 6.0 -2.2 6.0 -4.2 6.0 -4.2

50 6.0 -2.2 6.0 -3.2 6.0 -4.2 6.0 -3.2 6.0 -4.2

MICS 2008 308

Population
Size

100 500 1000

Mutation
Rate

5% 1% 5% 10% 5%

Range Limit Upper Lower Upper Lower Upper Lower Upper Lower Upper Lower

1 -4.3 -17.2 -4.2 -18.2 -4.2 -19.2 -3.3 -17.2 -2.2 -9.3

2 -3.2 -14.3 -2.2 -15.3 -2.2 -16.2 -2.2 -16.2 -1.3 -11.3

3 -1.3 -14.2 -2.2 -14.3 -1.3 -14.3 -1.2 -15.2 3.5 -10.2

4 -1.3 -12.2 -1.3 -12.3 -1.3 -13.3 -1.2 -15.2 3.5 -9.3

5 -1.3 -12.2 -1.2 -12.3 4.6 -13.2 -1.2 -12.2 4.4 -9.2

6 -1.3 -10.2 3.7 -10.2 4.6 -11.2 -1.2 -9.2 4.5 -9.2

7 -1.3 -11.2 3.7 -13.2 4.6 -10.3 4.6 -10.2 4.5 -9.2

8 -1.3 -9.2 3.7 -13.2 4.6 -9.3 4.7 -10.2 4.5 -10.2

9 -1.3 -10.3 3.7 -13.2 4.6 -9.2 4.7 -8.3 4.5 -10.2

10 -1.2 -9.2 3.7 -13.2 4.6 -9.3 4.7 -9.2 4.5 -8.3

20 -1.2 -7.2 4.6 -9.3 4.6 -10.2 4.7 -8.2 8.2 -9.3

30 4.4 -6.2 4.6 -9.3 4.6 -8.2 7.1 -8.2 8.2 -10.2

40 4.4 -5.2 4.7 -8.3 9.2 -8.3 7.2 -9.2 8.2 -9.3

50 4.5 -4.2 4.7 -9.3 9.2 -9.3 8.1 -9.2 8.2 -9.3

Table 2: Scenario 2 Fitness Ranges in Several Generations
Under Different Population Sizes and Mutation Rates

Both the highest and lowest fitness values in populations increased over the generations.
However, the highest fitness values never decreased over the generations—undoubtedly a
result of the elitist selection method. By the end of each experiment, the highest fitness
value typically capped around a positive number. After 50 generations, increases in the
highest fitness value rarely occurred.

Population size had a noticeable effect on fitness. Though the highest fitness values in
initial populations were greatest with large population sizes, the overall highest fitness
values were obtained with a population size of 500. Mutation rate likewise had a notable
effect on fitness. The highest fitness values were obtained when the mutation rate was
5%—neither a high nor low value.

The best schedule found throughout all experiments was also recorded for each scenario.
The best schedules are shown below.

Scenario 1:
Fitness: 6.0

Semester 1:
 bio 290
 geo 102
 cmsc 265
 com 101
 cmsc 365

MICS 2008 309

Semester 2:
 cmsc 378
 soc 350
 cis 255
 bio 253
 cmsc 315
Semester 3:
 eng 117
 cmsc 335
 cmsc 375
 math 255
 geo 375
Semester 4:
 cis 260
 geo 101
 cmsc 360
 cmsc 355
Semester 5:

Scenario 2:
Fitness: 9.2

Semester 1:
 econ 102
 anth 110
 soc 350
 soc 311
 soc 319
Semester 2:
 math 201
 soc 101
 eng 103
 mus 103
 magt 234
Semester 3:
 magt 336
 rel 103
 span 201
 soc 313
 magt 324
Semester 4:
 soc 347
 span 202
 eng 101
 soc 323
 span 302
Semester 5:
 span 301
 chem 101
 span 303
 soc 320
Semester 6:
 eng 117
 magt 131
 soc 321
 magt 335
Semester 7:
 soc 340

MICS 2008 310

As the schedules demonstrate, the genetic algorithm is capable of generating college
course schedules. The college course schedules complete graduation requirements in a
small amount of time without unfulfilled prerequisites or duplicate courses. Some
generated schedules may require the student to take difficult or undesired classes. This is
illustrated in the scenario 2 schedule by the 300 level courses taken during the freshman
year.

Conclusion

Genetic algorithms are promising means to find solutions to ill-defined problems. As this
paper demonstrates, one such problem genetic algorithms can solve involves the
generation of college-course schedules. The program that finds solutions to this problem
quickly generates college-course schedules that complete graduation requirements in a
small amount of time, while recognizing unfulfilled prerequisites and duplicate courses.
With future improvements, this program could recognize additional constraints, such as
schedule conflicts and student preferences. At the very least, the program could assist the
user while developing schedules that are favored by the student. In any case, the genetic
algorithm would decrease the difficulty that comes with manually creating college
schedules each semester.

Acknowledgements

I would like to thank Professor Lydia Sinapova for her advice in developing the program
and preparing this paper.

References

Yamada, T., & Nakano, R. (1997, March 18-19). Genetic Algorithms for Job-Shop

Scheduling Problems. Preceedings of Modern Heuristic for Decision Support,
67-89.

Goldberg, D.E. (1989). Genetic Algorithms in Search, Optimization & Machine

Learning. Boston: Addison Wesley Longman, Inc.

Haupt, R.L.; Haupt, S.E. (1998). Practical Genetic Algorithms. New York: John Wiley

& Sons, Inc.

Jackson, K. (1996). “The Job-shop Scheduling Problem.” Simon Fraser University.

Retrieved February 14, 2008 from
http://www.cs.sfu.ca/research/groups/ISL/papers/jackson-lds/node2.html

MICS 2008 311

A Learning Natural Language Parser

Duncan McKee
Kurt Krebsbach

Department of Computer Science
Lawrence University
Appleton, WI 54911

mckeed@lawrence.edu

Abstract

A natural language parser is described that analyzes the syntactic structure of an input
sentence in relation to a specified grammar and generates all possible syntax trees of the
sentence, along with estimates of the probability of each being the correct parse. The
grammar used is based on X-bar theory, and the parsing algorithm is a chart parse – a top-
down parser which uses dynamic programming for efficiency in cases where the grammar
leads to ambiguities. The parser has a database of the frequency of application of each
syntax rule in the grammar as well as a lexicon of known words and their lexical
categories and frequency of use in each category. These are used in a probabilistic
context-free grammar model to yield the likelihood judgments of the candidate parses and
are updated by user feedback, leading to more accurate subsequent estimations.

MICS 2008 312

1 Introduction

Approaches to natural language understanding have usually modeled language as having
levels of structure corresponding to traditional levels of linguistic analysis. Thus, speech
input undergoes acoustic and phonetic analysis, then phonological, morphological,
syntactic, and finally semantic analysis. Each level in this schema imposes a layer of
structure on the input with the goal of eventually arriving at a logical representation of
the information it imparts.

Natural language does not bend conveniently to these structural analyses, unfortunately.
Ambiguity is prevalent at every level of analysis, and some ambiguity cannot even be
resolved by a native speaker. When humans process language, structure and meaning are
inferred using contextual information. The first problem this poses to computers is that,
given a string of words, there are no hard and fast rules to govern the syntactic structure
of that string. Information from the semantic level of analysis is required to disambiguate
many grammatical ambiguities. Since, in other respects, semantic analysis takes place
after syntactic analysis, this poses a problem for the level-by-level strategy, necessitating
backtracking.

Many recent trends in linguistics and natural language processing move away from the
multi-level, structure-heavy approach in favor of methods based on statistical analysis
and positional relationships. These ideas have been very productive, but there is still
room for structural approaches. By combining them with the statistical and probabilistic
strategies, structural analyses can be made flexible enough to deal with ambiguities. This
paper examines an example of how this can be accomplished, applied specifically to the
syntactic level of analysis: parsing.

Parsing is the logical first step to computer understanding of natural language text. Most
approaches to determining the meaning of a natural language statement first analyze the
syntactical structure of the statement. The syntactical analysis of a sentence contains the
information of what roles the words in the sentence are playing as well as the phrase
structure of the sentence – that is, what parts constitute the subject and predicate of the
sentence and what the adjectives, adverbs, and prepositional phrases refer to.

Unlike programming languages, which have relatively simple formal grammars, natural
languages have not been successfully formalized, so modifications must be made to adapt
traditional parsing algorithms to them. One major challenge is that natural language
grammars frequently generate multiple possible parses for a single sentence. These are
ambiguities that humans resolve through the application of a wealth of semantic and
contextual knowledge that computers are not yet able to replicate.

This project's goal was to develop a system to parse grammatical English sentences into
phrase structures in a way that deals gracefully with ambiguity. The resulting parser first
generates all possible phrase structures using a chart parser algorithm. It then uses a
probabilistic grammar to assign each of these possibilities a likelihood measure, which is

MICS 2008 313

the estimated probability of that parse being the intended structure of the sentence. These
measures are normalized probabilities of the incidence of each result based on the
sentences that the system has seen in the past. Thus, as the parser is exposed to more
sentences, it learns what are the most common and the least common grammatical
constructions in the language, and therefore improves its judgments of ambiguous cases.

2 Background

2.1 X-Bar Grammar

The output of a parser such as the one described here is a parse tree, a construct
describing the phrase structure of the input sentence in relation to a specified grammar.
The internal nodes of a parse tree represent non-terminal symbols in the grammar and the
leaf nodes are the words of the input sentence. The grammar used in this parser is a
context-free grammar based on X-bar theory. Although X-bar grammar grew out of the
Chomskyan generative grammar tradition that frowns upon probabilistic methods
(Russell & Norvig, 2003), it still has many features that are useful in computational
analysis. It lends itself well to abstraction, as its rules are at most binary branching and
are categorized in terms of a few abstract patterns. It also serves as the base framework
for much work on describing syntactic phenomena such as agreement, pronoun reference,
and structural transformations (Haegeman, 1994).

Figure 1: X-bar theory’s categorization of non-terminal symbols means that the syntax
rules conform to a set of abstract patterns. On the right is a generic XP schema.

XP� Spec X'

X'� X |
� X' Comp | Comp X' |
� X' Adjunct | Adjunct X'

X� <word>

 XP

Spec� X'

� X' Adjunct

Comp X'

� X

MICS 2008 314

There are a few types of non-terminal symbols in an X-bar grammar. First, there are
lexical category symbols, which represent the grammatical functions of words, such as
noun, verb, preposition, etc. These are always the parent nodes of the terminal symbols –
the words themselves – in the parse tree. For each lexical category symbol X, there is an
X-phrase symbol, XP, which represents a phrase headed by a word of category X. The
motivation for grouping words in this way arises from the perception that an XP fills the
same role in a sentence that a single X fills; often, an entire phrase can be replaced by a
single word without changing the essence of the sentence, whereas this cannot be done
with groups of consecutive words that do not make up phrases. For example, in the
sentence, “The computer with the file crashed,” the subject is the noun phrase “the
computer with the file” and can be replaced by a pronoun to make the sentence “It
crashed.”

X-bar theory postulates another type of non-terminal symbol, usually written X' and
pronounced ‘X-bar’. One or more of these symbols comes between an X node and its
corresponding XP node; they provide branching locations for complements and adjuncts
to X – words or phrases that support or modify X. Since both of these are optional, X'
nodes often have only a single child node.

Figure 2: On the left is a small, incomplete X-bar grammar. On the right is a sentence and
its parse tree according to this grammar. The root symbol of the sentence, ‘S’, is not

technically a proper X-bar symbol, but it is used here for simplicity.

S� NP VP

NP� DET N' | N'

N'� N | N' PP

VP� AUX V' | V'

V'� V | V' NP

PP� P'

P'� P | P NP
The computer processes code

N

N'

NP

VP

V

V'

N' V'

N

NP

DET

S

MICS 2008 315

2.2 Chart Parser

The algorithm used to find the parse trees is a top-down chart parser, a search algorithm
that uses dynamic programming techniques. Chart parsers are commonly used in natural
language processing because they deal efficiently with ambiguous grammars, which can
be combinatorially problematic (Russell & Norvig, 2003; Allen, 1995). This algorithm
uses a data structure called a chart to store partial parses, which are parse trees of
substrings of the input sentence. It builds up the set of all partial parses by extending and
combining them as it processes the words of the sentence one at a time. The variant
described here is adapted from Russell & Norvig (2003) and is similar to the Earley
parser (Earley, 1970).

For an n-word sentence, the chart is a multigraph with n+1 vertices, where a partial parse
of the ith to jth words would be associated with an edge from vertex i to vertex j+1. This
edge is added to the chart during the processing of the jth word by one of three methods:
PREDICTOR, SCANNER, and EXTENDER. Figures 3-5 show how these methods would
produce edges when parsing the example sentence from Figure 2. When an edge is added
for a partial parse tree with a non-terminal symbol X as a leaf node, the PREDICTOR
method adds a new edge for each rule in the grammar for X, representing the possible
branchings that could extend the tree (Figure 3). For each word w, the SCANNER method
extends the edges with partial parse trees that need a word at this position of a lexical
category that w belongs to (Figure 4). When an edge is added for a complete parse of
some phrase Y that spans words i through j, the EXTENDER method combines it with any
edges ending at i that were lacking a Y subtree; this adds a new edge that spans the
combined spans of the edges that produce it (Figure 5). If the grammar admits a parse
tree for the entire sentence, the algorithm succeeds by producing at least one edge from
the first vertex to the last vertex that corresponds to a parse tree with the start symbol of
the grammar as the root node and the words of the sentence as the only leaf nodes.

The computer processes code

VPNP

S

The computer processes code

VPNP

S
S

VPNP

 N'DET

PREDICTOR

Figure 3: An edge added by the PREDICTOR method. The box indicates the next branch to
be extended or specified.

MICS 2008 316

The computer processes code

DET

S

VPNP

 N'

The computer processes code

DET

S

VPNP

 N'
DET

S

VPNP

 N'

SCANNER The

Figure 4: An edge added by the SCANNER method. Note that not all edges that would be in
the chart at this point in the algorithm are shown.

The computer processes code

DET

S

VPNP

 N'

EXTENDER

The computer processes code

N N

N'

NP

VP

V

V'

V'

The computer processes code

DET

S

NP

 N'

The computer processes code

N

N

N'

NP

VP

V

V'

V'

Figure 5: An edge added by the EXTENDER method. Note that the edges and partial parse
trees shown on the left remain in the chart and can extend other edges – they are omitted

on the right for clarity.

MICS 2008 317

2.3 Probabilistic Context-Free Grammar

The statistical learning feature of the system uses a form of probabilistic context-free
grammar, a model of syntactic structure that is more conducive to learning and more
robust in ambiguous cases (Manning & Shütze, 1999). In a PCFG, every syntax rule –
including those that attach words to lexical categories – has a probability associated with
it. For each non-terminal symbol X, the rules in the grammar of the form X –> Y Z
partition the set of possibilities for the structure of an X component. Thus, the
normalization constraint dictates that the probabilities of the rules in this set sum to one.

The probability of a given complete parse tree is simply the product of the individual
probabilities of each node in the tree. This probability can be understood as production
probability; if the PCFG is used to generate a legal sentence by starting with the symbol
‘S’ and recursively replacing each non-terminal symbol with one of the relevant rules
(chosen randomly using the given probability distribution), the probability of arriving at
some sentence is the product of the probabilities of each rule choice.

3 The Parser

The PCFG technique is used in this parser not for making the parsing itself more efficient
or flexible, but rather as a means by which to store and use information about the
grammar that is collected over many applications of the parser, and hence provide a more
accurate evaluation of future input. The parser is able to produce more than a list of the
possible parse trees for an input sentence; it also judges their relative grammatical
acceptability. This does not take semantic information into account, as this is solely the
syntactic level of analysis. In theory, the output from the parser could be passed on to a
semantic processor, which could use the parser’s evaluations as a starting point and
update the likelihood measures based on semantic information.

The system uses a database for knowledge persistence. When an input sentence is entered
into the parser, each word is looked up in a database of all words known to the system
and their possible lexical categories (e.g. noun, verb, etc.). For each word/category pair,
the lexicon database has a count of how many times the word has been observed in that
category. The count of each category is divided by the sum of the counts of all categories
for that word – this yields the probability that the word exemplifies that category. This
implementation of probability inference is crude but effective.

The chart parser algorithm is then used to generate all the possible parses of the input
sentence, using a fully-specified X-bar grammar. This algorithm is efficient in most
situations, but, due to the tree structures of the generated parses, there is a possibility of
an exponential number of results. Fortunately, such sentences are not common in actual
usage.

MICS 2008 318

In addition to word category counts, the occurrence frequency of each grammar rule that
is used in the candidate parses is selected from the database, which keeps a count of past
appearances of each grammar rule. These counts are converted to probabilities in the
same way as are the word/category counts. The number of times a certain nonterminal
symbol has been observed to be rewritten by each rule is divided by the sum of the counts
of all rewrites of that rule, effectively yielding the probability of that syntax tree node
appearing in that environment.

After generating all the probabilities of the components of the parses, they are multiplied
as is typical in the use of probabilistic context-free grammars, resulting in occurrence
probabilities of each of the possible parse trees. These are then normalized against each
other, representing the assumption that the correct parse is among the possible parses
generated by the chart parser, and these can be compared as measures of their relative
strength as solutions.

Figure 6 shows an example of the parser’s analysis of a sentence with multiple parses. It
portrays a hypothetical state of its database after having seen 30 input sentences. Via the
ratio of the PCFG probabilities of the parse trees, the parser assigns a 90% probability to
the solution on the left and a 10% probability to the solution on the right (under the
assumption that one of them is the intended interpretation).

The user can then indicate which result was the intended structure, which will increment
the occurrence counts in the database for the rules and lexical category assignments used
in that parse. If the same input is fed to the parser a second time, it will favor the correct
one slightly more than it did previously. Over time, the system learns what structures are
most used in the language, and hence makes better guesses in ambiguous situations.

In practice, this has produced some positive results; the parser is often able to distinguish
between the obvious, straightforward parse of a sentence and an anomalous result
brought about by a grammar rule that exists to deal with some rare construction. For
example, it favors the correct interpretation of the sentence “I can code” over the
interpretation that implies “I put code into cans” by a 99.3% to 0.7% margin. Still, there
are some instances where the incorrect parse scores higher, usually because determining
the correct interpretation requires semantic information.

It is important to note that although the input is only being analyzed on the basis of
syntactic structure, the way the system favors some rules over others is, to a degree,
based on semantic information learned from human agents via its feedback system.
Furthermore, it is being trained only on the dialect and sentence domain of the input it
receives, which could make it inappropriate for input from a novel source.

MICS 2008 319

rules� � � � frequencies� probabilities

S� NP VP � � 30� � 1.0

NP� DET N' | N'� � 20 | 15 � 0.57 | 0.43

N'� N | N N'� � 35 | 5� 0.88 | 0.12

VP� AUX V' | V'� 10 | 20� 0.33 | 0.67

V'� V | V' NP� � 30 | 15 � 0.67 | 0.33

The computer processes code

N

N'
N

N'

NP

VP

V

V'

N' V'

N

NP

DET

S

The computer processes code

V

VP

N' V'

N

NP

DET

S

1.0 1.0

1.0

.33

.88

.88

.12

.57 .57.67 .67

.67.43
.67

.88

.80
.20.70

.30

1.0

1.0 1.0

Probability: .88^2 * .67^2 * .80 *.70 * .43
� � * .33 * .57 = 0.01575
Normalized: 0.907

Probability: .88 * .67^2 * .12 * .20
� � * .30 * .57 = .0016212
Normalized: 0.093

Figure 6: A rule for compound nouns has been added to the grammar, producing multiple
parses for the example sentence. The table above shows a hypothetical state of the

database after it has seen 30 input sentences. The nodes in the parse trees are marked with
their individual probabilities and the tree probability calculations are shown below.

MICS 2008 320

4 Conclusion

Without semantic and contextual knowledge, consistently determining the correct
syntactic interpretation of a sentence is not possible. However, the strategy of generating
multiple candidate interpretations and providing as much information as possible about
the syntactic feasibility of each holds the promise of providing an advantageous starting
point for semantic and logical analysis without necessitating backtracking to the syntactic
analysis stage. In any case, the complete understanding of natural language – while
currently an unsolved problem – has inspired much beneficial research.

Acknowledgments

Many thanks to Lawrence University Provost David Burrows for supporting this work
through a Lawrence Enhancing Academic Distinctiveness grant. This program was
written in PLT Scheme and made use of Jay McCarthy’s Sqlite package, available at the
PLaneT Package Repository (http://plt-scheme.org).

References

Allen, James. 1995. Natural Language Understanding. Redwood City, CA: Benjamin/
Cummings.

Earley, J. 1970. "An efficient context-free parsing algorithm", Communications of the
Association for Computing Machinery, 13:2:94-102.

Haegeman, Liliane. 1994. Introduction to Government and Binding Theory. Oxford, UK:
Blackwell.

Manning, C. & Schütze, H. 1999. Foundations of Statistical Natural Language
Processing. Cambridge, MA: The MIT Press.

Russell, S & Norvig, P. 2003. Artificial Intelligence: A Modern Approach. Upper Saddle
River, NJ: Pearson Education.

MICS 2008 321

Application of BLAST-basedTechniques for Musical
Information Retrieval

Fedor KORSAKOV
(student)

Department of Computer Science
University of Northern Iowa
Cedar Falls, IA 50614, USA

korsakov@uni.edu

Abstract

Content retrieval in musical collections has been dependent on textual metadata
(e.g. ID3 tags) which can present problems when the title of a piece is forgotten,
misspelled, or when the search revolves around the similarity of sound. Content-based
MIR (musical information retrieval) could offer an alternative. BLAST, an algorithm
widely used in bioinformatics to search for sequences of aminoacids within longer
sequences, seeks similarities and homologies, which makes it interesting for MIR,
because musical information can be expected to be imprecise, and because homologies
can allow to draw connections between musical pieces. Increased availability of digital
music necessitates MIR methods which would allow to search a polyphonic sound
collection with polyphonic queries to retrieve individual files, and a question can be
raised how viable is BLAST-based retrieval for this kind of data. This paper discusses an
implementation of such a system.

MICS 2008 322

INTRODUCTION

Personal computers are being increasingly used for multimedia purposes. The emergence
of new content distribution models contributed to the growth of collections of digital
music. One of the effects of this growth is the need for the enhancement of content
retrieval mechanisms, which historically have been dependent on textual metadata
associated with files. In the specific case of musical data, a common approach is to
incorporate tags (such as ID3) into the files. While this method is adequate for textual
search, there are drawbacks in using data representation significantly different from data
itself. Textual search, for all of its simplicity, may have difficulties with situations where
the title of a musical piece is forgotten, misspelled, or typed in a different language, or
where the search revolves around the similarity of the sound (for example, looking for a
remix that incorporates a classical piece) rather than the title. While tags can be edited to
compensate for some of these problems, it is obvious that devising means to perform
MIR (musical information retrieval) on the basis of content could offer a promising
alternative solution. Furthermore, such approach could lead to innovative user interfaces
that would allow to perform searches with acoustic queries which are hummed, spoken,
or played on an instrument.

A conceptually alike challenge is common in bioinformatics, where it is frequently
necessary to perform a search for a sequence of aminoacids within a longer sequence
(e.g. genome). BLAST is an algorithm widely used to address this need. BLAST seeks
similarities and homologies, which makes it interesting for MIR, because musical
information, especially user queries, can be expected to be inherently imprecise, and
because homologies can allow to draw connections between musical pieces. Furthermore,
BLAST is appealing because it is faster than the other two well-known similarity search
algorithms: Smith-Waterman and FASTA.

LITERARYREVIEW

A substantial body of information exists on the subject of MIR. Mongeau-Sankoff
algorithm [4] is a seminal work which provides an effective similarity measure for pieces
of music, but requires the information to be presented in a symbolic form. While it has
been successfully used for MIR [1], the conversion of musical files into sheet music is
beyond the scope of this research. Kline and Glinert [2] as well as Miura and Shioya [3]
all agree that while pitch contours may be used for the purposes of fast retrieval, the
accuracy is very poor. The latter research suggests using pitch spectrum (histogram of
notes per bar) as a means to describe musical information, and even though the technique
was developed for sheet music, the idea behind it may potentially be reapplied in the
context of this research. While a fairly large number of works deal with monophonic
(query by humming) or symbolic queries on symbolic databases, Yang's research [5]
presents interest due to its focus on polyphonic queries on a polyphonic database. Yang
uses spectral indexing and implies that this technique is rather unexplored. Short-Time
Fourier Transform is used to generate spectrograms, and then the resulting data is
processed to determine characteristic sequences. It would appear obvious that due to
difficulties of automated music transcription, spectrograms are a promising way to
address the problem of finding a suitable means of representation for the music.

MICS 2008 323

METHODOLOGY

The system I propose preprocesses the collection by performing Short Time Fourier
Transform on the musical files. The results are normalized, expressed as 4-bit integers
and stored as nucleotide base sequences (two bases per integer) in FASTAformat and as
PNG image files. The query (a musical excerpt) is preprocessed likewise. A Mega
BLAST search is conducted on the spectrograms, returning files that match the query
most closely and the place within the sequence where the match occurs.

The system is implemented in a predominantly Linux environment. The development has
been done in C language using fftw, libpng and libsndfile libraries, and the project will be
made available under GPL. Additionally, the project uses SoX for sound file conversion.
Currently the system is in the state of a functional prototype.

DISCUSSION AND FINDINGS

Current Results

The most direct approach to the problem involved the application of Mega BLAST to the
sequences of columns (i.e. sequencing along frequency axis) of STFT results. However,
while this approach was fitting for similarity detection, it was not adequate for accurate
retrieval, since it effectively disregarded pitch information, and sometimes even did not
return the piece on which the sound clip was taken (although it was able to return
numerous pieces by the same artist). A more promising method consists of creating
sequences of that correspond to pitch bands over time (i.e. sequencing along time axis),
and then selecting the matches where numerous offsets correspond to the same region of
a file, and this is the method that is currently evaluated.

Questions to Address

The primary question that remains to be answered revolves around the optimal
representation of STFT results for BLAST processing. The main challenge consists of 1-
dimensional representation of 2-dimensional data. Furthermore, there is a substantial
room for optimization. It remains to be determined whether 4-bit integer representation of
STFT results provides a good combination of descriptiveness and space efficiency, and it
should be possible to assess varying bit depths once the suitability of sequencing along
time axis is confirmed.

REFERENCES

[1] C. Gomez, S. Abad-Mota and E. Ruckhaus, “An analysis of the Mongeau-Sankoff

MICS 2008 324

algorithm for music information retrieval”, In Proc. ISMIR 2007, Austria, 2007, p.
109.

[2] R. Kline and E. Glinert, “Approximate Matching Algorithms for Music
Information Retrieval Using Vocal Input”, MM’03, 2003.

[3] T. Miura and I. Shioya, “Similarity among Melodies for Music Information
Retrieval”, CIKM'03, USA, 2003.

[4] M. Mongeau and D. Sankoff, “Comparison of Musical Sequences”, Computer
and the Humanities, vol. 24, 1990, pp. 161–175.

[5] C. Yang, “Efficient Acoustic Index for Musical Retrieval with VariousDegrees of
Similarity”, Multimedia'02, France, 2002, pp. 584-591.

MICS 2008 325

Mapping Application Attributes to Object/Relational

Mapping Solutions

Kyle Hawkins and Elizabeth Towell

Computer Science

Carroll College

Waukesha, WI 53186

khawkins@cc.edu

etowell@cc.edu

Abstract

The object/relational impedance mismatch is the breakdown of communication

between object-oriented programming languages and relational databases, and has

been a problem developers have been facing for years. Two frameworks, Hibernate for

the Java programming language, and ActiveRecord for the Ruby programming language,

offer solutions to the problem but in fundamentally different ways. This research

develops a model that a software developer could use to determine which framework

to use dependent on the needs of their application. The model is based on the

comparisons of the two languages, the discussion of the object/relational impedance

mismatch, the comparison of Hibernate and ActiveRecord, the comparison of different

types of web applications, and then ends with the comparison of how Hibernate and

ActiveRecord handle the various types of applications.

MICS 2008 326

1

1 Introduction

Web applications today have been similar in design and purpose, and generally have

been utilizing the same types of technologies. Two technologies utilized by many web

applications are object-oriented programming languages that communicate with a

relational database. However these two technologies work in fundamentally different

ways, and this has led to the discovery of what is known as the object/relational

impedance mismatch. This mismatch refers to the difficulties in mapping classes and

objects to tables in a database, thus resulting in the difficulty of developing applications

that utilize these technologies.

Over the years this mismatch has led to various different types of solutions, and one of

the solutions is known as object/relational mapping. Simply put this solution is mapping

specific objects to tables through the use of metadata, and the goal is to have this all

done transparently so that developers are not burdened by the impedance mismatch.

Frameworks have been built to be used as middleware to handle this mapping, and the

two frameworks that have had the most discussion in the past few years are Hibernate

and ActiveRecord. Hibernate has risen as the enterprise standard for managing

persistence of Java applications, while ActiveRecord manage persistence and mapping

for the new Ruby on Rails web application framework.

Both frameworks offer a solid solution to the object/relational impedance mismatch;

however they do so in fundamentally different ways. Since Ruby on Rails has been seen

as counter to Java technologies because of its new approach to development, it is

appropriate to compare the two frameworks together. This paper will do an in-depth

analysis of the two frameworks starting with a comparison of the two languages, an in-

depth analysis of the object/relational impedance mismatch and how each framework

solves the problem, a discussion and categorization of various web applications, and

finally a model will be presented for a developer to use that maps specific application

attributes to one of the frameworks.

2 Programming Languages

A programming language is a set of syntactic and semantic rules that are used to give

instructions to a machine such as a computer. The design and study of programming

languages has been happening for a number of years, and has been utilized by

computer scientists to execute and study algorithms, and will continue to progress and

change with the progression and change of technology. As with any language,

programming languages differ in various ways that offer different levels of readability,

reliability, efficiency, and writeability. The difference lies in two major areas; the

MICS 2008 327

2

language design methodology and the language implementation. The design

methodology is the way the language speaks with a user and how the language utilizes

machine architecture. The language implementation refers to the method in which a

language communicates to the machine and performs commands given by the user.

(Sebesta, 2006)

2.1 Java vs. Ruby

Table 1 maps out some key similarities and differences between the two. Ruby is a

much more powerful and productive language than Java. But Java has the benefit of its

years of experience and has proven itself to be a productive and powerful.

Both Ruby Java

Strongly-typed Dynamically-Typed Statically-Typed

Object-Oriented Fully Object-Oriented Not Fully Object-Oriented

Garbage Collection Interpreted Compiled

Table 1: Comparison of Java and Ruby

3 Object/Relational Impedance Mismatch

Persistence, the ability for an object to live past its creation point, is an important factor

in modern web applications. Almost all web applications of today utilize some sort of

relational database backend to support persistence. A lot of these applications work

with object-oriented programming languages such as Java and Ruby, the two that have

been a focus of this paper. The constant use of these technologies has led to the

discovery of what is known as the object/relational impedance mismatch, the name

given to describe the differences between the two technologies that cause a lot of

difficulties in development.

The problem lies in the fundamental differences between the object-oriented paradigm

and the relational model. Relational technology is founded on proven mathematical

principles of set theory while object technology is founded on proven software

engineering techniques. Relational technology concentrates solely on the data aspects

of a solution and the relationships of the data are expressed through foreign keys

between tables. Thus one would access a particular entity and its relationships by

joining rows. Object technology focuses on encapsulating data and behavior together

and expresses relationships by aggregation. Therefore access of an object and its

relationships is done by traversing through an object and the objects that it knows

about. (Ambler, 2003)

MICS 2008 328

3

This has resulted in several difficulties in creating efficient software applications

especially in terms of object-oriented concepts. There applications run into the

difficulty of persisting objects especially in terms of inheritance or polymorphism. The

concepts of subtypes and subclasses aren’t represented easily in relational databases,

and even those databases that try to support these aspects do not have an industry-

wide standard. Hand coded solutions to these problems result in software that is tightly

coupled, has high granularity, and in general just a mess. Then as there software

projects grow the difficulty of these sloppy solutions grows even faster, leading to

applications that were difficult to extend and maintain. (Ambler 2003)

4 Object/Relational Mapping Frameworks

An object/relational mapping framework also known as ORM is founded on creating a

solution to the object/relational impedance mismatch by automating the persistence of

objects through the use of metadata. This metadata is responsible for layering a

blueprint on how the objects in the application map to specific tables and relationships

in the database. ORM is also responsible for making this happen in a transparent way,

therefore removing the developer from having to deal with the difficulties of the

object/relational mismatch. Even though there are a plethora of different frameworks

for various languages, the two that are the focus of this paper are Hibernate and

ActiveRecord. (Bauer, 2007)

To better display how both frameworks work, a sample application was developed

utilizing both frameworks to create examples for the paper. The application is a small

inventory manager responsible for overlooking a company’s hardware and software

with relationships to specific employees. Employees can use many different pieces of

hardware such as printers or workstations, and these pieces of hardware can be used by

many different employees. Employees can also use different pieces of software such as

Eclipse, Word, or Notepad, and these pieces of software can be used by many different

employees. Specific maintenance and upgraded can be performed on hardware, which

establishes a many-to-one relationship between the hardware and its upgrades and

maintenance. This application was developed with an Oracle database behind it, and

was developed in Java with the use of Hibernate and Ruby with the use of ActiveRecord.

Let it be noted that this application is a simple solution and does not reflect all of the

possible issues that can arise for an enterprise web application; it serves just as a simple

example to how Hibernate and ActiveRecord work.

4.1 ActiveRecord

MICS 2008 329

4

Ruby on Rails has been one of the most popular fully stacked web application

frameworks on the market, and has given fame to the Ruby language and community.

Ruby on Rails is founded on a few principles: convention over configuration and the

Don’t Repeat Yourself principle or DRY. Within this framework the persistence is

handled by the framework known as ActiveRecord, which follows the Active Record

design pattern. This section will display how ActiveRecord handles persistence and how

the framework follows its founding principles.

ActiveRecord works off of specific naming conventions, therefore removing the need for

configuration files and mapping documents. Instead of reading a document or

configuration file, ActiveRecord reads the database and matches the names of tables to

the names of classes. Therefore when a develop creates a specific class, they don’t even

have to write code for all the attributes, the framework automatically generates the

source code based off of the table. For example in our sample application if we create

an Employee or Hardware object all we have to do is subclass the ActiveRecord base

class and the framework will handle the rest for us. This is demonstrated by Figure 3.

Figure 3: Two examples of ActiveRecord objects.

However your database does not have to follow the naming conventions because

ActiveRecord has the ability to override the normal naming conventions and allow you

to establish specific mappings. For example in our application if we were to call the

Employee class the Worker class instead, we would have to override the naming

conventions through Ruby specific method calls as such. This is demonstrated in Figure

4.

Figure 4: Example of overriding naming conventions.

This concept of convention over configuration can be seen in establishing relationships

between the various objects, through the use of specifically named methods. These

methods establish anything from many-to-many relationships to one-to-one

relationships between objects. Establishing this relationship creates a set within the

object or specifies the foreign key of the relationship. This foreign key can either

explicitly referenced within the object or you can follow another simple naming

convention like such: tablename_id. For example in our application the Hardware class

has a many-to-many relationship with the Employee class and a many-to-one with the

Maintenance and Upgrade classes and the source code is demonstrated by Figure 5.

MICS 2008 330

5

Figure 5: Example of establishing relationships.

It can thus be seen from these examples that a result of the principle of convention over

configuration that the source code is greatly reduced compared to other languages. In

fact, when following all of the Rails naming conventions and not overriding anything

there is only one configuration file needed that is the YAML file. This file establishes the

various database connections used for the development, deployment, and testing parts

of the application allowing for one centralized area for this configuration. YAML is also

responsible for establishing which adapter for ActiveRecord to use on communication

between the application and the database. One problem however that is present is that

the framework does not come with adapters for all popular databases out of the box,

instead you have to download those adapters from other sources, even perhaps coming

down to developing your own adapter.

The overall concept of convention over configuration supports an even bigger principle

that Rails has been pushing for its entire lifespan. This is the Don’t Repeat Yourself

principle otherwise known as the DRY principle. With the use of convention over

configuration ActiveRecord removes the need to develop configuration files that

establish connections and mappings that are already present within the software.

Therefore a developer can follow the DRY principle because they are not duplicating

code within configuration files. (Halloway, 2007)

ActiveRecord provides the developer with a simple solution that is easier to configure

and easier to develop than other frameworks. Developers are freed from worrying

about developing complex configuration files and are allowed to maintain an application

much easier. Any changes to the database can be reflected through the application with

little or no changes to the objects themselves. Also the logic to access the database is

not kept in a separate layer instead this is all kept within the objects themselves.

Therefore developers are freed from having to access another layer to perform

database transactions or queries; instead the creation of an object is all that is needed.

However each solution has its weaknesses and ActiveRecord has a couple of key ones

that a result of its design. One is that the classes themselves become tightly coupled to

the database tables and for simple data models with simple database designs this is not

a problem. However as the data model expands and becomes more complicatied this

problem leads to ActiveRecord losing its simplicity. Another weakness deals with the

concept of convention over configuration and if you are using a data model that does

not follow these conventions, such as a legacy system model, you lose the benefit of this

MICS 2008 331

6

principle. The result in not utilizing the naming conventions is objects that are loaded

with configurations to their tables and relationships, thus defeating the purpose of

ActiveRecord’s simplicity.

5.2 Hibernate

Hibernate is a persistence framework developed in the Java language that is based off of

the Data Mapper Design pattern. This framework is known as a lightweight framework,

as it is designed to work with the Java Bean design pattern. This allows Hibernate to run

stand-alone or work with other frameworks that are considered lightweight. Hibernate

has been around for awhile now and has been the industry standard for persistence.

Hibernate is founded on the use of configuration files and mapping metadata that

describe the mapping between classes and their respective tables. The main Hibernate

configuration describes which database the application is supposed to connect to and

which adapter and dialect to utilize with that database. This configuration file is fed into

a Configuration class which creates the SessionFactory object, who is responsible for

generating Session objects. The Session class is the center of Hibernate, as it knows how

to access the database as well as the state of the database. All of the methods to

perform CRUD operations, queries, and transactions can be found within the Session

class. An example of a configuration file for Hibernate can be seen in Figure 6, based off

of our sample application.

Figure 6: An example of a Hibernate configuration file.

MICS 2008 332

7

The session factory tags in the XML give some light as to the purpose of the

configuration file. Along with establishing the SessionFactory, the configuration file also

is responsible for either mapping out classes to their respective tables or pointing to

specific mapping documents that contain this information. This configuration file is very

simple and will run an application with no problem, however there is much more that

can be written into a configuration file such as optimization commands and techniques.

The SessionFactory and Session classes are not just built by the minimal information in

the configuration file; they also rely heavily on XML mapping files. These mapping files

describe which class maps to which table and what relationships that class has with

other classes. Mapping files are directly linked to classes, and therefore there is one

convention that Hibernate works with; all classes must follow the Java Bean

Specification. This allows Hibernate to be lightweight and operate stand-alone or with

other Java frameworks such as Spring or Struts. This allows Hibernate to create objects

dynamically via reflection through the Session class, but it also allows a developer to

establish relationships that exists between the objects. For example for our sample

application the Hardware class can show its various relationships by simply having a Set

attribute associated with the many-to-many relationship or an object for a many-to-one

or one-to-one relationship. By following this convention the mapping files can specify

what the classes are, what table they are associated with, and what relationships exist

between the classes. Figures 7 and 8 show parts of a mapping document for the

Hardware.

Figure 7: Example of basic mapping.

Figure 8: Example of establishing relationships via mapping.

MICS 2008 333

8

Hibernate has been around for awhile and thus has proved itself through experience in

web applications and enterprise software. The framework is lightweight, therefore is

easily insert into an existing application that has its objects follow the Java Bean

Specification and can easily incorporate other frameworks because of this. Another

strength is that the framework creates a separate layer of persistent logic, therefore the

objects themselves are not coupled to the database or the data model. Therefore

changes to the data model, or switching to a new database will not affect the objects

themselves, and maintenance and extension of these objects will be easier. This is a

result of following the Data Mapper design pattern, whose goal is to decouple the

objects from the data model.

Even though it is tried and proven, Hibernate does posses a few weaknesses that have

paved the way for the Ruby on Rails framework. Configuration files and mapping

documents create data redundancy because you are writing the same thing in multiple

places. Changes to the objects lead to changes in the mapping documentation; this

creates a problem especially for agile developers. These configuration files and mapping

files also are very cumbersome, and are sometimes the hardest part of developing the

application; therefore developers spend far more time creating these files than coding

business logic, which should be the priority.

5.4 Hibernate vs. ActiveRecord

Although there has already been a big comparison between the two frameworks, there

are still different aspects that need to be discussed about each framework. The other

areas that a developer should consider when comparing the two frameworks is how

they handle queries and transactions.

5.4.1 Querying

Hibernate and ActiveRecord both offer a plethora of different abilities to query the

database for your object or a range of objects. However because of the design patterns

they both use, they operate in very different fashions. ActiveRecord has all of the

database access abilities tightly coupled to the objects themselves, so querying the

database can happen just by creating an object. Hibernate on the other hand relies on

passing the queries through the persistence layer, thus calling on specific querying

methods from the Session class.

ActiveRecord offers the simplest methods; therefore these will be analyzed first. The

framework itself generates a multitude of different methods for querying based off of

the attributes the object has. For example in our sample application if we are looking

for a particular employee, we can simply create the object and query the database in

MICS 2008 334

9

many different ways. ActiveRecord also provides the abilities to query the database

through the find method which can take any parameter you put in to find the object;

you can even pass the parameter to find all the objects. The methods also have the

ability to add conditions as well as order the results just by passing simple parameters.

Figures 9 and 10 display the possible methods.

Figure 9

Figure 10

Hibernate on the other hand relies on utilizing the Session class to perform various

queries and offers three specific types of querying to be performed. Because the

Session class is a direct connection to the database it is important that a developer

remembers that this Session must be closed to terminate this connection. The three

different querying types are querying by HQL, by Criteria, and by Example. HQL is also

known as the Hibernate Query Language, which looks exactly like SQL but with a little

bit of an object twist to it. Querying by Criteria and by Example fall under the same API,

therefore have similar qualities. Rather than worrying about executing SQL or HQL

statements, querying by these two methods simple creates objects that the Session will

go find the database. These Criteria and Examples can also specify specific conditions as

well as ordering procedures, and they can also be set to ignore case or not. The benefit

of the last two querying methods is the complete removal of the relational aspect of the

application and the developer can work strictly with objects. Here are a couple of

examples of the different querying methods with Figure 11.

MICS 2008 335

10

Figure 11

5.4.2 Transactions

Hibernate provides an entire Transaction API that maps specific capabilities of the

database that it is connected to. In Hibernate all of the operations are explicit;

therefore you need to write in your code when and where you want your transaction to

rollback, and when and where you want the transaction to commit. (Bauer) In

ActiveRecord this is all done implicitly, therefore you do not have to worry about when

the transaction needs to commit or needs to rollback. The framework will handle this

through exception handling and therefore removes this concern from the developer.

Again do to the design pattern; the methods for transaction are all contained with the

objects themselves. (Halloway, 2007)

Hibernate offers support for transactions that ActiveRecord does not, and they are

distributed transactions and transactions for container managed applications. Since

many Java applications operate in a container managed environment Hibernate is an

optimal choice. Hibernate also benefits from the ability to perform distributed

transactions that span over different types of database and files systems. Active

however continues to push for its vast reduction in development time because the

amount of source code is far less than an equivalent Hibernate application.

6 Web Applications

Web applications of today vary in size, demand, and purpose from simple directory

search applications that are used by colleges, to huge auction sites that have hundreds

of users such as eBay. Also there are applications that are used with corporations

support dozens of users or sometimes fewer, and incorporate business logic of the

entire enterprise, these applications are also known as enterprise applications. Even

though these applications vary in so many ways, there are some similarities that allow

us to categorize them into types of applications. This categorization will help us

determine the applications that are best suited for the two frameworks.

The first category that we will declare will be known as the massive data load

applications which provide services to a large amount of users. These applications

usually have a massive amount of data being pushed into the database and being pulled

from the database. Also they support hundreds to thousands of concurrent users

accessing and sending data to the database. The priority of these applications becomes

performance and scalability rather than development time, because of the push to have

users operate in a real-time environment. Due to this demand, generally these

applications are not written in dynamic languages or Java, but rather strictly customized

MICS 2008 336

11

compiled languages such as C/C++ and a customized web server. These applications

also try to reduce the trips to the database by queuing the requests into an

intermediary, which sacrifices some real-time performance but saves on the stress to

the database. Examples of these types of applications are Amazon and eBay and other

sites that have a massive user base and performance demands.

The second category that web applications could be known as is the small to medium

data load applications. These applications offer services to a much smaller user base,

with a similar amount of data being passed through each request. Performance is a

concern but scalability loses priority until the application is known to expand its user

base. Generally these applications have very little optimization with the database, and

sacrifice some performance with an out of the box database. An example of this type of

application would be Twitter.com or a search directory used by a college.

Another category of web applications can be called enterprise applications, where the

scope of the application does not reach outside of the corporation the application is

built for. These applications are built to centralize the business process of an entire

enterprise, hence the name. Though performance and scalability of each enterprise

application can vary, generally since the pool of users is relatively small the scalability

and performance are not an important concern. Instead enterprise applications are

concerned with industry standard performance and quick development time, therefore

these applications are usually written in a plethora of different languages and platforms.

Also some of these applications rely on utilizing the powers of the database with triggers

and stored procedures, in an effort to centralize business logic. An example of this type

of application would be an ERP application that a corporation would use to manage all

aspects of their business.

Another category would be simple applications, which should include a wide range of

applications. These applications generally have a very simple domain model, database

structure, and solve a simple problem. They can extend from a simple web application

developed to add to a guest book, or an application that somebody would design within

a textbook or a class for software development.

The final category that web applications is legacy applications, either applications that

are working with a legacy database or applications that work with legacy code. These

applications can vary for performance, scalability, and development time requirements.

The main concern of these applications is that when a change happens, that nothing

breaks the rest of the system. Legacy applications are different than other applications

due to the fact that they are existing systems rather than new systems. Generally these

applications are developed in whatever language or platform they were originally built

upon or they are development on top of the original software.

MICS 2008 337

12

7 What Framework Works Best?

Now that the basics of each framework have been covered and compared, and there is a

categorization of web application attributes, the model to pick the best framework for

the solution can now be created. The following section will discuss what applications a

particular framework is weak with and what applications a particular framework is

strong with. At the end a chart will present this information in a clear and easy way to

decide which framework to pick depending on the type of application.

7.1 ActiveRecord

There are certain applications and development teams that ActiveRecord and Ruby on

Rails is not the ideal solution for. While Ruby on Rails can be used to develop any

application, certain applications will actually make Ruby on Rails difficult to develop in.

The application are not just what hold ActiveRecord back, but also the structure of a

development team and what practices that team follows.

The first and probably most important thing to consider is whether or not your

development team is following an agile approach to software development. Meaning

you are enforcing Extreme Programming, Test-Driven Development, conversational

development with the client, and having everybody from developers to database

administrators participate in the development process. ActiveRecord and Ruby on Rails

are “opinioned software”, and do not just make assumptions about the application

through defaults, but they also make the assumption that your team is following agile

methodologies. To quote Neal Ford at the No Fluff Just Stuff Java Conference 2007 in

Green Bay, “Those who do not do test-driven development and develop in Rails will

fail.” Agile methodologies have been shown to produce development teams that are

more productive and develop higher quality applications; however these practices have

not been adopted by everyone in the industry. Those that have not adopted these

methodologies should stay away from Ruby on Rails and ActiveRecord because they will

lose the beauty and the simplicity of the framework.

Along similar details ActiveRecord loses its simplicity when you start working with legacy

systems and when the development team is separated from the database

administrators. The team loses the benefit of ActiveRecord’s migrations and convention

over configuration. Therefore the once elegant Ruby code now begins to become

cluttered with overriding defaults. ActiveRecord is also a poor solution for applications

that have a huge data load on the database end and require the support for distributed

transactions. Most Ruby on Rails applications experience problems of performance and

scaling on the database end of the application. This is due to ActiveRecord’s lack of

support for caching and other optimization techniques that hinder the framework when

MICS 2008 338

13

put up against other O/RM frameworks. Though there are very few applications with

data load this significant, if your application falls under this category ActiveRecord may

not be the best choice.

Now to look at what applications ActiveRecord is an ideal solution for. First and

foremost, if you’re team is utilizing agile techniques such as test-driven development,

agile database techniques, your clients are integrated into your development process,

and everyone on your team is involved in every piece of your software, then you benefit

most from ActiveRecord. This framework has a lot of functions and abilities that require

that you have acess to do anything to your database; therefore you should have an agile

database administrator. ActiveRecord and the Rails framework is designed to not just

support agility but demand it as part of its “opinion”.

ActiveRecord works best with applications that have a simple domain model, therefore

a simply object to table mapping. Applications that fall under the category of small to

medium data load as well as application sthat fall under the simple category

ActiveRecord can provide a great solution for. Due to the simplicity of the Ruby

programming language and the ActiveRecord framework, Rails developers can create

these web applications up to ten times faster than a J2EE developer with decent

performance right out of the box. This quick development time is a result of convention

over configuration that ActiveRecord can utilize well when developing these types of

applications.

Enterprise applications become a little harder to determine whether or not

ActiveRecord would be an ideal solution for. Though there have been successful Rails

projects both in commercial and enterprise applications, there still have been very few

projects that have been convincing to anyone. The debate of whether or not this

framework can scale well with enterprise applications is on both sides of the fence with

Neal Ford saying that Rails can scale for 99.9% of applications; hwoever you have other

professionals such as Ted Neward waiting for that to be proven to them. Then because

this debate so far has not been proven to either side, we will make an educated decision

based off of how ActiveRecord has faired with other types of applications. If your

enterprise application is relatively simple with moderate performance demands, then

ActiveRecord will work just fine. However if you have high performance demands and a

complicated application with a complicated domain model, then you may run into

problems with using ActiveRecord. (N Ford, personal communication, SEP 9, 2006)

7.2 Hibernate

At the 2007 No Fluff Just Stuff Java Conference in Green Bay, Neal Ford had said that

Hibernate was the industry standard for object/relational mapping frameworks. And it

was proven true was no other technology was used more by the attendees of this

MICS 2008 339

14

conference than Hibernate. It was again proven true when Neal Ford described that a

Ruby on Rails implementation of Hibernate was in the works to benefit from the

robustness of Hibernate. The framework has been around for some time now and has

pushed to standardize the methods of persistence of an object to a database. Through

its rich domain model approach and the ability to cache and optimize many operations,

Hibernate allows applications to excel in performance. However like all technologies it

has both its strengths and weaknesses.

Hibernate is not ideal for any application that works with a simple domain model and

thus a simple application. Hibernate is designed better for applications that have grown

out of the simple stages and grown into much more complicated models. If you use

Hibernate for a simple application, the result is that the application becomes far more

complex to create and maintain than it has to be. Hibernate also is not ideal for

applications under the category of massive data load, even though Hibernate is ideal for

performance. The data load is too extreme even for Hibernate to handle, and thus

application these applications are never developed utilizing Java. Even though

Hibernate out of the box comes with ability to work with various systems, most of the

stress of the massive data load applications lies in the database end. These applications

excel in removing this stress, where Hibernate cannot achieve.

Enterprise web applications is where Hibernate becomes the industry standard for any

corporation. Hibernate has the ability to handle much more complicated domain

models with ease therefore providing better maintenance and extendibility of these

applications. Through the use of caching, performance tuning, and Hibernate support

for the creation of and use of stored procedures applications can run at optimal

performance with very little trouble. It is because of these same reasons that Hibernate

is also a wonderful solution for applications that fall under the category of small to

medium data load.

Legacy systems are always difficult to deal with, since most of them have become much

more than just old code and data models, but rather a huge mess of old code and data

models. Hibernate’s design pattern the Data Mapper was designed to better handle

data models that were much more complicated and messier than your average data

model. Java and Hibernate can be developed to either be the legacy code, if the system

was originally developed in Java, or can be embedded within the original code and

design. (N Ford, personal communication, SEP 9, 2006)

7.3 Conclusion

In conclusion Table 2 describes a simple chart with the appropriate framework chosen

for a specific type of application. The bottom line is that the Ruby on Rails framework is

MICS 2008 340

15

still young along with ActiveRecord, and they have not proven itself in the production

environment. Therefore there should be a great deal of caution when choosing this new

technology, but it has its strength is simplicity and the ease of software development.

Hibernate is an industry standard, proven, and therefore a great choice for any

application, however there should be caution in picking this as well due to its complexity

and increased development time.

Web Application Type Hibernate or ActiveRecord?

Simple Applications ActiveRecord

Small to Moderate Data Load Applications Both

Massive Data Load Applications Neither

Enterprise Applications (Simple) ActiveRecord

Enterprise Applications (Complicated) Hibernate

Legacy Systems Hibernate

Table 2: Conclusion

MICS 2008 341

16

References

[1] Ambler, Scott W (2007, May 16). Introduction to Object-Orientation. from Agile Data

Web site: http://www.agiledata.org/essays/objectOrientation101.html

[2] Ambler, Scott W. (2003). Agile Database Techniques. Danvers, MA: Wiley Publishing

Inc.

[3] Bauer, C, & King, G (2007). Java Persistence with Hibernate.New York: Manning

Publications.

[4] Halloway, S and Gethland J. Rails for Java Developers. Dallas: The Pragmatic

Programmers LLC, 2007.

[5] Johnson, Rod (2004). J2EE Development without EJB. Indiapolis: Wiley Publishing Inc.

[6] N Ford, public presentation, AUG 2007

[7] Sebesta, Robert W. (2006). Concepts of Programming Languages. Boston, MA:

Pearson Education Inc.

[8] Thomas, D., & Hansson, D. (2007). Agile Web Development with Rails.Dallas: The

Pragmatic Programmers LLC.

[9] Thomas, D., & Hunt, A. (2001). Programming Ruby - The Pragrmatic Programmer's

Guide.Addison Wesley Longman Inc.

MICS 2008 342

Towards Musical Analysis Tools
Curt Hill and Sara Hagen

Valley City State University
Valley City, ND 58072

Curt.Hill@vcsu.edu Sara.Hagen@vcsu.edu

Abstract.

The golden age of musical analysis is now dawning with computer assistance. Traditional
analysis of music is a tedious and time consuming process for even the experienced
analyst. There are many well known rules for this, but music is an art where a balance
must exist between the expected and surprises.

The raw data for such a study abounds, but finding the preferred format is an issue. The
data can generally found in two different classes. The first class is something that could
be performed. The second class includes the file formats of numerous score producing
programs. There are some tradeoffs for either class of data.

Several experimental programs are described. The first detects composition errors. The
second recognizes chords and even this is not trivial. The third tabulates chord sequence
pairs within collections of works to give statistical insight into the important topic of
chord progressions.

MICS 2008 343

Introduction

The entire process of publishing has been revolutionized in recent memory. The time
honored method was to write out the manuscript in longhand, have it typed and then
typeset. Each copy introduced errors that had to be found and removed. The arrival of
word processors and desktop publishing in the 1970s and 1980s streamlined the process
considerably. A similar but less well known series of events has done similar things to
music composition and publication. The advent of score production programs has saved
countless hours in the production of publishable music. In about the same time frame
Musical Instrument Digital Interface (MIDI) and a plethora of MIDI-compatible musical
instruments has made it possible to play the score directly from the program.

The area of analysis of music is just beginning to benefit from these advances. Music
analysis is a well known process of decomposing music into recognizable pieces. Just as
a sentence may be analyzed to find its subject and verb so may music be analogously
examined. Music analysis is looking for chord sequences, cadences, tonicisations and
modulations rather than for nouns, verbs and adjectives. Although the low order
techniques are quite different as the subject matter is different, the goal is the same – to
find the structure placed there by its author.

Music and grammar analysis have something else in common: both require considerable
knowledge of the subject domain and are time consuming and tedious. Tasks that are
knowledge based and tedious are exactly the kind to which computer application is most
suitable. Therefore, we will consider two important topics: the form of the data on which
to begin the analysis and some types of analysis that have been accomplished. The former
will focus on the kinds of data available and conversion to usable format. The latter will
focus on some specific analyses that have been done as well as what could be done. We
will also attempt at least an informal definition of the technical musical terms as we
consider them.

Form of Musical Data

Music exists in a number of data formats that are readily available [Castan,2008], but few
are easy to process. What is desired is a format that is easy to process and captures as
much usable information as possible. As always, these goals are in conflict, so finding the
middle ground is important.

The obvious form is the recorded performance. There are a variety of formats for
recorded music such as MPG, WAV, AIFF, etc. Although this is the obvious form it also
has the obvious problems. Processing an audio file into its separate components, that is
the separate instruments, is extremely difficult. The human has a very well developed
sense of hearing and an extremely proficient audio processor, yet very few people can
identify the next to lowest note played by the piano. In most cases our attention focuses
on the highest notes. Of course, as the number of instruments increases the difficulty of

MICS 2008 344

separating out each line of notes also increases. Sadly, we have a substantial way to go in
order to render a score from a performance [Bello, 2000].

A much more tractable alternative is Musical Instrument Digital Interface (MIDI) format
data. MIDI may be generated via a score program or recorded live from a large variety of
electronic musical instruments. MIDI is composed of a series of signals indicating events
and is relatively easy to parse. An event is typically the depressing or releasing of a key.
This may include velocity information, which describes how vigorously the musician
pressed the key. This velocity translates into the loudness of the note. In addition there is
also information concerning the particular instrument tone that is being played. The
modern digital piano can approximate the sound of virtually any instrument. Although, a
Roland piano will never sound just like a Stradivarius violin, the differences in the two
are not significant for the purpose of musical analysis.

In contrast to live recordings, either in audio or MIDI format, are the files used by the
score production programs. Since a score is seldom finished in one session, these
programs must store the data in a file in a retrievable way. An analysis program could
parse the file and reconstruct the score as it would be published. The problem with this
format is the difficulty of the parse. The manufacturers of such programs are not
generally open about the format of the programs. There are at least two exceptions to this
that are worth noting: ETF and MusicXML.

ETF is the acronym for Enigma Transportable File. This was an exchange format used by
the MakeMusic! company (formerly known as Coda Music) in its Finale product line.
The Finale series routinely stores the score in a proprietary format that typically changes
with each new release in an upward compatible way. This format was a binary file with
no specifications – it was not intended that any other program could process it. However,
most of these could also store the score in ETF format. This was an ASCII file that was
programmatically simple to read. It appears to be a people readable dump of the contents
of the internal tables.

ETF was originally designed as a means to transport files from one version of Finale to
another. Coda published the original specifications [Coda, 1998]. Margaret Cahill [Cahill,
2006] expanded these in her thesis, which seems to be no longer available. The types of
coding used in ETF has increased over the versions and the available documentation has
not. The first author has augmented this documentation as a side effect of constructing an
ETF parser, however there is much that is not yet documented. This parser is the basis of
several analysis tools to be discussed in the next section.

Unfortunately, MakeMusic! has ceased its support of ETF. Finale 2007 will not write out
an ETF file, although it may still read it. According to their documentation it turned into a
support problem as users tried to modify the ETF directly and produced inconsistent files.
The Finale program could read the file but apparently did insufficient checking which led
mysterious errors and eventually to finger pointing between the company and its users.
This would appear to be a good corporate decision but disappointing from a short-term
research perspective.

MICS 2008 345

A superior format does exist and this is MusicXML. It was designed primarily to be an
interchange format for score programs. Unlike ETF, which had little use outside of those
who used Finale, it was designed to be able to represent the score in an independent way.
It was pioneered by Recordare company [Recordare, 2008] but most of the score
programs now support it. This includes Capella, Finale, Sibelius among many others
[Recordare, 2008]. Strangely, there is no support for either the direct publication of a
score nor the playing of a piece from MusicXML. The underlying assumption is that
every person with an interest in MusicXML has one of the score programs, will import a
MusicXML file into their score program and then print or play from there.

There are some tradeoffs between a score format like MusicXML and a performance
format like MIDI. Both are relatively easy to parse. The score format will contain extra
information that is tricky to extract from a performance format. It always contains both a
key signature (such as key of Eb) and a time signature (such as 2/4), since these are
essential parts of the score. When a piece modulates, that is moves from one key to
another, the key signature generally changes on the score. The measure separators (that is
the bar lines) should be of no consequence, but can give significant clues as to the
structure. For example, a cadence (a sequence of keys that brings the piece to a temporary
conclusion) almost always terminates at the end of a measure. Such things can be
deduced from a performance but it is a complicated and error-prone process. Moreover,
the performance of a score by a person always has minute variations from what is printed.

The comparison, however, is not one-sided. The performance format has some
advantages of its own, when the file was created by a talented musician. Although a good
musician should stay within close tolerances of the score, there is always room for
interpretation that a score does not capture. For example, when looking for a cadence in a
MIDI format file, one would look for slightly louder notes along with the other features.
This is not evident from the score at all, but the musician has already done a de facto
analysis and will emphasize things like a cadences.

Analysis Tools

Even though MusicXML would appear to be the preferred format, for historical reasons
an ETF parser was constructed and the results in this section are based upon that. Work
on converting the work to MusicXML is proceeding.

Once a parser of the file is complete there are a variety of data available for processing.
Clearly the most important form of data is the information on the individual notes. This
will necessarily include the note value and octave, as well as starting time and duration.
Auxiliary information includes the measure information, which includes its starting time,
key signature and time signature. This is the bulk of the raw data that needs to be
analyzed. What will be considered next are three experimental programs that perform
differing analyses on this raw data.

Document authors have a variety of checking tools available for their use. These include
spelling checkers, grammar checkers as well as the determination of reading level. Many

MICS 2008 346

programming languages have types of verifiers as well, such as the lint program which
checks for certain potential errors in source code. The first of the described programs
does exactly that for compositions. Its intended audience was novice composers. It
searches for a variety of conditions that should not normally exist in certain types of
compositions. A screen shot of the dialog box that allows condition selections to be
checked is in Figure 1.

Figure 1. Checking dialog box.

There are several types of checking that may be done. Vertical checking compares a note
with the other notes that are to be played at the same time. Horizontal checking looks at
successive notes in the same voice. There are other possibilities as well including
combinations.

Perhaps an explanation of a few of these conditions is in order. Most of these conditions
are checked in a vocal piece for three or four part harmony. The idea of a spacing error is
if there is more than an octave between the soprano and alto or alto and tenor voices. This
is an example of vertical checking. A range error occurs when a note is beyond the usual
range of that voice. This is neither vertical nor horizontal, just a case of demanding too
much from a performer. A difficult skip is when a single voice is required to skip an
interval that is beyond the average vocalist. This includes a skip of more than an octave, a
seventh and the augmented fourth. This would be found with horizontal checking. A
parallel octave or parallel fifth error occurs when two voices move from one note to
another and maintain the parallel distance. This usually occurs in non-adjacent voices and
requires a combination of horizontal and vertical checking.

Is this really necessary? Certainly to the experienced composer these rules are so
ingrained as to require no additional work. However, consider the number of possibilities
that a novice must deal with. In a ten measure piece, which is little more than an
advertizing jingle, there might be approximately 40 notes in each voice. This requires
about 40 range checks, 156 horizontal checks, 240 vertical checks as well as 117
horizontal and vertical checks. This is more than 500 things to check for in a trivial piece
and this does not take into consideration that checking for a parallel octave is slightly
different that checking for a parallel fifth. When these numbers are considered, as well as

MICS 2008 347

other conditions that may be selected but not here described, it should be clear that
verifying a piece is a formidable obstacle for the novice composer.

A chord is usually three or four notes with well known intervals that are played
simultaneously. For example a major chord has a major third interval between the lower
two notes and a minor third interval between the upper two notes. This would seem to be
a simple thing to recognize, but this is not the case because of the many variations. In
actual music any chord may be complicated by inversions, duplicated or omitted notes
and extra notes that are not part of the chord. The marvelous human ear can appreciate all
of these as more or less equivalent.

An inversion is a rearrangement of the notes in any way other than the standard notation.
For example a standard C major chord consists of the notes, C, E and G in the same
octave. There are six permutations of this order. They have somewhat different tonality
but they are for the most part interchangeable. In a four part harmony at least one of the
notes needs to be duplicated, although probably in a different octave. Thus any note may
occur more than once. It is also the case that we will recognize the chord even if one of
the notes is missing, so that possibility must be accounted for as well. The more difficult
problem is non-chord tones. There are a variety of these that have function in the linear
structure of the piece but are not a part of the chord itself. Notice that the number of
combinations of tones that can form the same chord is quite large and there are a fair
number of chords that one can expect in a particular key. The pattern recognition
capability of people is rather amazing, for chords with any combination of these items is
recognizable, not to mention pleasing. Since chord progressions, that is the sequential
motion of chords, is an important foundation for many higher level structures, it is
essential that chord recognition be rather robust.

The pattern recognition used involves representing the chord as a set of integers.
Ultimately, a chord should fit in an octave. Thus after the notes are represented in the set
the range is gradually reduced by plucking off the highest note and adding it back in an
octave lower until the entire chord fits in the octave. This will also collapse duplicates
into a single note. There are approximately 50 bit patterns that capture the tonality of the
chord. Thus a D chord has exactly the same shape (ie. bit pattern) as a C chord, but it is
based upon a higher note. If the set matches none of the patterns and has too many notes
a backtracking process removes a note and tries again. If the note removed was an extra-
chord tone the pattern should be discovered, otherwise that path fails.

This process is embedded in several objects that have a general usage in the analysis
process. A simple program that identifies a chord entered as a series of notes is used as a
test bed for these objects. Figure 2 shows a screen shot of this program. An explanation
of what is shown follows.

The series of notes is entered into the window. Each note must specify the note name,
such as D# or G. This may be followed by an optional octave number. Octaves always
start with C and end with B, so C4 is one half-step above B3. Once the notes are entered
the user may get a simple ID by clicking the ID button or more information by using the
Info button.

MICS 2008 348

Figure 2. A chord analyzed.

In the example shown four notes are entered. The ID button shows the first two lines. It
identifies this chord as an A minor. Since the E and not the A is the lowest note it is
labeled as an inversion. The program has also identified the D as a non-chord tone
(NCT).

The last four lines results from using the Info button. It gives mostly the same
information as the ID button, but offers some additional information as well. It shows the
figured base notation (6 4) as well as the Roman numeral designation: vi. The Roman
numeral notation is handy because it is independent of key. A piece transposed into
another key has exactly the same Roman numeral notation for its chords, which makes
comparisons of chords and chord sequences much easier. Roman numeral notation
requires knowledge of the key that is being used when the chord is used. The key
indication in the screen shot shows that this should be in the key of C major. Within C
major an A minor is the sixth chord. An upper case roman numeral indicates a major
chord, while lower case signifies a minor chord. Thus the vi signifies a minor sixth chord.

A chord progression is a sequence of chords. Of course, not any random sequence will be
enjoyable and an important question is what chord may follow another in a pleasing
fashion. The question has many variants depending on whether the focus is on just pairs
of chords or on longer sequences. A very common sequence is the IV, V, I. With the
ability to find and process large quantities of music this can be considered from a
statistical point of view.

A two step approach was attempted to shed some light on this. The first step is to use the
parsing of ETF files and the recognition of chords to create temporary file that captured
chord transitions. This would provide data that indicate a starting and ending chord as
well as measure information. (The form of these temporary files was that of SQL Insert

MICS 2008 349

statements even though a relational database was not used in this experiment.) The
second step was that of a tabulator, that would select the data in some fashion and create
a table counting transitions.

Statistical approaches are of dubious value with small sample sizes. It is of little interest
if one or two Beethoven pieces are tabulated, but twenty would be of some value. Such a
tabulator was created and the user may gather as many of the SQL temporary files as
possible and create an in-memory database. This database may be selected by composer
or by minor or major key and a table produced. Figures 3 and 4 show this program.

 Figure 3. Loading data. Figure 4. Displaying the table

Figure 3 shows the loading of the temporary files included over 100 separate scores. The
bulk of these were obtained from the Finale Showcase [MakeMusic, 2008] which
contains a large variety of scores suitable for downloading. A score could be a movement
from a symphony or a much smaller piece. In this there were about 30 pieces from
Mozart, which will be summarized in Figure 4. A particular piece may modulate through
various keys, minor or major, but only those that are in a major key are summarized in
the table.

The analysis of this table exceeds the scope of this paper. However, a casual glance
asserts that Mozart was more likely to transition a V back to a I, which could hardly be a
surprise since this is the basis of many cadences and was common well before Mozart
and continues to this day. However, it seems that he was not a big fan of transitioning a
IV to a V as is often common elsewhere.

Conclusions and Future Work

The purpose of this paper was to demonstrate potential, so no conclusions are needed.
Yet, it seems clear from Figure 4 that what could have taken hundreds to thousands of
hours is now quick and painless. The analysis of the data will still engage us but the
tedium of generating it should be done by program.

The authors still have much to do. The construction of a suitable MusicXML parser that
will produce data in way parallel to the ETF parser is in process along with the

MICS 2008 350

preservation of the existing analysis tools. The detection and classification of cadences is
the next two project that is planned.

The goal of music analysis is to illuminate the structure of the work. Yet at the heart of it
is the desire to find why we like some pieces and not others in order that every
composition is a pleasing one. If computerized analysis assistance can bolster this effort
in any way then it will be time and energy well spent.

References

Bello, Juan Pablo, Guiliano Monti and Mark Sandler(2000). Techniques for Automatic
Music Transcription. Proceedings of the International Symposiumon Music
Information Retrieval (ISMIR 2000). October 23-25, 2000, Plymouth, MA.
http://www.ismir2000.net/papers/bello_paper.pdf. Date accessed 5 March 2008.

Cahill, Margaret (2006). Publications.
http://www.csis.ul.ie/staff/Margaretcahill/publications.htm. Date accessed 5 March
2008.

Castan, Gerd (2008). Musical notation codes. http://www.music-
notation.infor/en/notationformats-a4.pdf. Date accessed 5 March 2008.

Coda Music (1998). Enigma Transportable File Specification.
http://www.xs4all.nl/~hanwen/lily-devel/etfspec.pdf. Date accessed 5 March 2008.

MakeMusic (2008). Finale Showcase. http://www.finalemusic.com/showcase/ Date
accessed 7 March 2008.

Recordare (2008). MusicXML Definition, Version 2.0.
http://www.recordare.com/xml.html and http://www.musicxml.org/xml.html. Date
accessed 5 March 2008.

MICS 2008 351

A Policy-Based Scheduling Tool for Networking Labs
James T. Yu, Ph.D.

School of Computer Science, Telecommunications, and Information Systems
DePaul University
Chicago, IL 60604
jyu@cs.depaul.edu

Abstract
This paper presents a web-based scheduling tool for the networking lab at the School of CTI,
DePaul University. The growing demand of distance learning requires an innovative networking
lab to support students to perform hands-on exercises from anywhere with 24×7 availability.
However, hands-on exercises are mutually exclusive as students cannot perform the same
administration task on a device at the same time. Therefore, a scheduling tool is required to
avoid interference. Unfortunately, most commercial tools do not meet the requirements for the
academic environment where instructors need to manage the lab resource for fair use by all
students. To address this issue, we developed a policy-based scheduling tool for our network lab.
The tool has been used in our environment for six quarters, and the feedback from the instructors
and students is very positive.

MICS 2008 352

 2

1 Introduction
Hands-on lab exercises are an integral part of the telecommunication and networking curriculum,
and there are many publications discussing the needs and the environment to support it [1][2][3].
With the growing demand to support distance learning for networking curriculums, it becomes a
new challenge to support hands-on lab exercises with remote access capability [4][5]. In the
summer of 2005, we started a pilot program to support students to access the networking lab
from the public Internet as illustrated in Figure 1.

Figure 1. Remote Lab Access Architecture

An immediate challenge of this remote lab is the scheduling conflict. A lab configuration can be
used by only one student at a time. Before we introduced the remote lab, students went to the
physical lab for work assignments. If two students came to the lab at the same time, one would
wait until the other completed the work. In the case of the remote lab, students would not see
each other. It is possible that one student is doing the router configuration while another student
is trying to reload the configuration. The pilot program had only nine students during the
summer, so this scheduling problem can be easily resolved by using a sign-up paper.

When we decided to provide the remote lab environment for regular classes, it becomes obvious
that a sign-up paper would not work as there are frequent requests to change schedules. This
issue motivates us to deploy an on-line scheduling tool to support the remote networking lab. We
first explored the Internet to search for commercial or shareware tools that could meet our lab
scheduling needs. However, most commercial scheduling tools are designed for appointment
rather than for management of shared resources. Examples are MS Outlook Calendar, Yahoo
Calendar, OrgScheduler [6] and Mimosa Scheduling Software [7]. They are primarily for
general purpose calendar events. Although they could be configured for lab scheduling
application, they have no or limited capabilities to support the access over the public Internet. In
addition, many of those tools require a software client installed on student workstations, while
we prefer a simple and standard web interface for lab scheduling.

We implemented a prototype in the spring of 2006, and encountered a unique problem in the
academic environment. While students were given two weeks to do each lab exercise, the
majority of students would wait until the last day. Although all lab exercises were designed
with ease-of-configuration so that students could complete the work in one hour, most student

MICS 2008 353

 3

requests for lab sessions were 2-3 hours. As a result, we could accommodate only 6-8 requests
per day. For a typical network class of 30+ students, it is not possible to accommodate all
student requests in the last 2-3 days of assignment due, and many complained that the scheduling
is not fair for them to complete the lab work. Figure 2 illustrates the non-uniform distribution of
lab requests, and this data is collected after we have implemented a strict policy on lab usage.
Without the policy enforced in the tool, the situation is much worse.

Figure 2. Non-uniform Distribution of Student Lab Requests

The problem of non-uniform distribution motivates us to develop a policy-based lab scheduling
tool, and the policy could vary from classes to classes and labs to labs. The benefit of the tool is
to support an effective remote lab environment to share the resources with little administration
overhead for the instructors and the lab administrator. This paper presents the motivation,
requirements, and design of the lab scheduling tool.

2 System Requirements
The objects and the control structure of the scheduling tool are illustrated in Figure 3.

Figure 3. Objects and Control Structure of Lab Scheduling Tool

Administrator
Course

List

Instructor Lab
Assignment Policy of the

Assignment

Student Lab
Session

Instructor
Account

Student
Account

MICS 2008 354

 4

The roles of administrator, instructor, and student are described as follows:

Administrator – The lab administrator is responsible for creating the instructor accounts and
associating the accounts with the courses assigned to the instructors. The lab administrator is
not involved in the scheduling policy which is the responsibility of the instructors. After each
quarter, the administrator will clear all accounts (instructor and student), and move the
scheduling data into the archive. The administrator is also responsible for the stability and
maintenance of the tool, including issue resolution and feature enhancement.

Instructors – The instructors are responsible for designing lab exercises and determining the
policy for each lab exercise. The attributes of lab exercises are given in Table 1.

Table 1. Attributes of Lab Assignment

1. Lab Assignment ID
2. Lab Assignment Name
3. Lab Assignment Description
4. Course ID
5. Duration (starting time and due time)
6. Number of lab sessions per day (limited to one by default)
7 Number of hours per lab session (limited to 1-3 hours)

In addition to setup the policy for each lab exercise, the instructors are responsible for setting up
the student lab accounts. To streamline the process for the instructors, we follow the same
format of the student profile in the school database system. Instructors simply download the
student file from the school database and then upload the file to the scheduling tool. Each student
is given a personal password to access the lab scheduling tool. It should be noted that the
password is associated with each course. If a student takes two different networking courses,
he/she will have two different accounts. Instructors are also required to reserve time slots to use
the lab. However, the instructors are not constrained by the policy as instructors could reserve
unlimited sessions for class demonstration and technical support. Instructors also have the
privilege to grant more lab sessions to students who have special needs.

Students – Students use their personal accounts to reserve a lab session. The tool would show
only the available lab time slots based on the policy of each lab assignment. A typical example
is that students could have one lab session per day, three lab sessions per assignment, and one
hour for each lab session. Students may request or release lab sessions based on their
availability. Students, of course, cannot release a lab session that is already passed.

Other requirements for the scheduling tool are:

1. An on-line tutorial for instructors to set up the policy and for students to reserve and
release lab sessions.

2. A log to track all lab requests and releases. This information is important to track the
lab usage and to perform postmortem analysis.

MICS 2008 355

 5

3 System Environments

We choose Linux as the development and target production environment due to the ease of using
scripting language for task automation. Apache Server 2.0 which comes with the Linux Fedora
2.4 is the development platform. The database is MySQL which is included on the Linux
system, and it is a high performance, multi-threaded, and multi-users SQL database server.
MySQL server can support data records of up to 4 TB on the Linux kernel 2.4 [8]. Based on
the data of two quarters, a networking course with 10 lab exercises and 50 students uses only
1MB of disk space. A typical MySQL server on Linux can handle up to 1,500
transactions/queries per second, and our environment for lab scheduling would peak at no more
than 2 per second. Therefore, scalability would not be an issue on this environment.

We discussed between PHP and Perl as the programming language for the web development,
where both languages provide effective API to interface with MySQL. We decide to use PHP
because we can reuse much code from a similar system, and to use Perl for backend
management. The performance of using Linux, Apache Server, MySQL Server, and PHP is also
shown to be better than using the IIS server [9]. The only system requirement for end users is the
Internet browser. Users can access the scheduling system via any browser which supports HTML
and JavaScript. The system environments for the server and clients are summarized in Table 2.

Table 2. System Environment for the Server and Clients
Server Operating System Linux Fedora core 2.4.20
 Web Server Apache Server 2.0
 Web Development PHP 4.3.10, JavaScript and HTML
 Server Task Control Perl and Shell Script
 Database MySQL 3.23.49
Client Web Browser Internet Explore, Firefox, Netscape

4 System Architecture and Design

4.1 Data Modeling

The relational data model of the scheduling tool is illustrated in Figure 4. From which, we can
see two types of accounts in the admin table. One is for administrator, and the other is for
instructors. An instructor has one or more courses, and each course has multiple lab exercises.
The database also provides the lab reservation log for postmortem analysis. The Reservation
table is the key component of the data model as it contains the actual lab scheduling data. This
table also provides the reporting function of showing available time of each lab exercise. The
system authenticates each student who follows the policy to request a lab session. Students can
access the labs only during their reserved lab time.

MICS 2008 356

 6

Figure 4. Physical data model for relation database.

It should be noted that there is a Normal Form Violation [10] in the Student_Profile table. If a
student takes two classes, the student name and ID become redundant data which has the
potential issue of data integrity. However, this table is generated automatically from an input file
downloaded from the school database system. Therefore, it is unlikely to have a data integrity
issue. An advantage of our approach is to avoid additional join operation which has negative
impact on performance. In summary, this design has the performance advantage without the
issue of data integrity

4.2 User Interface Design
The interface design is to support ease of use for the administrator, instructors, and students.
Figure 5 shows the interface views provided for each user group. All users interface with the
system via the web.

4.2.1 Interface Design for the Administrator
The Lab administrator is responsible for creating instructor accounts which include account ID,
password, and course data. An example of creating an instructor account is given in Figure 6,
where the required data includes:

• Instructor Account Name
• Password
• Course ID
• Course Name

A management interface page is provided for the instructor to modify and delete instructor
accounts.

MICS 2008 357

Figure 5. User View of the Scheduling System

Figure 6. Sample Screenshot of the Administrator Interface

MICS 2008 358

4.2.2 Interface Design for Instructors

The 1st task for instructors is to create student accounts and the task could easily be
accomplished by uploading the student profile (in the Excel spreadsheet format) from the school
database system. The PHP program reads the input Excel file and writes the data into the
database table for each course. Instructors can use the management interface to delete the student
data.

An important feature of the lab scheduling tool is the policy specified by instructors for
individual labs. Instructors are provided with a management interface to define a lab exercise
within a course and the system will create an internal ID of each lab exercise for internal
tracking. The management interface for lab creation is illustrated in Figure 7, and the policy data
includes:

• The starting and ending dates of a lab exercise,

• The number of sessions per lab exercise allowed for each student, and

• The number of hours for each lab session.

Figure 7. Sample Screenshot of Instructor Interface

The system has a general policy that each student is allowed for only one lab per day. This
policy is based on the experience that students have the tendency to wait for the last day and
reserve multiple lab sessions. With the policy of only one lab session per day, students are

MICS 2008 359

required to plan ahead. After creating a lab exercise, the instructor can use the management
interface to modify the lab information or delete a lab exercise. Reservation Log interface
provides instructors with the status of student reservation. Instructor may also overwrite and
delete a student lab reservation. For example, if a student has a special need for more lab
sessions, the instructor can use the management interface to grant additional lab sessions for that
student.

4.2.3 Interface Design for Students

The web interface for students supports multiple classes from different instructors. When an
instructor uploads the student data, the system uses personal data to derive the default password.
Only authenticated students can reserve lab sessions. Each lab session has starting and due dates,
and students must reserve lab sessions during this interval. The lab reservation is menu-driven
and students are given the available time slots (day/hour) from a friendly calendar interface.
Figure 8 and Figure 9 are the screen shots of lab reservation interface for students who can select
only those dates that are between the lab starting and due dates. We use different colors to show
the status of a given day: time slot available (cyan), no time slot available (red), and time slot
already reserved (green).

Figure 8. Sample Screenshot of Student Interface

MICS 2008 360

Figure 9. Screen Shot of Calendar for Lab Reservation

If a student chooses a date with available time slots, he/she will be presented with a new page
showing time slots that are available for reservation. With this function, the system does not
need to check schedule conflict because only available time slots could be selected and reserved.
The system also provides a management interface for students to view their reservation history
with the option to cancel a reservation.

4.3 Security Control

4.3.1 Data Control Structure

The system has three level of security control as specified for the administrator, instructors, and
students. The administrator controls the data of courses and instructors who control the data of
labs and students who control the data of their lab sessions. This control structure is illustrated in
Figure 3.

.
4.3.2 Password Encryption

Each account has its own password which is used for access control. In order to prevent hackers
from sniffing password over the network, we use an encryption function of PHP [11] to protect
the passwords. The passwords in the database are stored in the encrypted format as well.

4.3.3 Activities Log

All lab activities and Linux server access are logged, including IP address and timestamps. If
there is any unauthorized access to the system, the administrator can check the activity log to
determine the cause and severity of the activity. Two examples of lab log are given below:

MICS 2008 361

38 TDC511 lab01 09-19-2006 23:00 jyu Delete 09-11-2006 15:34 140.192.33.153
34 TDC511 lab02 09-19-2006 17:00 jyu Reserve 09-11-2006-14:01 140.192.33.153

Figure 10. Examples of Activity Log

5 Conclusions
The development of the lab scheduling tool was complete in the summer of 2006, and the tool
has been used for six quarters and 12 networking courses with over four hundred students. The
feedback from the instructors and students is very positive. Since the official use, we identified a
few omissions in the requirements and enhanced the tool to correct those omissions.

The network lab environment represents a limiting resource that needs to be shared by a large
student population. With the design of the remote lab, we are able to provide 24×7 service for
students to access the networking lab from anywhere with the public Internet. The lab scheduling
tool is required to support this remote lab environment so that students would not interfere with
each other’s work. One unique feature of this lab scheduling tool is the support of a policy for
individual lab exercises, and the policy is managed by the instructors. Although this scheduling
tool is designed for the networking lab in an academic environment, its general concept is
applicable to any environment with contention for limited resources. With an established
policy that is agreed by all the parties, an organization can use the approach presented in the
paper to implement the policy in the scheduling tool. The benefit is fair and effective use of
limiting resources with no administration overhead

Additional features are being considered to enhance the tool capability. One enhancement under
consideration is to link the student reservation data with access control to the lab equipment.
For example, if a student is trying to access lab equipment outside his/her lab session, the access
would be denied. A major challenge in providing this capability is that lab equipment is shared
by multiple lab exercises and their use changes constantly. The work scope involves the asset
management of the lab resources. We are studying different approaches to support the
development of this feature.

Acknowledgement

The author would like to thank Jen-Wei Lai for developing the lab scheduling tool in the summer
of 2006, and supporting the tool maintenance until the spring of 2007. The funding for the tool
development is provided by the Competitive Instruction Grant from DePaul University.

References
[1] P. T. Rawles, “Developing and Supporting a Laboratory based Local Area Network

Course,” 1999 IACIS Refereed Proceedings, 223-229. Harrisonburg, VA: International
Association for Computer Information Systems (pp. 223-229).

[2] L. C. Hassan, et. al. “A Model for Telecommunications and Networking Technology
Curricula,” Telecommunications System Management Conference 2004, Louisville,
Kentucky (April 2004)

MICS 2008 362

[3] Ted Mims, “Hands-on Laboratory Based Networking Courses,” Midwest Instruction
& Computing Symposium 2002

[4] S. Yoo and S. Hovis “Remote Access Internetworking Laboratory” In Proceeding of the
Thirty-fourth SIGCSE Technical Symposium on Computer Science Education, Norfolk,
VA, 2004

[5] G. Scheets and M. Weiser, “Improvement a Remote and Collaborative Hands-on Learning
Environment,” HRD in a Networked World, February 2001, Urbana Champaign, IL
http://learning.ncsa.uiuc.edu/ahrd/papers/virtual_lab_paper2.pdf

[6] OrgSchedulers, http://www.binary-house.com/orgschedulers.html

[7] Mimosa Scheduling Software, http://www.mimosasoftware.com/mimosa.html

[8] MySQL Reference Manual, http://dev.mysql.com/doc/refman/5.1/en/full-table.html

[9] U. V. Ramana, “Some Experiments with the Performance of LAMP Architecture”, The
Fifth International Conference on Computer and Information Technology, 2005, pp. 916-
921

[10] Gerald V. Post, Database Management Systems, 2nd Edition, McGraw-Hill Publishing Co
2002, pp. 75-79.

[11] Argerich Luis, et. al., Professional PHP4, Apress, 2003, pp. 849-850

MICS 2008 363

A Dynamic Algorithm for Computing Periodicities
of Misère Impartial Games

Thomas McConville
Department of Mathematics, Statistics, and Computer Science

Saint Olaf College
Northfield, MN 55057
mcconvit@stolaf.edu

Abstract
A result of the Sprague-Grundy theorem, which forms much of the basis of the field of
Combinatorial Game Theory, is that any impartial game in normal-play can be translated
into a game of Nim. Since normal-play Nim has a simple solution and these transla-
tions may be handled automatically, this theorem effectively solves all impartial games
in normal-play. However, no such unifying theory is known for misère impartial games.

We present an algorithm that, given a set of heaps and a ruleset, determines which player
has a winning strategy in misère-play by first computing the associated misère quotient.
Our implementation accepts a ruleset and an upper bound on the size of heaps and returns
the periods and preperiods that exist within those bounds. Documented here are our results
for the games 0.3122, 0.31011, and 0.3102.

MICS 2008 364

1 Introduction and Background
This paper describes an algorithm for computing outcomes of impartial games in misère-
play by approximating indistinguishability quotients. In this section, we provide an overview
of the types of games played and the theory supporting the algorithm. Readers more knowl-
edgable about these topics are encouraged to skip to the Algorithm and Results sections.

The field of Combinatorial Game Theory (CGT) is concerned with solving two-player
games of perfect information with no luck involved. Note the contrast with classical Game
Theory used to study human or market behavior. CGT has been motivated in part by a
desire to solve games such as Go or Chess that despite being very complex, have either
a winning strategy for one player or a draw strategy for both players. With sufficient re-
sources, a computer could completely solve either Go or Chess by analyzing every possible
sequence of moves, but due to the vast complexity of these games, more elegant approaches
are being developed.

Our algorithm is designed to solve impartial games, which are games with all resources
shared among both players (i.e. every move available to the first player is also available to
the second player). The most classic example of an impartial combinatorial game is Nim.

1.1 Nim

5
5 2

Figure 1: (0, 1, 0, 0, 2) = h2 + 2h5

A game of Nim consists of a set of heaps of various numbers of beans. Each player al-
ternately removes any positive number of beans from one heap until all of the beans are
removed. In normal-play, the player who is unable to remove any beans loses, or equiva-
lently (excluding trivial cases), the last player to remove beans wins. Like all other impartial
games, Nim has no draw conditions. If G is a game of Nim, we write G = (x1, x2, . . .) =
x1h1 + x2h2 + . . . where xi ≥ 0 is the number of heaps of i beans. Since Nim games are
finite, xi is positive for only finitely many i. Since any impartial game can be expressed in
terms of heaps of beans being removed according to some rules, we use this notation for
all impartial games.

Example 1.1 The ruleset 0.3122 allows the following moves: 1 bean may be removed from
any pile, 2 beans may be removed only from piles with 2 beans, 3 or 4 beans may be re-
moved only from piles with strictly more than 3 or 4 beans, respectively, and no other moves

MICS 2008 365

are allowed. For example, the game (0, 1, 0, 0, 2), which consists of one heap of 2 beans and
2 heaps of 5 beans, has moves to the games (0, 0, 0, 0, 2), (1, 0, 0, 0, 2), (0, 1, 0, 1, 1), (0, 2, 0, 0, 1),
and (1, 1, 0, 0, 1).

The game (0, 0, . . .) is certainly a win for the previous player since the current player has
no moves. Any game with a move to the endgame, which in the case of Nim is any game
with a single heap, is a win for the current player since the endgame is a win for the previ-
ous player. Working backward in this way, we develop a recursive formula for computing
the outcome of any game of Nim. If a game has any move to a game that is a win for the
previous player, then the game is a win for the current player. Otherwise, it is a win for the
previous player. This defines an outcome function o(G) that maps games of Nim to N or
P depending on whether the game is a win for the current or previous player, respectively.

There exist simple algorithms for computing the outcome of any game by unpacking this
recursion, but these methods are inefficient and yield little information about the structure
of Nim or other impartial games. It turns out that Nim and every other impartial game
in normal-play has a simple solution. However, when the misère condition is introduced
- the player who cannot move wins rather than loses - the analysis used to solve normal-
play Nim breaks down. Hence, our work focuses on solving misère-play impartial games,
though with minor adjustments, the algorithm could handle normal-play games as well.

1.2 Indistinguishability Quotients
Instead of computing the outcomes of all games directly, we partition the set of games into
groups with similar “behavior”. To test for similarity of games G, H , we define the equiv-
alence relation =− such that G =− H iff o(G + X) = o(H + X) for any game X , where
+ is just the normal vector addition defined for games. If G =− H , then we say that G
and H are indistinguishable. One pair of indistinguishable games under any set of rules are
(0, 0, . . .) and (2, 0, 0, . . .) [1]. Since the only move on a heap of size one is to the endgame,
having two heaps of size one is equivalent to having zero heaps.

This partition Q, called the misère indistinguishability quotient, suggests a new approach
to computing the outcome of a particular game G: compute the quotient, find the cell
containing G, and determine the outcome of some game in that cell. Unfortunately, these
quotients are not always well-behaved and may not even be finite for a fixed maximum
heap size. Moreover, the quotients are difficult to compute since they require an infinite
number of comparisons to assert the indistinguishability of two games (relying solely on
the definition of indistinguishability). Instead of computing these quotients directly, we
find a neat approximation to the quotient.

1.3 Quotient approximation
Our approximation to the quotient finds some of the pairs of indistinguishable games, but
does not in general find all such pairs. The approximation is thus a finer partition (more
cells) than the one given by =−. It is formed by finding certain periodic relations in the

MICS 2008 366

outcome function. In particular, for each i, we seek pairs of games G = rihi, H = (ri +
di)hi where ri ≥ 0, di > 0 are the smallest values satisfying G =− H . The vectors
R = (r1, r2, . . .), D = (d1, d2, . . .) are called the preperiod and period respectively. These
quantities are significant because it has been shown that if rihi =− (ri + di)hi, then (ri +
u)hi =− (ri + tdi + u)hi for all nonnegative t, u.

2 Algorithm
Our algorithm for finding R,D values of a particular impartial game relies on the following
theorem by Weimerskirch [1].

Theorem 2.1 (Weimerskirch) Fix a ruleset under misère play. Suppose that the outcomes
for games of the form

G = (x1, x2, . . . , xi−1, ri, yi+1, yi+2, . . . , yn)

agree with the outcomes of
G∗ = G + dihi

(i.e. o(G) = o(G∗)) for fixed yi+1, yi+2, . . . , yn and arbitrary x1, x2, . . . , xi−1.
In addition, suppose that the outcomes for games of the form

K = (x1, x2, . . . , xi−1, ri + t, xi+1, . . . , xn)

agree with the outcomes of
K∗ = K + dihi

for arbitrary x1, x2, . . . , xi−1 and for (xi+1, xi+2, . . . , xn) strictly preceding (yi+1, yi+2, . . . , yn)
in the colexicographic order and all t ≥ 0.
Then o(G + thi) = o(G∗ + thi) for all t ≥ 0.

The sequence (a1, . . . , an) precedes (b1, . . . , bn) in the colexicographical order if ai > bi ⇒
∃j > i 3 aj < bj . This relation is strict if the sequences are not identical. We write ≤ and
< to refer to the nonstrict and strict relations, respectively.

2.1 Partial periods and preperiods
This theorem suggests the notion of, and provides an algorithm for computing, a partial
preperiod and partial period, which are valid for all games colexicographically smaller
than some known maximum.

Definition 2.2 Let G = x1h1 + x2h2 + . . . + xtht be a game with xt 6= 0. For each i < t,
define RG(i), DG(i) to be the smallest nonnegative integers such that o(RG(i)hi + X) =
o((RG(i) + DG(i))hi + X) for all X < xi+1hi+1 + xi+2hi+2 + . . . + xtht. Then,

RG = (RG(1), RG(2), . . . , RG(t− 1)),

DG = (DG(1), DG(2), . . . , DG(t− 1))

are the partial preperiod and partial period, respectively.

MICS 2008 367

Since we always set an upper bound M for heap size, the goal of the algorithm is to de-
termine RhM+1

, DhM+1
. By the discussion earlier, this would provide a very quick way of

determining the outcome of any game G whose largest heap is ≤M : Locate another game
G′ in the same “cell” as G by setting for each i either G′(i) = G(i) if G(i) < RhM+1

(i) or
G′(i) = RhM+1

(i) + (G(i) − RhM+1
(i) mod DhM+1

(i)), otherwise. Then look up o(G′),
which will have been determined when RhM+1

, DhM+1
were computed.

Example 2.3 We find the outcome of the game (5, 3, 1, 8, 150, 0) under the ruleset 0.3122.
It is known that Rh7 = (0, 3, 1, 0, 3, 2) and Dh7 = (2, 2, 1, 2, 1, 2). Then o((5, 3, 1, 8, 150, 0)) =
o((1, 3, 1, 2, 3, 0)) = N .

2.2 Computation of RG, DG

We use dynamic programming to compute the values of RhM+1
, DhM+1

. That is, the values
of RG, DG are determined iteratively until G = hM+1 is reached. The successor of G is de-
fined to be the smallest game whose outcome cannot be determined directly from RG, DG,
and the list of previous outcomes as explained in Exercise 2.3. Rather, the outcome of
the successor of G is determined by the recursive method discussed earlier of checking
whether it is within a move of some P position. If it is, then o(successor(G)) = N ; oth-
erwise, o(successor(G)) = P . Then the next successor is chosen and the process repeats
until successor(G) = hM+1 for some G in the pipeline.

The successor algorithm is summarized below.

Algorithm 1 successor(G)
m← max{i : G(i) > 0}
for i = 1..m do

if RD-check(G, i) then
G(i)← 0

else
G(i)← G(i) + 1
return G

end if
end for
G(m + 1)← 1
return G {If m = M , we are done.}

This algorithm relies on the method RD-check, which checks for periodicities. For a given
heap size i, RD-check searches for ai, bi with bi > 0 such that
(1) ai ≥ RG(i),
(2) DG(i)|bi,
(3) ai + bi ≤ G(i), and
(4) if G′ =

∑M
k=i+1 G(k)hk, then o−(aihi + G′ + X) = o−((ai + bi)hi + G′ + X) for all

X < hi.

MICS 2008 368

If these four conditions are met, then ai, bi are stored into RG(i), DG(i), respectively, thus
updating the values of the partial preperiod and period. Conditions (1) and (2) verify that
the new partial preperiod/period values are consistent with the previous values. Note that
if RG(i), DG(i) are not defined, then (1) and (2) are considered vacuously true. In this
case, put RG(i) = 0, DG(i) = 1 for the purposes the RD-check. Condition (3) is necessary
since we can only directly compute outcomes of games smaller than G. Moreover, since
the values ai, bi with ai + bi < G(i) have already been tested, we can assume ai + bi =
G(i). Indeed, the first valid ai, bi that the algorithm discovers must be the smallest values
satisfying the above conditions.

Algorithm 2 RD-check(G, i)
G′ ← G(i + 1)hi+1 + G(i + 2)hi+2 + . . . + G(M)hM

for all j such that RG(i) ≤ j < G(i) and DG(i)|(G(i)− j) do
if o−(jhi + G′ + X) = o−(G(i)hi + G′ + X) for each X < hi then

RG(i)← j
DG(i)← G(i)− j
return true

end if
end for
return false

2.3 Asymptotic Complexity
The running time of the algorithm is sensitive to the largest allowed pile size M and the
values of RhM+1

, DhM+1
for a given set of rules. This complexity has two primary sources:

the time spent on determining outcomes of new games and on discovering periodic rela-
tions. Note that this whole analysis assumes that the misère quotient is finite.

First, we determine the total time to compute outcomes. Assuming that splitting piles is not
a legal move, the number of available moves is O(M2). The quadratic bound is achieved by
Nim since a heap of size i may be reduced to a heap of size j for any j < i. It is simple to
implement a structure that allows already computed outcomes to be queried in time Θ(M).
Finally,

∏M
i=1{RhM+1

(i) + DhM+1
(i) + 1} is the total number of games whose outcomes

need to be computed by the recursive method. Hence, the total time spent computing out-
comes is O(M3

∏M
i=1{RhM+1

(i) + DhM+1
(i) + 1}). The product is roughly exponential in

M , but the average base is dependent on the ruleset.

The complexity analysis for finding periodic relations is trickier. For each i = 1, . . . ,M ,
we find the smallest distinct values ai, bi satisfying o(aihi + K) = o(bihi + K) for all
K < hM+1. In the worst case, for each pair of distinct x, y ≤ RhM+1

(i) + DhM+1
(i),

the stored outcomes of all games xhi + K, yhi + K with K(i) = 0 would need to be
compared. There are 1

2

∏M
i=1{RhM+1

(i) + DhM+1
(i) + 1} ·

∑M
i=1{RhM+1

(i) + DhM+1
(i)}

pairs of stored games that differ in exactly one dimension. Due to the empirically small
period and preperiod values, we make the simplifying assumption that

∑M
i=1{RhM+1

(i) +

MICS 2008 369

DhM+1
(i)} = O(M). So the total cost of searching for period/preperiod values is at worst

O(M2
∏M

i=1{RhM+1
(i) + DhM+1

(i) + 1}).

Thus, the overall complexity is O(M3
∏M

i=1{RhM+1
(i) + DhM+1

(i) + 1}). If the number
of available moves is assumed to be linear rather than quadratic in M , then this bound is
improved to O(M2

∏M
i=1{RhM+1

(i) + DhM+1
(i) + 1}).

3 Results
This approach was designed by Weimerskirch in order to glean some information about
specific impartial games with infinite misère quotients. These games are not managed well
by current methods. We show several examples of games with infinite misère quotients,
and for the smallest M at which the quotient becomes infinite, we show how our approach
reveals clear patterns in the partial preperiods and periods. Our implementation is available
online at http://www.stolaf.edu/people/mcconvit/HEAP/.

For each example, we explain the rules of the game, for which M the quotient becomes
infinite and a list of RahM

, DahM
for the first few positive integers a.

Example 3.1 The quotient of 0.3122 described in Example 2.3 becomes infinite at M = 7.
The results suggest that Rah7(5) = a + 2 and all other values are constant.

R1: 0 3 1 0 3 2 0 D1: 2 2 1 2 1 2 0
R2: 0 3 1 1 4 2 0 D2: 2 2 1 2 1 2 0
R3: 0 3 1 1 5 2 0 D3: 2 2 1 2 1 2 0
R4: 0 3 1 2 6 2 0 D4: 2 2 1 2 1 2 0
R5: 0 3 1 2 7 2 0 D5: 2 2 1 2 1 2 0
R6: 0 3 1 2 8 2 0 D6: 2 2 1 2 1 2 0
R7: 0 3 1 2 9 2 0 D7: 2 2 1 2 1 2 0
R8: 0 3 1 2 10 2 0 D8: 2 2 1 2 1 2 0
R9: 0 3 1 2 11 2 0 D9: 2 2 1 2 1 2 0

Table 1: 0.3122

Example 3.2 The quotient of 0.3102 becomes infinite at M = 12. The rules of the game
are: 1 bean can be removed from any pile, 2 only from a heap of size 2, 4 beans from
any pile with more than 4 beans, and no other moves are allowed. The first three partial
preperiods are the same, then Rah12(7) = a− 1 for a ≥ 3. All other values are constant.

MICS 2008 370

R1: 0 1 1 2 2 2 2 1 2 2 2 0 D1: 2 2 1 2 1 2 2 1 2 1 2 0
R2: 0 1 1 2 2 2 2 1 2 2 2 0 D2: 2 2 1 2 1 2 2 1 2 1 2 0
R3: 0 1 1 2 2 2 2 1 2 2 2 0 D3: 2 2 1 2 1 2 2 1 2 1 2 0
R4: 0 1 1 2 2 2 3 1 2 2 2 0 D4: 2 2 1 2 1 2 2 1 2 1 2 0
R5: 0 1 1 2 2 2 4 1 2 2 2 0 D5: 2 2 1 2 1 2 2 1 2 1 2 0
R6: 0 1 1 2 2 2 5 1 2 2 2 0 D6: 2 2 1 2 1 2 2 1 2 1 2 0
R7: 0 1 1 2 2 2 6 1 2 2 2 0 D7: 2 2 1 2 1 2 2 1 2 1 2 0
R8: 0 1 1 2 2 2 7 1 2 2 2 0 D8: 2 2 1 2 1 2 2 1 2 1 2 0

Table 2: 0.3102

Example 3.3 The quotient of 0.31011 becomes infinite at M = 5. The rules of the game
are: 1 bean can be removed from any pile, 2,4, or 5 beans may be removed only if it empties
the pile, and no other moves are allowed. The data settles down after a = 10, after which
Rah5(4) = a − 5 if a is odd and a − 6 if a is even. All other values remain constant after
a = 4.

R1: 0 1 1 2 0 D1: 2 2 1 2 0
R2: 0 2 1 2 0 D2: 2 2 1 2 0
R3: 0 2 2 4 0 D3: 2 2 1 2 0
R4: 0 2 3 4 0 D4: 2 2 1 2 0
R5: 0 2 3 4 0 D5: 2 2 1 2 0
R6: 0 2 3 4 0 D6: 2 2 1 2 0
R7: 0 2 3 4 0 D7: 2 2 1 2 0
R8: 0 2 3 4 0 D8: 2 2 1 2 0
R9: 0 2 3 4 0 D9: 2 2 1 2 0
R10: 0 2 3 4 0 D10: 2 2 1 2 0
R11: 0 2 3 6 0 D11: 2 2 1 2 0
R12: 0 2 3 6 0 D12: 2 2 1 2 0
R13: 0 2 3 8 0 D13: 2 2 1 2 0
R14: 0 2 3 8 0 D14: 2 2 1 2 0

R15: 0 2 3 10 0 D15: 2 2 1 2 0
R16: 0 2 3 10 0 D16: 2 2 1 2 0
R17: 0 2 3 12 0 D17: 2 2 1 2 0
R18: 0 2 3 12 0 D18: 2 2 1 2 0
R19: 0 2 3 14 0 D19: 2 2 1 2 0
R20: 0 2 3 14 0 D20: 2 2 1 2 0

Table 3: 0.31011

MICS 2008 371

Acknowledgements
The implementation of Theorem 2.1 was the collaborative effort of Dylan Evans, James
Bonebright, and myself. Thanks to Mike Weimerskirch for proposing the problem and
teaching us the requisite mathematics. Also, thanks to Olaf Hall-Holt and his Fall ’07
Algorithms and Data Structures class for their suggestions.

References
[1] M. Weimerskirch. On Infinite Indistinguishability Quotients in Misère Impartial Com-

binatorial Games.

[2] T. E. Plambeck. Taming the Wild in Impartial Combinatorial Games. INTEGERS: The
Electronic Journal of Combinatorial Number Theory 5 (2005) #G05

[3] T. E. Plambeck and A. N. Siegel. Misère Quotients for Impartial Games. Forthcoming.
http://arxiv.org/abs/math.CO/0609825.

MICS 2008 372

Search and Rescue Robots

Binod K.C. and Karen T. Sutherland
Augsburg College

Minneapolis, MN 55454
kcb@augsburg.edu

suther@navigation.augsburg.edu

This work was supported by National Science Foundation grant #0538740.

Abstract

When unsafe areas such as collapsed buildings must be entered in rescue operations, the
time it takes to find victims often determines whether or not those victims survive. Due
to the fact that the area is unsafe, human rescuers are also in danger. One approach has
been to send teams of small robots into the area. The rationale is that they will be able to
move through small openings, spread out and find victims more quickly than a single robot
would be able to do. The danger to human rescuers would also be decreased.

We have developed an algorithm using a tree structure for robot dispersion. This is in
contrast to the two most common approaches of using a completely random dispersion or
setting up a strong network of connections between robots.

We previously studied our algorithm in simulation using Player/Stage. The current paper
discusses the implementation of the algorithm using a team of rescue robots built on the
Handy Cricket platform.

We have also been able to test the Cricket’s physical communication ability, how success-
ful the bit array data structure we developed is for real robot communication, and have
modified our algorithm to degrade gracefully when faced with the hardware failures that
we have experienced.

MICS 2008 373

1 Introduction

The motivation for this work was given in our previous paper [3]:

A dispersion algorithm is an algorithm that causes many robots to disperse in
an area either systematically or randomly, trying to cover the maximum area
and gather information collectively.

A number of researchers have developed dispersion algorithms for small robots.
Das et. al. [2] used a team of heterogeneous agents, including both humans
and robots, in rescue operations. They concentrated on forming strong net-
works between all participants. Their environment was dangerous in terms of
fire or toxins, but was well structured. McLurkin and Smith [5] used ad-hoc
communications network topologies formed by gradient floods. Although they
paid attention to doors and hallways, the underlying assumption was that the
environment was structured with no unexpected obstacles or narrow passages.
Reich and Sklar [7] are developing algorithms for automatically reconfiguring
robot sensor networks in urban search and rescue. They are using a large num-
ber of robots with limited mobility and sensing capabilities combined with a
small number of more powerful robots. Their focus is on network configu-
rations rather than dispersion. Damer et. al. [1] developed two distributed
dispersion algorithms based on wireless signal intensities. The main differ-
ence between their work and what is being presented here is that they used
cliques in a graph structure as their data structure as opposed to a tree structure
which requires less overhead. Their intended robot of implementation was the
University of Minnesota’s Scout [8].

Our intention when we started to develop a dispersion algorithm was to extend
the algorithm developed at the University of Minnesota for the Scout. We
chose to develop a tree structure in an attempt to improve on the execution
time of the graph-based algorithm used by the Minnesota group.

The algorithm we developed for growing this tree structure was described in [3]. We devel-
oped and tested the algorithm in simulation using an open source Javaclient for Player/Stage [6].
Due to possible obstacles or narrow passages, the tree expands from root out, with nodes
being “pushed” down from the root to fill the space. The tree grows in a depth-first/breadth-
first manner, branching out into large spaces and snaking through small passages.

Our next task, described in this paper, was to implement the algorithm using real robots.
We did so using the Handy Cricket. Although robots used in actual search and rescue
would have to be sturdier than the Crickets, we have used them to address issues involving
limited communication and dispersion with real hardware. Player/Stage is a two dimen-
sional environment. The Crickets exist in a more realistic three dimensional environment.
Their limits in sensing and power are real. Each robot communicates only with parent and
children (currently a maximum of three each). The tree structure is known only locally and
consists of a bit string reflecting whether a given robot has a left, center and/or right child.

MICS 2008 374

We do not add extraneous robots to our tree. As an example, if a narrow passage exists,
a robot would sense an obstacle in the left and right positions and only request a center
child. The robots would then be “pushed” through the narrow passage, separated by the
maximum distance of their communication capabilities, forming a single line.

The same approach is used when a victim is found. A bit string consisting of representation
for left, center and right at each position is sent back to the root.

2 Our Handy Cricket Robots

The Handy Cricket board [4] is a PIC microcontroller-based robotics platform with in-
put/output and motor/sensor control. It weighs 0.2 pounds and has dimensions of 3x3x0.5
inches. It is powered by four AA batteries, has two motor outputs, two sensor inputs, and
two bus connection lines. Figure 1 shows the Handy Cricket board as viewed from above.

Figure 1: (A) Motor Output[2], (B) Sensor Input[2], (C) Bus Connections [2], (D) Run/Stop
button, (E) On/Off Switch, (F) Piezoelectric Speaker and (G) infrared transceiver. Photo
courtesy of the Cricket website.

The Handy Cricket can be expanded by connecting a 4-Digit LED number display, a servo
motor control interface, a lamp/relay driver and/or a motor/sensor expansion board to one
of the buses. The motor/sensor expansion board adds two more motor ports and four addi-
tional sensor inputs. All sensor inputs of the Handy Cricket can be used with both digital
and analog sensors (0-255 range).

With the goal in mind of using as little sensing as possible, we limited our Crickets to
the use of the infrared transceiver for communication and two photocell light sensors, one

MICS 2008 375

mounted on each corner of the front of the robot for obstacle avoidance. The infrared
transceiver allows for inter-robot communication up to approximately one meter. The max-
imum range of values for a light sensor is 0-255 where 255 denotes the sensor is not blocked
at all and decreased values denote some blockage in light. Thus, the smaller the value, the
closer an obstacle. Figure 2 shows one of the Crickets. We have also built a simulated
destroyed environment in which to run the robots.

Figure 2: One of our Cricket robots. All robots are configured identically.

3 Programming the Handy Cricket

The Handy Cricket provides 4096 bytes of non-volatile storage for user programs. It is
programmed using a version of Logo called “Cricket Logo.” Code is downloaded through
an external communications board which connects to the host computer’s serial port. This
board communicates with the Handy Cricket’s on board infrared transceiver. Due to the
small amount of memory, code must be carefully crafted. All Crickets contain the same
code. There is no central control.

A section of code which is run on each robot to update the local data structure, described
in Section 4, follows:

to CONDITIONCHECK
// These are the condtions where it decides how the children change
if ir = 1 [

setinc ir
aset child 0 1

MICS 2008 376

aset child 1 0
aset child 2 0
wait 30
WAITFORACHILD

]
if ir = 2 [

setinc ir
aset child 0 1
aset child 1 1
aset child 2 0
wait 30
WAITFORACHILD

]
if ir = 3 [

setinc ir
aset child 0 1
aset child 1 1
aset child 2 1
wait 30
WAITFORACHILD
]

if ir = 4[
NEXTPHASE

]
END

4 Local Data Structure

We have used a maximum branching factor of three for our tree. Thus, each robot can have
up to three children. Two single arrays, each of length three bits, hold local information for
each robot. This could easily be changed to implement a larger branching factor.

Position 0 1 0
Children 1 0 0

Table 1: Each robot’s bit array holds information on its own position and the position(s) of
its children.

As shown in Table 1, each robot uses a bit array to store its own relative position in the tree
plus whether or not it has a left, right or middle child. The array in the table reflects a robot
in the middle position with only a left child.

The first robot to enter the area becomes the root of the tree. It’s three bit position array has
the middle bit set to 1. Its three bit children array is zero filled because it has no children at

MICS 2008 377

this time.

The root checks ahead. If it sees space to be explored, it calls for a child. As soon as a
robot answers that it is willing to become part of the tree, the root prepares to move forward,
giving its root position to the new robot. It follows the following in a recursive fashion:

• If Children 0 , 0 , 0 go LEFT (considered default)

• If Children 1, 0 , 0 go MIDDLE

• If Children 1, 1 , 0 go RIGHT

• If Children 1, 1 , 1 then go Left again

This forces the tree to fill left to right. Whenever an obstacle, such as a wall, is in the
way of its progress in a given direction, it moves on to the next option. After reaching its
designated destination, it sends back a confirming infrared signal and the robots make the
required changes to their arrays.

Position 1 0 0
Children 0 0 0

Position 0 1 0
Children 0 0 0

Position 0 1 0
Children 1 1 0

Figure 3: The bit arrays for the first three robots in a tree.

After three robots have been added to a tree, the arrays look as shown in Figure 3.

In Figure 4, there are seven robots in the tree. The robot in the right foreground is the
current root and is located at the entrance to the area. The left leaf robot will be the next
to request a child. It will be a middle child because expansion will occur down the passage
straight ahead of it. The other two leaves will not request children because their sensors
will report the walls ahead of them as obstacles. The left leaf robot’s request will propagate
back to the root, an eighth robot will become the new root and all ancestor robots of the left
leaf will move forward, with the left leaf moving into the passage ahead. If it senses space
in that direction, it will request another child. Communication is local, between parents
and children only, eliminating the processing overhead of a strongly connected network of
robots. Also, jams in the initial narrow passage, a common problem associated with random
dispersions are eliminated. (The cricket has only one infrared transceiver on the front, so

MICS 2008 378

Figure 4: Dispersion of seven robots.

in order to communicate with its parent, who is behind it, the robot is required to rotate
180 degrees and back. This would not, of course, be necessary with more sophisticated
hardware.)

One problem we have encountered and which we continue to work on is that a Cricket may
respond to an IR signal that was intended for a different Cricket. As with the requirement
to turn described above, hardware allowing each Cricket to have its own signal would solve
this problem. Attaching a unique identifying bit string to each robot is also a possible
solution. We are working on the latter.

5 Navigating the Environment

As was seen in Section 4, while they are building the tree, the robots must navigate an
unknown, unstructured environment with minimal sensing.

As a robot moves, the obstacle avoidance module continues checking the light sensor values
until the values reaches 150 or less, which means there is an obstacle in that direction. If the
left sensor values decreases, the robot reverses the motors, moves backward for a second,
and turns right about 60 degrees. Similarly, if the right sensor value decreases, it reverses
and turns left.

Several trials were done using this simple procedure. It worked quite well unless the Cricket
was facing a sharp corner as shown in Figure 5. When in a corner, the robot would sense a
wall on its left, turn right and sense the other wall, turn left, and continue moving back and
forth indefinitely. To solve this problem, a separate condition was created which checked

MICS 2008 379

both the light sensor values at the same time instead of checking them separately. If both
sensor values are below 150 at any instant, the cricket moves backward for one second and
then turns. Whether it turns left or right is determined by comparing the sensor values.
It turns 135 degrees in the direction of whichever sensor has the larger reading. This has
helped avoid the “stuck in the corner” problem, which has plagued a number of robot
dispersion algorithms when used with real robots.

Light
sensor

Cricket.

Path

Figure 5: The diagram on the left and photo on the right show the robot facing a sharp
corner.

6 Conclusion and Future Work

Trials thus far have shown

• a decrease in dispersion time compared to using both a random dispersion and a
strongly connected network.

• a need for fewer robots than in using a random dispersion.

• a workable system that depends on minimal communication, as opposed to using a
system with a strong network of connections.

Future work includes

• pursuing a solution to the IR response problem described in Section 4.

• running trials on the effectiveness of passing a bit string back to the root containing
victim location.

• testing robot behavior in maze-like environments with numerous dead ends.

MICS 2008 380

References

[1] Stephen Damer, Luke Ludwig, Monica Anderson Lapoint, Maria Gini, Nikoloas Pa-
panikolopoulos, and John Budenske,Dispersion and exploration algorithms for robots
in unknown environments, Proceedings of the 2006 SPIE Meeting, SPIE, April 2006.

[2] A. Das, G. Kantor, V. Kumar, G. Pereira, R. Peterson, D.Rus, S. Singh, and J. Spletzer,
Distributed search and rescue with robot and sensor teams, Proceedings of Field and
Service Robotics, Japan, July 2003.

[3] Lava KC,An algorithm for dispersion of search and rescue robots, Proceedings of the
Midwest Instruction and Computing Symposium, 2007.

[4] Fred Martin,The Handy Cricket, http://www.handyboard.com/cricket.

[5] James McLurkin and Jennifer Smith,Distributed algorithms for dispersion in indoor
environments using a swarm of autonomous mobile robots, Proceedings of DARS2004,
2004.

[6] Esben Ostergaard, Javaclient code for Player/Stage, http://java-
player.sourceforge.net/documentation.php.

[7] Joshua Reich and Elizabeth Sklar,Toward automatic reconfiguration of robot-sensor
networks for urban search and rescue, First International Workshop on Agent Tech-
nology for Disaster Management (ATDM): Fifth International Joint Conference on
Autonomous Agents and Multiagent Systems (Hakodate, Japan), ACM, May 2006.

[8] Paul E. Rybski, Ian Burt, Andrew Drenner, Bradley Kratochvil, Colin McMillen,
Sascha Stoeter, Kristen Stubbs, Maria Gini, and Nikolaos Papanikolopoulos,Evalua-
tion of the scout robot for urban search and rescue, Proceedings of the AAAI 2001 Mo-
bile Robot Competition and Exhibition Workshop (Seattle, WA, USA), August 2001.

MICS 2008 381

An Exploration of Implementing the A* Algorithm

Under Limited Resources in Lego Mindstorms

Ammon Horn

Computer Science Student

Graceland University

Lamoni, IA 50140

horn@acm.org

Abstract

One of the most important aspects of the Artificial Intelligence movement is pathfinding,

of which a popular algorithm is the A* algorithm. The goal of this project was to

implement the A* algorithm using the Lego Mindstorms Invention System 2.0 with

brickOS, a firmware replacement for C++. The challenge in implementing this was the

limited memory and other resources on the RCX brick that would otherwise be available

on a workstation. There were several challenges to be overcome. The first was how to

represent the state of the grid in as small a space as possible. The second challenge was

modifying the algorithm to allow for discovery of the world. The last major challenge

was to code the application so that it occupies a minimal amount of space in the robot‟s

memory but still offers maximum functionality. The memory limit on the RCX brick

proved insurmountable to solve these challenges.

MICS 2008 382

mailto:horn@acm.org

1 Introduction

When building a mobile robot there are numerous considerations that must be dealt with,

but providing a good movement algorithm is arguably the most important. My definition

of a good movement algorithm is an algorithm that enables travel from point A to point B

in 2D space with moderate obstacle intelligence. The obstacle intelligence does not need

to be extremely robust, but it does need to have a basic avoidance component. This

process of movement with obstacle intelligence is called pathfinding, with the most

popular algorithm being the A* Search Algorithm.

2 Pathfinding

So how should movement be implemented in a mobile robot? The simplest approach is

to allow the robot to wander without giving it any sense of object avoidance, or path

choosing. While this approach is simple, it invariably will create problems the moment

the robot encounters anything in its way. Pathfinding in its simplest form allows for

movement with a small measure of obstacle avoidance. [1] For example if the obstacle

forms a wall covering over 180
o
 of a circular area, the robot will go into the obstacle area

and follow the wall until it circles the obstacle. (Figure 1)

Figure 1: Pathfinding Concave Error

2.1 Simple Pathfinding Problem

This can be very costly in terms of both time and effort. There are simple workarounds

for this problem: treat the obstacle as a solid object or mark it to be entered only if the

goal is inside the shape. (Figure 2)

Figure 2: Pathfinding Concave Error Fix

1
 Stout, http://www.gamasutra.com/features/19970801/pathfinding.htm

S G

S G

MICS 2008 383

http://www.gamasutra.com/features/19970801/pathfinding.htm

However this is only possible if the size, shape and nature of the obstacle is known

beforehand. Also the path has no guarantee of being the most efficient; it is simply more

efficient than the previous example.

2.2 Simple Pathfinding Solution

The best way to avoid problems such as this is to use a more complex pathfinding

algorithm. Over the years several have been proposed ranging from the simple breadth-

first or the depth-first search algorithms to the complex A* search algorithm. The

breadth-first algorithm starts from the beginning node and examines every neighbor node.

After the first tier of neighbors, the algorithm examines the next layer of nodes (nodes

two steps away) and continues until it discovers the goal node. On the flip side the depth-

first algorithm follows the starting nodes descendents until a specified terminating

distance is reached. [2] Both of these algorithms will eventually discover the goal, but

they are both costly in terms of time and effort required. But more importantly they do

not guarantee the most efficient path. This guarantee is the specialty of the A* algorithm.

3 A* Search Algorithm Overview

The A* search algorithm is arguably the most implemented method of optimizing the

pathfinding process. [3] This is easily explained by the advantages that the algorithm

offers. An important advantage is the scalability of the algorithm. The algorithm can be

easily scaled up to large map systems and be modified to account for terrain movement

costs. The algorithm also requires less time to execute than a straight breadth-first

because it uses a heuristic to minimize the number of nodes searched and traveled to.

This is important because using a heuristic guarantees the algorithm will find a solution if

one exists. The heuristic used by the algorithm is extremely simple, but powerful. In its

simplest form the heuristic is the cost of getting to the current node from the start node

added to the estimated cost of getting to the goal node from the current node. [4][5] This

value is generally represented by f(n) where n is the current node.

3.1 Heuristic Creation

The heuristic function f(n) consists of two portions added together: g(n) and h(n). The

g(n) portion of the function is the piece that calculates the cost of getting to node n from

the start node. The other portion of the function is h(n), which estimates the cost of

traveling from node n to the goal node. The equations for these parts are simple to

implement and understand.

2
 Stout, http://www.gamasutra.com/features/19970801/pathfinding.htm

3
 Patel, http://theory.stanford.edu/~amitp/GameProgramming/AStarComparison.html#S3

4
 Jones, Page 27 – 28.

5
 Patel, http://theory.stanford.edu/~amitp/GameProgramming/Heuristics.html#S1

MICS 2008 384

http://www.gamasutra.com/features/19970801/pathfinding.htm
http://theory.stanford.edu/~amitp/GameProgramming/AStarComparison.html#S3
http://theory.stanford.edu/~amitp/GameProgramming/Heuristics.html#S1

The implementation of the h(n) portion of the algorithm ranges from the simple to the

highly complex depending on the nature of movement on the map and the level of

optimization. The simplest form of the equation is the Manhattan distance equation.

(Figure 3) However the equation can be modified to allow the cost to represent any value

necessary. In the simplest form the cost is equal to 1.0 which represents no cost in

traveling from one node to another. This value may be changed as necessary to account

for differing terrain types. For example if the robot is unstable over rocky terrain, set the

cost equal to 2.0 or higher so that the robot will prefer the easier terrain. However

changing the value of the cost can have dire consequences if the heuristic ever

overestimates the distance to the goal. When this occurs the algorithm may choose a

poor path because it is considered “better” than the true best.

 = 𝑐𝑜𝑠𝑡 ∗ (𝑎𝑏𝑠 𝑛𝑜𝑑𝑒𝑥 − 𝑔𝑜𝑎𝑙𝑥 + 𝑎𝑏𝑠 𝑛𝑜𝑑𝑒𝑦 − 𝑔𝑜𝑎𝑙𝑦)

Figure 3: Manhattan Distance Equation in A* [6]

The second portion of the heuristic is the cost of getting to the current node, g(n). This

equation in its simplest form consists of two key parts: the parent nodes g-value and the

alpha value. Since the simple version of the g(n) function only calculates the cost of

traveling between the parent node and the current node, it is necessary to add in the sum

total of the previous g(n) values to get an approximate value for the cost of traveling.

The most robust way to setup g(n) however is to create a scalable equation. This will

allow the robot to dynamically switch between navigating based solely on whether the

adjacent node is available for travel to navigating using intelligent movement. The way

to create this is to add the value alpha into the equation. (Figure 4) This alpha must

consistent of a real number from 0 to 1 inclusive.

𝑔 𝑛 = 1.0 + 𝑎𝑙𝑝𝑎 ∗ 𝑔 𝑛 𝑝𝑎𝑟𝑒𝑛𝑡 − 1.0 + 𝑔(𝑛)𝑝𝑎𝑟𝑒𝑛𝑡

Figure 4: Cost of Movement between Nodes in A* [7]

The final portion of the heuristic is the combination of g(n) and h(n). (Figure 5) This

value is used by the algorithm to rank each of the possible path nodes to ascertain the

most efficient path to take. It represents the cost of getting from the start node to the goal

node passing through the current node.

𝑓 𝑛 = 𝑔 𝑛 + (𝑛)

Figure 5: Total Cost of Movement Passing through n [8]

3.2 Algorithm Mechanics

The basic structure of the A* algorithm is simple to understand, easy to code and simple

to customize, but it is not without its shortcomings. The general structure of the

6
 Patel, http://theory.stanford.edu/~amitp/GameProgramming/Heuristics.html#S8

7
 Jones, Page 29.

8
 Jones, Page 30.

MICS 2008 385

http://theory.stanford.edu/~amitp/GameProgramming/Heuristics.html#S8

algorithm uses two distinct lists: an open node list and a closed node list. Each of these

lists serves to keep track of which nodes have been examined and which have yet to be

examined. Each of these lists will be checked several times each time a new successor

node is discovered which will result in an eventual bottleneck of resources. When

looking at this issue it may be natural to assume that hit taken on the resources is likely to

be minor in the grand scheme. Unfortunately, when implementing this algorithm on

limited resources, resource management must be considered carefully.

3.2.1 Algorithm Mechanics – Resource Management

There are numerous data structures that might be used to store these lists, but to better

understand the benefits of any particular data structure, a list of the operations necessary

must be created. Considering the open list there are four operations that will occur, some

more likely than others. These primary operations consist of finding the best node and

removing it, checking if the successor node is in the list, inserting the new nodes into the

list, and replacing an existing node with a newer version of itself. [9]

Knowing what these steps are is the first step to grasping the amount of work the lists

will undergo. But it is not enough to know the operations, the number of times they run

is also necessary. The operation used the least will be the replacing of an existing node

simply because the algorithm usually does not cause backtracking. On the flip side,

every time a successor node is found, the list will be searched for a previous version of

the node. So deciding which data structure to use is based on the desired speed of

execution and ease of access.

3.2.2 Algorithm Mechanics – List Storage Methods

The simplest method of storing the nodes is that of an unsorted array or list. Using one of

these data structures it is easy to add an item, but time-consuming to find the best node

and check for existence in the list. In addition the array or list would have to be searched

in its entirety to determine the best node. A more optimized data structure would be an

indexed array. This would allow the algorithm to quickly test for membership. This data

structure is ideal when the number of nodes is finite and is limited in size, but memory

consumption is extensive because memory must be allocated for every node before

execution. [10] Even worse than the memory issue, the cost of removal on an indexed

array is extremely high because the index would have to be reordered whenever an

element is removed.

So what is the best possible solution? The answer to that question lies in the

implementation details. If the map is large it might be better to use a hash table or some

other memory limiting data structure. However, if performance is the goal implementing

a hot queue or a hybrid data structure would allow for a faster response. Obviously there

9
 Patel, http://theory.stanford.edu/~amitp/GameProgramming/ImplementationNotes.html#S3

10
 Patel, http://theory.stanford.edu/~amitp/GameProgramming/ImplementationNotes.html#S3

MICS 2008 386

http://theory.stanford.edu/~amitp/GameProgramming/ImplementationNotes.html#S3
http://theory.stanford.edu/~amitp/GameProgramming/ImplementationNotes.html#S3

is no easy answer to which data structure is the best overall, so careful consideration must

be given to the specifics of the implementation.

The representation of the grid is also an important consideration. What is the best way to

represent a grid? The answer again depends on the particular implementation details

because what works great for one implementation is ill-advised for another. The

implementation design can also play into the decision if there is a limit to the amount of

resources to which the robot has access.

4 Resource Limitations

This brings me to the problem at hand, developing an implementation of the A* Search

Algorithm that is capable of running on the limited resources of the Lego Mindstorms

Robotics Invention System 2.0. From the beginning I had to make a decision about

whether to use Lego brick code or replace the firmware with an open source alternative.

The choice over which firmware I choose also determined the language that I was going

to use.

4.1 Lego Mindstorms Limitations

Originally released in 1998, the Lego Mindstorms Robotic Invention Kit has been

utilized heavily by schools to teach the basics of embedded systems and hobbyists. The

core part of the system is the RCX brick which functions as the brain of the kit. While

there are several different models currently available for purchase, I decided to stick with

the Robotics Invention System 2.0. The main reason for this choice was my familiarity

with the platform. In the past I have built numerous robots using this kit and

programmed them using leJOS, the Java-based firmware replacement. Secondary

reasons included the easy access I had to several kits and the wealth of resources for this

particular version.

Choosing to implement the A* algorithm on this platform is not without its difficulties.

The biggest limitation of the platform is the amount of memory available. The RCX

brick contains a paltry 32 kB of RAM and 16 kB of ROM. [11] This presents a problem

because each firmware replacement will use a portion of this memory. The 16 kB of

ROM is reserved for the RCX executive application which runs the hardware and

launches the firmware stored in the RAM. [12] This makes it more challenging to

program for the platform because out of the 32 kB of RAM that exists, around 6 kB is

available for user programs.

This limitation of memory reared its ugly head to me. As of this paper I have been

unsuccessful in implementing the algorithm on the Mindstorms platform due to the

11

 Simpson, http://web.mit.edu/6.933/www/Fall2000/LegoMindstorms.pdf
12

 Nielsson, http://legos.sourceforge.net/docs/kerneldoc.pdf

MICS 2008 387

http://web.mit.edu/6.933/www/Fall2000/LegoMindstorms.pdf
http://legos.sourceforge.net/docs/kerneldoc.pdf

memory issues. My simplest version of the algorithm to date is almost 575kB when

running under a non-optimized g++ compilation. A value that surprised me because the

same code running in Visual Studio 2005 clocks in at around 392kB. While this is far too

large to run on the robot, I still tried anyway. The robot compilation of the algorithm

crashed the RCX brick every time I tried to run it. I attempted to optimize the code by

compiling the program using the -0s tag in g++, but ran into multiple errors due to my

un-optimizable code.

4.2 Choice of Firmware and Programming Language

Knowing the limitations that I was going to have on memory I decided to use a C/C++

based firmware replacement in an attempt to minimize the memory consumption. After

making this decision my choice of firmware replacements was limited to two: NQC and

brickOS. NQC (Not Quite C) is a C-like replacement that is limited in both the number

of variables you can create and in the maximum number of subroutines. [13] These

limitations did not sound good to me so I decided to use brickOS. Formerly known as

legOS, brickOS is a firmware replacement that runs precompiled C/C++ applications. I

decided to use brickOS because it used code that was more familiar to me and seemed to

be the most complete of the two firmware replacements.

Up to this point my only experience with programming for Mindstorms was using

Brickcode or LeJOS. I understood the limitations and strengths of both. A working

version would be impossible with Brickcode, and I did not believe a small enough

version was possible with LeJOS. I chose C++ because I wanted to streamline the code

by using pointers and structs in the algorithm and because of its object oriented features.

I also had previous experience using Visual C++ 2005. In retrospect, NQC might have

been a better choice for creating a smaller compiled algorithm.

4.3 Other Limitations

There were also practical limits on my time to research algorithms, languages, firmware

options, and development. It took me longer than first anticipated to fully understand the

A* algorithm well enough to create my own version, even though I had multiple versions

of the basic algorithm and multiple implementations to use as references. A majority of

the time I spent working on the algorithm was spent deciphering code. I struggled with

understanding the exact process the A* algorithm takes until months into my study.

5 A* Search Algorithm Implementation

As of the writing of this paper, my implementation of the algorithm is currently not small

enough to be implemented on the Mindstorms platform. I am still pursuing several

13

 Baum, http://bricxcc.sourceforge.net/nqc/doc/NQC_Manual.pdf

MICS 2008 388

http://bricxcc.sourceforge.net/nqc/doc/NQC_Manual.pdf

strategies to try to fix this and be able to fit the program execution footprint onto the

RCX brick. General algorithm details and ideas on further improvements to the code

follow.

5.1 General Implementation

The general implementation of my algorithm follows the general A* algorithm. (Figure

6) There are a few minor changes in certain areas, but these changes are mostly attempts

to optimize the implementation. The changes I made include changes made to storage

methods of both the lists and the grid and the necessary functions to implement the new

storage methods.

Figure 6: General A* Algorithm [14][15]

5.2 List/Grid Storage Implementation

The majority of the implementation changes that I have made to the algorithm consist of

storage changes. The example algorithms that I used as reference stored the node g, h,

and f values as doubles, they also stored the node location using two integers, x and y. In

my implementation I created a struct for the node that contained a single short (loc), a

pointer to another node, and two floats (f and g).

14

 Stout, http://www.gamasutra.com/features/19970801/pathfinding.htm
15

 Jones, Page 28 – 30.

create Open and Closed lists

create start node

 start node g = 0, h = goal estimate, f = g + h, parent = null

 push start node on open

while Open not empty

 pop best node from Open // best node has lowest f

 if best node is goal

 construct path and return success

 for each successor node of best node

 set successor node parent to best node

 calculate successor node g, h, and f

 if successor node in Open or Closed and f < parent f

 skip

 remove successor node from Closed and Open if exists

 push successor node on Open

 push best node on Closed

return failure // if no path

MICS 2008 389

http://www.gamasutra.com/features/19970801/pathfinding.htm

5.2.1 Node Location Implementation

The loc variable stored the x, y coordinate pair using bitwise operations. With aid from

Dr. Jim Jones, I created get and set methods for placing and retrieving the information.

The get method simply performed a shift operation to move the four location bits to the

rightmost bits and used a modulus to retrieve the value. (Figure 8) The set method in

contrast performed a Boolean AND on the loc variable with specific hex codes to

preserve the original bit values with the exception of the four to be changed. After the

AND I performed a Boolean OR on the loc variable and the value to be written shifted

the appropriate number of bits.

Figure 7: A* Node Location Get Method

Figure 8: A* Node Location Set Method

When I implemented the get and set methods I ran across an error that I had not

anticipated. Because I was returning the values from get as shorts the bits for the value I

was getting were returned as a signed short. So if the value was stored in the four

leftmost bits and the first bit was a 1, I returned a negative value. When dealing with a

grid that has no negative locations, this is a problem. My temporary solution was to store

the node x location followed by the node y location on the rightmost eight bits.

One issue that turned out to be a non-issue was concern over whether the difference

between big-endian and little-endian would influence the bit operations. My personal

computer is a Dell Laptop using an Intel processor which is a little-endian machine while

the RCX brick is a big-endian machine. To test whether this would influence the results

short set(int i, int x, short node)

{

 switch(i)

 {

 case 0:

 return (node&0x0FFF)|(x<<12);

 case 1:

 return (node&0xF0FF)|(x<<8);

 case 2:

 return (node&0xFF0F)|(x<<4);

 case 3:

 return (node&0xFFF0)|(x);

 default:

return 0;

 }

}

short get(int i, short node)

{

 return (node >> ((3-i) << 2)) % 16;

}

MICS 2008 390

Dr. Jones devised a simple application to test the effects the endianness of the machines

would have. (Figure 9)

Figure 9: “Endianness” Test Code

The test code consisted of two simple tests. The first one tested the method that was to

be implemented in the algorithm. It simply stored the value 0001 in the rightmost four

bits of the variable temp. The code then tested the value of temp and output „hello‟ if the

value was 1 and „world‟ if it was not. The second part of the code statically assigned the

values into the char array which disallowed the compiler from swapping the bit pairs on

my laptop. When this program was run on my machine it output „helloworld‟ but the

same program ran on the robot output „hellohello‟. This showed me that the compiler in

Visual C++ was swapping the bits on the first test but not on the second. Seeing this was

a relief because it meant I did not have to write extra code to deal with the endianness of

the machine that was running the code.

5.2.2 Grid Storage Implementation

In my continued efforts to shrink this algorithm to fit within the confines of the RCX

brick I plan to convert my existing char grid to a less memory intensive integer array.

The current grid stores each location as a char, and is of size [Y_MAX][X_MAX]. This

solution is wasteful in memory because I can only store the information for a particular

coordinate location. My plan is to implement an array of integers where each integer

stores the grid state for five coordinate pair locations. (Figure 10) This can be

accomplished by using the same bitwise operations as above with minor modifications to

accommodate the larger variable memory.

X XXXXXX XXXXXX XXXXXX XXXXXX XXXXXX X

N/A Node 1 Node 2 Node 3 Node 4 Node 5 N/A

Figure 10: General Outline for Grid Node Storage

short temp = 0;

temp = (temp&0xFFF0)|(1);

if (temp == 1)

 cputs("hello"); // or printf(“hello”)

else

 cputs("world"); // or printf(“world”)

sleep(2);

cls();

union{char x[2];short i;} abc;

abc.x[0] = 0;

abc.x[1] = 1;

if (abc.i == 1)

 cputs("hello"); // or printf(“hello”)

else

 cputs("world"); // or printf(“world”)

sleep(2);

cls();

MICS 2008 391

Each of the Node locations will contain six bits of information. The first two bits will

state whether the node is goal or start respectively. The last four bits will state whether

the north, south, east, and west walls are open (0) or closed (1). The outer bits on either

side are unused and will be wasted space.

5.2.3 List Storage Implementation

This implementation will free up some memory, but the largest offender in terms of

memory consumption is the two lists. The general algorithm calls for two separate lists

to contain the nodes. On the surface this doesn‟t sound too bad, but after considering that

each list is fully initialized to the number of possible nodes it adds up quickly. My

current implementation does not fix this problem, but I have a couple possible solutions

in mind. The first one is to rewrite the storage methods to enable the removal of nodes

that are clearly not ideal. The second idea is to store which list the node is a member of

inside of the node struct using two bools, one for open and one for closed.

6 Ongoing Work

Based upon the work I have done so far, it is looking unlikely that I will get a complete

working version of the algorithm on an RCX brick. With that in mind there are several

modifications that could be made to allow some version of the algorithm to operate on

the robot. These changes might become purely academic if I am able to successfully

implement the changes outlined above.

My current implementation follows the program flow of the general algorithm, but this

might change. If I am unable to shrink the memory footprint enough using the above

modifications, it might become necessary to cripple the algorithm. This is obviously not

an ideal solution, but if it is the only way to fit the algorithm onto the robot I will do it. A

better solution would be to use an outside object to act as memory for the robot. This

could range from another RCX brick to connecting my laptop and using it as the storage

location for the data. This would free up the space on the robot to be used for the local

temporary variables and the functions.

7 Observations and Conclusions

While working on this project there were several observations that I made. The first

observation is that it is important to plan out the algorithm that will be used to ensure that

it is optimal for the end platform. The second observation is that the process of creating

and optimizing code is not a simple matter of using a command line argument. This was

brought home when trying to use the optimization argument (-Os) on g++, I was told by

the compiler that I had un-optimizable code which is something I did not know was an

issue. A third observation is that the libraries used by cross compilers for embedded

MICS 2008 392

systems (i.e., RCX in this case) are minimal. For instance, the brickOS compiler does

not have the absolute value function. I defined my own as an inline #define which

turned out to be better for reduced size of executable. A final observation was that the

process of using alternative data structures to attempt to optimize code is not without

dangers. Using the bitwise operations to optimize data storage meant extra functions to

keep things conceptually simple. That, however, cost more memory.

The amount of work required to understand a complex algorithm and optimize it for

space considerations is significant. While it may not be impossible to achieve for the

RCX brick, the limitations of programming knowledge, time, and resource availability

can all conspire to hamper timely progress. The effort to reconcile the issue of

implementing this complex algorithm under limited resources shall continue and more

will be learned about what is possible.

MICS 2008 393

References

[1] Jones, M. T. (2005). AI Application Programming (2nd ed.). Hingham, MA: Charles

River Media, Inc.

[2] Baum, D. (2003). Definitive Guide to Lego Mindstorms (2nd ed.). New York, NY:

Apress.

[3] Patel, A. (n.d.). Amit's A* Pages. Retrieved November 2007, from

http://t1heory.stanford.edu/~amitp/GameProgramming/

[4] Stout, B. (1997, August). Smart Moves: Intelligent Pathfinding. Retrieved November

2007, from http://www.gamasutra.com/features/19970801/pathfinding.htm

[5] Heyes-Jones, J. (2006, September 18). A* Algorithm Tutorial. Retrieved December

2007, from http://www.geocities.com/jheyesjones/astar.html

[6] Villa, L. (2000, October 22). LegOS HOWTO. Retrieved January 2008, from

http://legos.sourceforge.net/HOWTO/

[7] brickOS C++ Documentation (2004, February 16). Retrieved January 2008, from

http://brickos.sourceforge.net/docs/APIs/html-c++/

[8] Chen, D. (2004, July 28). BrickOS Command Reference v2.0-0.2.6.10. Retrieved

January 2008, from http://brickos.sourceforge.net/docs/CommandRef.html

[9] Nielsson, S. (200, September 27). Introduction to the legOS Kernel. Retrieved

February 2008, from http://legos.sourceforge.net/docs/kerneldoc.pdf

[10] Simpson, J. (n.d.). A Native Transterpreter for the LEGO MindStorms RCX.

Retrieved February 2008, from

http://web.mit.edu/6.933/www/Fall2000/LegoMindstorms.pdf

[11] Baum, D. (n.d.). NQC User Manual. Retrieved January 6, 2008, from

http://bricxcc.sourceforge.net/nqc/doc/NQC_Manual.pdf

[12] Baum, D., Hansen, J. (n.d.). NQC Programmer's Guide. Retrieved January 6, 2008,

from http://bricxcc.sourceforge.net/nqc/doc/NQC_Guide.pdf

[13] Overmars, M. (2002, February 14). Programming Lego Robots using NQC.

Retrieved January 6, 2008, from

http://bricxcc.sourceforge.net/nqc/doc/NQC_Tutorial.pdf

MICS 2008 394

http://t1heory.stanford.edu/~amitp/GameProgramming/
http://www.gamasutra.com/features/19970801/pathfinding.htm
http://www.geocities.com/jheyesjones/astar.html
http://legos.sourceforge.net/HOWTO/
http://brickos.sourceforge.net/docs/APIs/html-c++/
http://brickos.sourceforge.net/docs/CommandRef.html
http://legos.sourceforge.net/docs/kerneldoc.pdf
http://web.mit.edu/6.933/www/Fall2000/LegoMindstorms.pdf
http://bricxcc.sourceforge.net/nqc/doc/NQC_Manual.pdf
http://bricxcc.sourceforge.net/nqc/doc/NQC_Guide.pdf
http://bricxcc.sourceforge.net/nqc/doc/NQC_Tutorial.pdf

Customizing MediaWiki for Project-based Courses

Olaf Hall-Holt
Department of Mathematics, Statistics, and Computer Science

St. Olaf College
Northfield, MN 55057

olaf@stolaf.edu

Abstract

The increasing popularity of Wikipedia (en.wikipedia.org) suggests that the Wikipedia in-
terface for collaborative document creation may become a de facto standard. Project-based
courses in all disciplines frequently require collaborative document development, but the
default configuration of the MediaWiki server software used by Wikipedia does not provide
all the functionality required for an academic setting.
We describe several approaches to adding the necessary functionality into the MediaWiki
server, as well as our experience using modified wikis in both technical and non-technical
courses. Some of our specialized extensions to MediaWiki servers have exceeded our ex-
pectations, both in terms of convenience for instructors and student reactions.
As wikis become more popular for use in colleges and universities, they may grow to pro-
vide functionality currently associated with social networking sites. What would a social-
networking wiki look like? What kinds of protocols would be important for sharing infor-
mation between campuses?

MICS 2008 395

1 Introduction

Theincreasing popularity of Wikipedia (en.wikipedia.org) suggests that the Wikipedia in-
terface for collaborative document creation may become a de facto standard. Project-based
courses in all disciplines frequently require collaborative document development, but the
default configuration of the MediaWiki server software used by Wikipedia does not provide
all the functionality required for an academic setting.
Project-based courses typically require one or more of the following functions:

• restricted access mechanisms, so that information intended only for the professor or
a restricted subset of the class can be separated from public information about the
course.

• assessment tools, which streamline the process of providing formative and summa-
tive feedback to students (and TAs).

• project management support for keeping team activities synchronized and on sched-
ule.

• protocols and interfaces for integrating other types of applications.

• convenient and specialized communication pathways to facilitate group interaction.

One danger in integrating these types of functionality into the MediaWiki server is that
adding all these functions may compromise the simplicity and ease-of-use that make the
wiki attractive in the first place. For example, the mechanism for access restrictions must be
transparent to all the students in the course, for if they do not know how to use it, the access
restrictions will not be effective. As another example, if the interface to some homework-
related function is not clear, new users may quickly become overwhelmed. The danger of
introducing new complexities is even greater when the platform is used in a non-technical
course or community.
In this paper, we describe several approaches to adding the above types of functionality
into the MediaWiki server, as well as our experience using modified wikis in both techni-
cal and non-technical courses. Some of our specialized extensions to MediaWiki servers
have exceeded our expectations, both in terms of convenience for instructors and student
reactions.
As wikis become more popular for use in colleges and universities, they may grow to
provide functionality currently associated with social networking sites. We have begun
to wonder what a social-networking wiki would look like. Also, what kinds of protocols
would be important for sharing information between campuses? The latter part of this
paper begins to explore these questions as well.

2 Restricted access mechanisms

Information on a wiki is stored in pages in much the same way that information in a file
system is stored in files. A page can be understood to contain a sequence of bytes, just

MICS 2008 396

like a file, and so can be used for storing a wide variety of types ofinformation. Pages on
a wiki typically include some amount of meta-data that is separated from the page source
proper. Perhaps the most important difference when comparing with a file system is the
lack of directory structure: links between pages are assumed to be the dominant mode
of local navigation, while search is used for long hops. Directory structure can be mim-
icked by choosing page names that look like pathnames, but there is no built-in navigation
mechanism that relies on such naming schemes.
In this setting, the basic access restrictions control access to individual pages. We would
like these restrictions to be visible and easily used by novice authors, yet not interfere with
the page source itself. We also would like to encourage open-ness on the wiki, in keeping
with the general tone of many MediaWiki projects. One option is to store these restrictions
in the page meta-data. Another option is to write these restrictions directly into the page
name.
In comparing these two alternatives, the main drawback to using meta-data may be that
it requires a change to the editing interface for a page. Choosing the name of a page is
a standard operation that is implicitly supported. Also, appropriate encoding of access
restrictions into page names allows pages with less restrictions to be shorter and easier to
type, thus encouraging open-ness. This is the route we have chosen.
The most basic access restrictions on pages are read/write privileges. To encode restrictions
on who can edit a page, we prefix the page name as in the two examples below:

• User:Helga/My first page

• Group:CS121TeamBlue/Animation/Stills

These page names are intended to look something like files in folders, with the first page
name indicating that Helga alone has write privileges, while the second everyone in CS121TeamBlue
has write privileges. Note that the second / in the latter example is purely cosmetic.
To encode read restrictions, we then add a Restrict: clause anywhere else in the page name:

• User:Helga/Restrict:CS121TeamBlue/Project journal

• Group:CS121TeamBlue/Animation/Restrict:CS121A/Check this out

In the first example, Helga has created a page that can be read only by her team members
in CS121TeamBlue. In the second, the team has a page for sharing ideas with anyone else
in the same section of the class. Note that the placement of the Restrict: clause does not
have any significance (it could be in the middle or the end, it just doesn’t matter).
Another feature of MediaWiki engines is that each page comes with a ‘talk’ page for dis-
cussion around the page content. Access control can be simply extended as follows: if a
page is readable by a given user, then the associated talk page is both readable and writable
by that user.
We have found that this interface for access permissions is understandable and usable by
technical and non-technical students, but not instantly. Students may be unfamiliar with the
overall concept of differentiated read/write access restrictions, to say nothing of the details
of this interface. To begin, it seems helpful to have authors use pages with predetermined

MICS 2008 397

names (and thus, predetermined access restrictions). Then, when they are accustomed to
the names and have run into a situation where their access was blocked, they are prepared
to better understand and use these mechanisms.
The implementation of the above strategy for access permissions is relatively straightfor-
ward in MediaWiki, as long as you don’t expect a totally secure result. That is, it requires
about a page of PHP code, outside the main body of the server (in the ’extensions’ direc-
tory) if you rely on the ’userCan’ hook. This hook is advertised to be inadequate to prevent
really clever users from getting access (particularly read access) to pages that they should
not see, but the required level of cleverness to squirm around ’userCan’ seems to be going
up with time.

3 Assessment tools

A major assessment activity for a wiki-supported course may often be the grading of home-
work. Homework assignments are easily posted on a wiki, and we have found it useful to
make links for the students to use from the homework assignment page directly to the pages
where the students are to do their work, so that there is no confusion about page names. We
have arranged pre-designated names for homework pages either by asking a TA to create
a link for each student, or by having a little javascript support on the page to customize a
generic link each time a student visits the page.
We have found it helpful to ask students to spread each homework assignment across mul-
tiple pages corresponding to the smallest meaningful unit of each assignment. That is, on
a homework assignment, we create a separate link for each exercise in each part of the
assignment. When this division into small portions is made, it becomes easier to compare
student responses, by aggregating a large number of responses into a grader’s summary
page.
The construction of a summary page is largely a matter of choosing how to insert one page’s
content into another page, and to do so in a way that is convenient for TAs. There are many
possible approaches for how to implement this type of functionality, including approaches
that generalize to other uses (see the section below on application interfaces).
Other assessment tools are certainly possible and potentially quite valuable. On these wikis,
all user activities are recorded quasi-permanently, including all revisions of a page, all
contributions to talk pages, and more. This information is stored in a relational database
with an open structure for developers.

4 Project management support

Our student projects include a planning phase, an implementation phase, and a presentation
phase. For the planning phase, a team often finds it convenient to write their plan as a page
on the wiki, which can then be viewed and updated by team members and TAs at any time
as a coordination mechanism.
The implementation phase often involves team members that work in parallel. To keep
everyone informed about the progress of different team members or subgroups, we some-

MICS 2008 398

times ask everyone to keep a journal and a time log, again spread out over many pages with
predefined names. Every team member has access to the journals and time logs of the other
team members. As the team members write entries in their journals and logs, a ’page trail’
accumulates that both facilitates communication and informs assessment activities.
In order to summarize the activities of all the people in a class, we have created a page
to display a bar graph of everyone’s time investment in the project to date, based on the
content of their time logs and journals. The bar graph is clickable, so that different parts
of the graph link to each time log and journal. Other summary information (such as the
number of words in a given journal entry) pops up as the mouse moves over different parts
of the graph.
From a pedagogical standpoint, this type of coarse overall data regarding project involve-
ment has at least two benefits: first, it allows students to develop a shared understanding
of a ’reasonable’ time commitment for a project. Second, it provides an accountability
mechanism for keeping up to date with journals and time logs, and thus supports the com-
munication that can happen through those channels.

5 Application interfaces

MediaWiki is gradually evolving more modularized approaches to integrating server- and
client-side applications. On the client side, it is getting easier to edit the content of pages
with applications other than a browser, and on the server side more hooks are becoming
available by which a PHP wrapper can invoke server side executables with information
from the wiki’s database.
We have been particularly interested in using pages themselves as executables, rather than
their default use as simple HTML documents. In order to do so, we have made it possible
for at least some users to type code in a scripting language (Perl, Scheme) in a page, and
then have the server execute that code when the page is saved. We also have some pages
that, when any user accesses the page, the code on that page is executed.
We are also evolving scripting hooks by which these executable pages can access the wiki’s
database. The most important example of these scripting hooks is the ability for a script to
get access to the content of other specified wiki pages. It is in this way that we currently
implement the summary pages for TAs, the bar graph for projects, and various other tools.
These scripts also have access to some ’real’ executables on the server itself, and thus can
invoke non-trivial functionality that may not exist on the client side. From the point of
view of experimenting with a wiki, this approach has provided nice benefits in allowing
lightweight implementations of new ideas. On this other hand, this approach has also
required the development of a more thorough security framework than would otherwise be
needed.

6 Communication pathways

The vast majority of our students seem to use instant messaging, voicemail and e-mail,
synchronous telephone calls, face-to-face meetings, dynamic web pages, and more in the

MICS 2008 399

course of a typical day. It seems as though having specialized communication channels is
helpful, especially if the channel is convenient at a given moment of time. The explosive
growth of social networking sites suggests that having specialized database queries pack-
aged for you can be interesting and useful to a large number of people on a collaborative
content platform.
The examples of specialized communication we have used, such as the TA summary pages
or the project time bar graph, have been hand-crafted from a general script language. How-
ever, it should be possible to create pages for users that allow a menu of query options, as
well as ’push’ style polling of the database to keep informed of the actions of other users.
Mash-ups might also be a useful abstraction in such a wiki environment.
Someday, there may be wikis on many college and university campuses that have evolved
to meet the needs of students and faculty. Would it ever be possible for these wikis to
provide cross-institutional links, using shared query and mash-up protocols?

7 Conclusion

The response to our forays into customizing wikis has been largely positive. In computer
science courses, including both introductory courses and more advanced project courses,
the wiki has become a natural part of the work of our students, even to the point that the stu-
dents have been building their own wikis and relying on the existing wiki for extracurricular
projects. The main drawbacks for students so far have been the times that modifications
to a wiki has made the wiki or the associated web server unstable. Happily, this problem
hasn’t occurred for more than a year.
Using the wiki as the basis for the assignments in a humanities class was also favorably
received. Student essays were posted in appropriately restricted access areas of a wiki,
and talk pages were used to discuss these assignments within sections of the class. The
humanities students and TAs appeared to take to the wiki relatively easily.
From a faculty standpoint, the work on modifying these wikis has involved a significant
time commitment. The approaches suggested in this paper did not develop all at once, and
some of them have required considerable tinkering. However, as mentioned in the section
on application interfaces, the MediaWiki server is getting easier to modify, and some of the
design ideas represented in this paper enable a cleaner approach to many issues than we
originally chose. Furthermore, as more faculty become interested in customized wikis, the
code needed for these customizations can easily be shared.
If these approach become widely used in colleges and universities, students and faculty
would benefit from a shared strategy for managing these communication resources.

MICS 2008 400

INTEGRATION OF CODELAB INTO
PROGRAMMING COURSES

Mark S. Hall
Assistant Professor of Computer Science

Computer Science, Engineering, Physics & Astronomy (CSEPA)
University of Wisconsin – Marathon County (UWMC)

University of Wisconsin - Colleges
Wausau, WI 54401

mark.hall@uwc.edu

Abstract

CodeLab is a web-based interactive programming exercise system for introductory
programming classes in Java which is used for the first two CS core classes at the UW-
Colleges. CodeLab has over 300 short exercises with each exercise focusing on a
particular programming concept. Student submissions are automatically judged for the
correctness of the solution, and offers hints when the submission is incorrect. If incorrect,
the student modifies their solution, and submits it for verification.

During fall 2007, I integrated CodeLab into my CS1 course and my CS2 course. This
paper will highlight features of CodeLab and my experiences using this tool to attempt to
improve student’s success in developing successfully algorithms. The paper will focus on
the potential benefits to the student and the benefits to the instructor as well. In addition,
the paper will discuss the changes to using CodeLab for the spring 2008 semester.

MICS 2008 401

1 Introduction – Academic Environment

Many journal articles and papers have documented the problems that are facing the
Computer Science discipline in the first two years of the curriculum. The core Computer
Science courses usually are programming classes with student drop-out rates higher than
the discipline would like to see. Many new pedagogically ideas are constantly being
offered as aids to combat this problem.

1.1 Background

The thirteen 2-year University of Wisconsin (UW) Colleges serve students over the entire
state of Wisconsin [2]. The Computer Science (CS) program in the UW Colleges is
designed to be easily transferable to the 4-year institutions within the UW System. The
nationwide decline in CS enrollments reported in the 2003-2004 Taulbee Survey [3] has
affected the UW System, and has been particularly hard on the 2-year UW – Colleges
(UWC), which are relatively small colleges, with a combined enrollment of approximately
12,000 students. In addition, the majority of our students are in the bottom 60% of their
high school rank. The majority of our students enroll to prove that they can achieve at the
University level in order to be accepted at a 4-year University.

1.2 Enrollment Issues

A trend of declining enrollment in Computer Science (CS) is being felt at the 2-year
University of Wisconsin (UW) Colleges, as is the case nationally. UWMC is the third
largest two-year campus in the UW Colleges [4]. It is safe to say that those are NOT the
numbers that were active in the classroom at the end of the semester. The loss of these
potential students for the core Computer Science courses are very troubling. Many
research articles have documented that students struggle with learning the syntax of
programming languages. Something needed to be done to recruit and then retain these
students.

1.3 Problems

A major problem is that the students enrolling into the UW–Colleges are that many
students do not have the necessary math requirements to enroll in any CS course. They are
forced to take remedial math courses prior to actually taking their first CS course. It is
easy to understand why these students struggle with their problem solving skills as they
failed to take the necessary college prep courses while in high school. To succeed, these
students need to be exposed to as many opportunities to solve problems, either in
homework assignments or programming assignments. However, the disadvantage is that
this requires intense effort on any instructor to grade these assignments. Students take
graded assignments more seriously than if they are not graded.

MICS 2008 402

1.4 Designing Algorithms and Critical Thinking Skills

As I looked at the guidelines established by the UW Colleges for teaching the general
concepts for this course, the emphasis that course coverage for designing algorithms
should take at least a minimum of six hours. And the reality is that every programming
assignment typically forces students to design a totally different algorithm. In order to be
successful in this course, for the students and the professor, somehow, someway, the
critical thinking skills of students have to be improved. Improvements in critical thinking
along with the understanding of the basic control structures will allow students to be
successful writing simple programs using any language. It is obvious that more time on
task can be very helpful for developing these critical thinking skills. However, more
assignments that need to be graded so feedback can be given to the student can overwhelm
any instructor.

2 Introduction -- Codelab

CodeLab [5] is the commercial version of an academic NSF project[6], WebToTeach [7,
8]. The pedagogy behind CodeLab mimics techniques used widely in other subjects, such
as mathematics and foreign language study. The main idea of the pedagogy is to provide
large numbers of self-paced, highly interactive exercises that focus on key ideas of
programming. These exercises are intended to augment, rather than to replace, the
traditional "whole program" assignments in the first year of undergraduate study.
CodeLab is a web-based tool that enables faculty to assign exercises to students and
monitor student progress.

For the student, CodeLab provides experience with fundamental elements of syntax,
semantics, and basic usage of the programming language. The tool provides immediate
feedback on correctness and often offers suggestions for fixing errors. Students can
proceed at their own pace, subject to deadlines imposed at the instructor’s discretion.

CodeLab has over 300 short exercises with each exercise focusing on a particular
programming concept. The exercise is presented to the student and the student types in
their solution to the exercise. The system immediately judges the correctness of the
solution, and even offers hints when the submission is incorrect. If incorrect, the student
modifies their solution, and submits it for verification. “Through this process, the student
gains mastery over the semantics, syntax and common usage of the language elements.”[9]

2.1 History

Turing's Craft was founded in 1999 by David Arnow and Gerald Weiss. They are both
professors of Computer and Information Science at the City University of New York. To
aid in teaching Computer Science concepts, “Arnow developed the WebToTeach system to
address the limited opportunities for computer science students to practice the concepts
taught in the classroom.” [9] The early academic versions of WebToTeach were used by

MICS 2008 403

thousands of students in several colleges and high schools since 1990. A National Science
Foundation grant was awarded to them to further develop the technology in hope that this
system could be applied to help reducing the attrition rate of beginning CS students.

“Responding to broad user interest and with the NSF's encouragement, the two started
Turing's Craft in early 1999 to commercialize the WebToTeach technology and thereby
make it broadly available. In June 2000, Turing's Craft received a technology
commercialization grant from the Empire State Development fund in recognition of the
outstanding potential of the technology. In the spring of 2002, Turing's Craft released the
commercial version of WebToTeach, CodeLab.” [9]

2.2 Benefits of using CodeLab

2.2.1 Benefits to the Student

The benefits to the students posted on the web site are: [9]
1. Higher Test Scores
2. No Brick Wall
3. More Efficient Studying
4. Better Grades on Projects

2.2.1.1 Higher test scores

If a student receives immediate feedback, then that should help the retention rate of the
material. This, in theory, should help the student score higher on exams with the increase
in the retention of the concepts.

2.2.1.2 No brick wall

Ever Computer Science student has, at one time or another, and sometimes very
frequently, been completely stuck on a homework problem. The “brick wall” syndrome is
an experience in itself. In CodeLab, since every exercise comes with feedback, hints and
other explanatory material, the brick wall syndrome should be reduced, and sometimes
even eliminated.

2.2.1.3 More efficient studying

If students knew what concepts that they were struggling with, then they could spend more
time doing assignments on that concept. Students would be getting more bang for their
buck with their study time. Since CodeLab gives feedback within seconds of the solution
submission, students can quickly understand if they know this concept.

MICS 2008 404

2.2.1.4 Better grades on projects

The Codelab assignments help students prepare for the learning the concepts that are
necessary to solve the larger programming projects. These projects should require less
time since students will spend less time on the basics and more time on creating a solution
that meets the specifications of the project.

2.2.2 Benefits to the Instructor

The benefits to the instructor, as posted on the web site are: [9]
1. Take the high road!
2. Grading relief / Automatic class rostering
3. Frees up office hours
4. Decrease attrition

2.2.2.1 Take the high road!

CodeLab aids the students in learning the syntax, semantics and the basic usage of the
programming language. Class time can now be spent on problem solving strategies,
design and analysis, abstraction, algorithms, and style. This emphasis can aid in the
development of the critical thinking skills of the students.

2.2.2.2 Grading relief / Automatic class rostering

Many articles have been written on the frustrations faculty feel with the overwhelming
tasks of grading homework and programming assignments. CodeLab automatically
checks student work for correctness and tracks student performance by maintaining their
submission records.

2.2.2.3 Frees up office hours

With its built-in feedback mechanism and aids, students do not have to seek out the
instructor to overcome the brick walls that they encounter. Now, when students choose to
speak to their instructor during office hours, their problems will be at a higher level in
which the instructor can provide useful knowledge. An instructor provided the following
testimonial: "I am getting more questions about concepts, software engineering and
problem-solving and fewer questions about basics." [9]

2.2.2.4 Decrease attrition

MICS 2008 405

This was one of the primary goals when CodeLab was developed. If students can be
helped as early as possible in the process, then more students should be successful in the
classroom which would reduce the number of students dropping the course.

2.2.3 Benefits to the CS Department

The benefits to the CS Department, as posted on the web site are: [9]
1. Retention
2. Language Switching
3. Confidence of Achievement Level
4. Automated Placement Exam

2.2.3.1 Retention

One of the primary goals of the NSF grant was to reduce attrition. Reduced attrition aids
in the retention of CS students for future classes. “This is clearly having benefits. For
example, one instructor reported that six weeks into the term, instead of the usual 30
student withdrawals (out of 150), only 2 had dropped out.” [9]

2.2.3.2 Language Switching

The UW-Colleges changed their CS curriculum to offer the first two CS core classes in
Java and to offer CS3 (Algorithms and Data Structures) in C++ so students get a chance to
experience multiple programming languages. This curriculum change was due to the
desire to make the CS credits easier to transfer to the public four-year universities in
Wisconsin. For the 2nd language, CodeLab makes it much easier to switch languages
without having to devote class time to teaching the fundamentals. Now instructors can
spend less time on teaching the language and more on teaching the topics that need to be
covered for the course.

2.2.3.3 Confidence of Achievement Level

“CodeLab certifies that the student has correctly written code that solves a stated
problem.” [9] Both the students and the instructor should have increased confidence that
students in the introductory classes have mastered the introductory topics and concepts
that are necessary to build the foundation for future courses.

2.2.3.4 Automated Placement Exam

Students transferring into the university or High School AP students can use CodeLab to
prove their mastery of the necessary concepts so that they can be placed into the

MICS 2008 406

appropriate class level. CodeLab can also be used as the automated placement exam.
Students coming into the program can be accurately assessed with relation to their
mastery. CodeLab will report the success rate of any set of assignments that has been set
up to act as the placement exam.

2.3 CodeLab Exercises

2.3.1 Short and Focused

CodeLab exercises are short, focused on a particular topic and automatically evaluated.
The exercises range from "one-liners" like variable declarations, arithmetic and boolean
expressions, assignment statements to more complex problems involving loops, functions
or methods or even small class definitions.

2.3.2 Graduated

The first exercises are really simple so that even the most challenged student can be
successful right away. The exercises build upon each other so as the student progresses
within each concept, the exercises become more complicated.

2.3.3 Immediate Feedback

Many of the exercises are similar to exercises found at the back of a typical textbook.
The difference is that CodeLab gives the student immediate feedback on their answer
with hints if their answer was not complete. Each successful submission is recorded in
the roster for the instructor.

2.3.4 Topic Coverage

The exercises start with the imperative programming core of Java and then go on to
address procedural and object-oriented programming. These exercises are targeted at a
typical CS1 syllabus.

2.3.5 Customized

Instructors can add assignments to complement existing assignments or to add additional
coverage.

3 Introducing CodeLab into Programming Courses

MICS 2008 407

During SIGCSE 2007, I was introduced to CodeLab when I met David Arnow at the
Exhibit Hall. The demonstration of CodeLab sounded promising as a new educational
tool. Once SIGCSE was over, I completely forgot about it until David called me early in
the fall 2008 semester. During the phone call, I agreed to use CodeLab in two courses for
that semester, a CS1 course in Java and a CS2 course, also in Java.

Codelab has already been woven into many textbooks including the Morelli textbook
which I currently use for my CS1 course. The existing CodeLab assignments are linked to
the appropriate chapters in the textbook. So the integration into the course was very easy.
The students were given the instructions for establishing their user ids and passwords for
gaining entrance into the web site for the course. And off they went with enthusiasm…

3.1 CodeLab Effectiveness

As I wrote this paper, I searched for published papers on CodeLab reporting on the
effectiveness of this tool. It was surprising how little evidence exists.

3.1.1 Existing Anecdotal Evidence

Anecdotal evidence abounds as there are many testimonials about using CodeLab for
introductory programming courses. The list of universities (Figure 1) that are using
CodeLab, by itself, could be used to make a statement about the effectiveness of
CodeLab.

Adelphi, Alabama, Alberta, Belmont Abbey, Bob Jones, British Columbia
CSU - Long Beach, CUNY – Baruch, CUNY – Brooklyn, Cabrillo Col.,
Central Piedmont CC, Clemson, Col. of the Ozarks, Corban, Covenant,
Dallas Baptist. De Anza, DePaul, Denison, Ellis, Fairleigh Dickinson,
Florida Atlantic, Georgia Col. & State, Greenhills School, Illinois – Chicago, Illinois -
Urbana/Champaign, Johns Hopkins, Johnson County CC,
Kentucky, Kenyon, Loyola University Chicago, Merrimack Col.
Michigan - Ann Arbor, Michigan Tech, Millikin, NE Miss CC,
NW State U of Louisiana, Nebraska – Lincoln, Northern Colorado,
Oklahoma, Ontario Inst. of Tech., SUNY - Stony Brook, South Florida,
Texas A&M – Commerce, Toronto, Trinity Col., UC – Riverside,
UT - San Antonio, Wisconsin – Madison, Xavier

 Figure 1: Universities using CodeLab

Many instructor testimonials rate the product very highly:

"I have to admit I liked the interface and the load that it took off of me. Overall I was
impressed with the product and will use it in my intro class again." [9]-- Ken Whitener,
Professor, Iowa Lakes Community College

MICS 2008 408

"I now highly recommend the use of CodeLab to all other instructors and students. It
finally provides both the programming practice and evaluation support that I have been
seeking for an introductory course." [9]-- Michael Schultz, Instructor, University of
Wisconsin

"I really love your site. It has helped me cover more material with better comprehension
than I've ever had before!" [9]-- Marcus Darden, Professor, Olivet College

3.1.2 Empirical Evidence

I will admit I did not spend many hours searching but several quick searches did not
reveal any published articles with empirical evidence.

3.1.3 My Anecdotal Evidence - Survey

With my small class size, I cannot overwhelm you with any empirical evidence with the
effectiveness of using CodeLab in my CS courses. Near the end of the semester, I had
my CS1 students take the following two question survey (Figure 2).

Q1. Was the effort of doing CodeLab worthwhile? Did it help you
grasp Java concepts more easily? Please elaborate on whether or not
or to what extent it was valuable to you.

Q2. I _______________ recommend CodeLab be used again.

a. definitely would
b. would
c. would not
d. definitely would not

 Figure 2: CodeLab Survey

The one student who did not recommend using CodeLab again reported it had been
difficult to correlate the ideas from the textbook with those presented by CodeLab. This
student said "CodeLab was worthwhile when I understood the material placed before me.
When I didn't understand the material very well it helped me very little and in fact added
greatly to my level of frustration."

MICS 2008 409

The pedagogical goals that are designed into CodeLab were reflected in many of the
comments. One student explained that it "helped me apply better what was taught in
class and what I read in the chapters". Another said "It gave some good practice on
specific pieces of Java programming, with immediate feedback on what went wrong". Yet
another appreciated that CodeLab "helped me to have more contact with the vocabulary
of Java". “The best part is that when I am truly stuck I can consult with my professor and
receive more detailed feedback.” was a comment that made an impression with me.

Numerous critiques of the CodeLab tool were offered by the students as well as well as
recommendations for how to improve the tool. One student complained that "it had no
style hints or help on elegance and the instructor harps on that all day long". I guess that
student’s do pay attention if they hear the same theme over and over as I do emphasize
good programming guidelines in the CS 1 course.

Even in CS, the English language comes into play as several students complained that the
wording on the questions or hints were not helpful at all. One student remarked
"sometimes the questions were kind of worded funny"; another stated that "some parts
were too easy and repetitious, and in other parts the wording confused me so much I
didn't know what to put". CodeLab does not eliminate the use of a textbook. I believe
that these comments could be reduced if students would spend time reading the textbook
along with attending and paying attention during class would provide the students with
the needed background to understand the vocabulary that is used in CodeLab.

Another concern related to the feedback, with one student writing "More help and better
instructions would have been better". A student took this concern further with the
statement "that CodeLab does not teach you how to accomplish the task".

3.1.4 Implementation Errors

In my rush to implement CodeLab in my CS1 course, I failed to include in my syllabus to
mention how the CodeLab exercises would be used in determining the overall grades. So
I allowed students to use CodeLab as a review mechanism for the exams and to aid them
if they were having any problems with the concepts. Students did use CodeLab early in
the semester but when the “more complex” programming assignments were assigned,
usage of CodeLab screeched to a grinding halt. This was not a smart decision on my part.
I wanted to believe students would use the tool because it would help them. But it is
obvious that the use of CodeLab has to be included as parts of the grade or the students
do not see the value of the tool.

In my CS2 course, I envisioned using CodeLab as a review mechanism for my students
who had taken CS1 in the spring and had spent no time reviewing Java before showing
up for the fall semester. This particular group of five students was overall, a very talented
group of students. After using CodeLab for the first two weeks, they also stopped
playing with CodeLab when they started receiving additional homework and major
programming assignments for the CS2 course.

MICS 2008 410

4 Discussion and Future CodeLab Plans

CodeLab has lots of potential to help aid students in introductory CS programming
courses. Any introduction of a new educational tool has to be integrated into the entire
course in order for the tool to be successful. For the spring 2008 semester, I am teaching
two sections of CS1, a face-to-face section and another section composed of students at
the smaller UW-Colleges campuses where small enrollment issues do not allow F2F
section to be taught locally.

This second section is a distance education course where I never get to physically see my
students and they do not get to see me. A version of Microsoft Live Meeting is used
where students can see the contents of my PC screen projected on a local large-screen
display. Audio is over a bridged telephone hook-up so we can hear each other so the
class can be interactive.

Both sections are using CodeLab and students must complete 80% of all CodeLab
assignments to receive the maximum homework points which constitute 10% of their
grade. Since office hours for the DE students are only virtual, CodeLab has a chance to
be very beneficial for them as they cannot physically come to my office. Hopefully, the
brick walls are reduced for them and their frustration levels are also reduced since they
are using CodeLab for the homework assignments.

References

[1] Shackelford, R., and LeBlanc, R. Introducing Computer Science Fundamentals Before
Programming. Proceedings of FIE ’97, 285-289.

[2] UW System, Two-Year Campuses http://www.wisconsin.edu/campuses/twoyear.htm

[3] Zweben, S., 2003-2004 Taulbee Survey, Computing Research News, Vol. 17/No.3, May
2005. http://www.cra.org/CRN/articles/may05/taulbee.html

[4] UW – Colleges,
http://www.uwc.edu/

[5] Turing's Craft – The Exercises,
http://www.turingscraft.com/exers.php

[6] Arnow, D. & Weiss, G. An Asynchronous Learning Network Tool for Improving CS
Education and Retention Rates, Proposal to the National Science Foundation, EHRDUE
CCLI-EMD Program.

[7] WebToTeach: A Web-based Automated Program Checker, Frontiers in Education
(FIE99), San Juan, Puerto Rico, November, 1999. (With Oleg Barshay).

MICS 2008 411

http://www.turingscraft.com/exers.php
http://www.uwc.edu/
http://www.cra.org/CRN/articles/may05/taulbee.html
http://www.wisconsin.edu/campuses/twoyear.htm

[8] WebToTest: On-line Programming Examinations Using WebToTeach, ITiCSE 99,
Cracow, Poland, June, 1999. (With Oleg Barshay).

[9] http://turningscraft.com

MICS 2008 412

The Capstone Experience:
Learning to Manage Uncertainty and Ambiguity in a

Project Management Environment

Shaun M. Lynch, Ph.D.
Department of Mathematics and Computer Science

University of Wisconsin-Superior
Superior, WI 54880

slynch@uwsuper.edu

Abstract

A capstone class can provide a quintessential experience for students in their program of
study and is a critical component of an information systems curriculum. This paper
examines uncertainty and ambiguity in a project management environment. The article
considers the experience of students enrolled in CIS 456 Project Management—the
capstone class for the Computer Information Systems major at the University of
Wisconsin-Superior—during Spring Semester 2006. Discussion includes a description of
the project, an overview of the class content and activities, and a step-by-step description
of the process students engaged in. Finally, project outcomes and recommendations made
by the students are presented with relevant observations about the influence of
uncertainty and ambiguity on their project management experience.

MICS 2008 413

Introduction

A capstone course provides a quintessential experience for students in their program of
study and is a critical component of an information systems curriculum. A project-based
capstone class using real-world projects can expose students to the complexity they will
certainly face as information systems professionals. Participants have the opportunity to
practice formal project management methodologies while learning to manage uncertainty
and ambiguity. Designing a course that balances project dynamics with the use of
structured practices proves to be a delicate process worthy of consideration by those who
teach capstone classes.

As with any class, the learning experience is often impacted by unforeseen events and
circumstances. This article attempts to capture these extraordinary conditions in attempt
to look how these dynamics contribute to the uncertainty and ambiguity students must
contend with when immersed in a formal project management setting. It extends the
article, The Capstone Experience: Integrating Curricular Outcomes with Real-World
Practice [1] and follows, The Capstone Experience: Balancing Formal Project
Management Methodologies with Student Creativity and Innovation [2] in a series
intended to examine and document the intangible aspects of a capstone experience.

The content of this paper has been divided into four parts. The first part provides the
background of the project from which the student project originated. The second part
provides an overview of the capstone class to include content, activities, and performance
metrics. The third part presents a chronological record of the capstone experience with
milestones and a description of relevant activities. Finally, the fourth part presents the
outcomes of the project along with the recommendations students made followed by
relevant observations about the influence of uncertainty and ambiguity on the experience.

Project Background

The impetus for the 2006 capstone project originated from a consolidation project at the
University of Wisconsin-Superior to merge the two information technology and service
providers, namely Computing and Media Services (CMS) and Network and
Programming Services (NPS). The goal of the consolidation project was to find and
implement a permanent solution that promoted department strengths and continued
contribution to the University’s mission while being conscious of staffing and resource
limitations. Three goals were established to include:

1. Improving executive decision making within the Information and Instructional
Technologies (IIT) organization,

2. Minimizing and eliminating operational redundancies (or perception of) that
existed, and

3. Facilitating long-term management of increasingly complex information
technology infrastructure and services.

MICS 2008 414

Build-up to the project began in the summer of 2005 with a review by an external
consulting team to assess the effectiveness of the two departments. In many areas, the
reviewers praised the contributions the units made toward the University’s mission.
However, the consulting team also identified areas that needed attention, in particular, the
need to integrate the departments and consolidate the two directorships into a single
executive position [3].

In late August, the Chancellor extended an invitation to the author to facilitate the
consolidation project under the oversight of the Provost. Upon accepting the assignment
the project commenced and was announced to the membership of both departments with
the charge to 1) integrate the two departments into a single cohesive unit with a common
mission, and 2) rewrite the CIO position description to fold the two directorships into a
single executive role.

Historically, the two departments had settled into niches aligned with the academic and
administrative functions of the University. For the most part, these two niches were
distinct enough to operate independently and provided a measure of autonomy for each
department. In situations where missions overlapped, the two department directors and
their staff were able to meet and come to some sort of an agreement how to proceed.

The introduction of enterprise-wide applications and systems exposed the dependencies
between these two operations. As the cross-over expanded, positions once the domain of
a single department now contained jobs that traversed organizational boundaries.
Contention over resources or from philosophical differences in these overlapping areas
tended to percolate up through the departments to be resolved by the directors. However,
the number of instances where an agreement could not be reached seemed to be
increasing and often entailed intervention by Administration.

Consolidating the two departments under a single executive position with a common
mission appealed to Administration and potentially would lead to improved decision
making within the organization. Merging the two departments meant identifying and
documenting the various jobs performed by both organizations. Many of the jobs could
be found in the existing position descriptions posted by each employee; however, new
jobs or jobs that would change as a result of the merger would also have to be included.
Once all the jobs were compiled, they could be assessed individually, regrouped, and
incorporated into the position descriptions for the new organization.

This need to identify and assess the jobs performed between the two departments led to
the original idea for the capstone project. A systematic job analysis would differentiate
between those jobs specific to a given department and those jobs common to both. This
approach had innate appeal in that it offered students a holistic view of an information
technology organization based on the jobs the organization performs. In addition, project
scope appeared manageable and the objectives clearly defined.

MICS 2008 415

Class Overview

CIS 456 Project Management is the capstone course for the Computer Information
Systems major at the University of Wisconsin-Superior. The class is offered spring
semester to seniors in the program and is generally the last class students take before
graduating and entering the world of practice. Students who register for the class are
expected to have completed a majority of classes in their program of study, including
foundation, general education, core business, and major specific classes [4].

The semester-long course carries a 3-credit designation in combination with a mandatory
lab. Class and lab times are combined to form a two hour and fifteen minute period that
meets twice a week. Kathy Schwelbe’s text, Information Technology Project
Management [5], is used as the primary text for the class in conjunction with a
supplemental reference by the Project Management Institute, A Guide to the Project
Management Body of Knowledge [6]. In addition, class-specific materials are available
online that include fact-sheets, check lists, forms, and document templates.

Normally, the class is organized using a matrix structure that integrates project activities
with department services. Cross-functional teams form the backbone of the organization
creating a dynamic, goal-oriented environment that achieves project objectives. However,
only five students were enrolled so a compact form of the matrix structure was employed
consisting of one project and two functional departments. Although small, it still required
members to show initiative, communicate with one another, solve problems, think
critically, and justify their actions.

The organizational development project was the sole project assigned to the capstone
class of 2006. Best characterized as an analysis project, the goal focused on trying to
figure out exactly what jobs each department actually did and presenting it a clear and
systematic manner. Specifically, the project objectives were to 1) compile a set of
uniform job descriptions; 2) record each position’s constituents, systems, and affiliations;
and 3) identify training opportunities for individuals filling supervisory roles in the
organization.

Class content was organized around two basic threads: the objective-oriented project that
emphasized deliverables and the function-oriented departments that emphasized services.
Project activities included the project kick-off, scope review, project review, and the final
presentation. Department activities included the qualification exam, functional review,
and group exam. Both threads ran concurrently with various activities and milestones
intermixed throughout the semester.

In addition, there were a number of activities designed to help students improve their
project management abilities. For instance: Weekly activity reports helped students learn
time management skills. Status reports and presentations helped students improve verbal
communication skills. Cover letters and resumes helped students with job application
skills. Position descriptions helped students learn responsibility and assignment skills.
And, reports and essays helped students develop their writing skills.

MICS 2008 416

A comprehensive set of metrics that included individual activities, group activities,
administrative activities, and peer evaluation and participation were used to measure
student performance. The first three areas constituted 90% (each category worth 30%) of
the final grade and were based on external measures of performance established by the
instructor. Peer evaluation and participation contributed 10% to the final grade and
allowed students to assess the performance of team members using predefined criteria.

Capstone Experience

The CIS 456 Project Management class of 2006 began on Tuesday, January 24th with a
welcome letter presented to each student. Two attachments were included outlining the
organization’s structure and available positions. In the letter, students were asked to
submit a letter of application stating their preferred project and department positions and
a current résumé by Friday, January 27th. Prior to the deadline, the class met to discuss
various strategies and approaches needed to write successful application materials for
positions in business and industry in preparation for their application packets.

On Tuesday, January 31st, students received a formal letter indicating their position
assignment. The organization consisted of two departments and one project group.
Departments were formed around the functional activities of project management to
include Finance, Procurement, and Human Resources (FPHR); and Scheduling, Risk, and
Quality Management (SRQM). All participants were included in the project since there
was only one. In addition, standing and ad hoc committees were convened to manage
organization activities throughout the semester.

Once the organization was populated, students were required to write position
descriptions for their respective department and project assignments. Position
descriptions were processed for content and consistency through the newly formed
Finance, Procurement, and Human Resources Department. Tuesday, February 7th was the
deadline for submitting the position descriptions.

The project kickoff commenced on Thursday, February 2nd. Given that this was an
internal project where the instructor also served as the project sponsor, the kick-off
entailed an in depth discussion of the IIT Consolidation Project and the objectives being
sought. It also provided an opportunity for students to ask questions and start formulating
a plan to achieve project objectives.

Project and department teams began to meet on a regular basis after the project kick-off.
A significant portion of class and lab time was dedicated meetings, however, teams often
met outside of class. In addition, weekly activity reports enabled members to track
activity progress and status reports scheduled throughout the semester updated progress
made toward completing project or department activities.

The scope review was the first major presentation for the project team. The review was
made during class on a date scheduled between February 16th and February 24th by the
project team. In preparation, the project group was required to prepare a scope review

MICS 2008 417

packet that consisted of a project charter, statement of work, a work breakdown structure
with a tentative schedule, and a copy of their presentation slides. The project team passed
the scope review on their first attempt.

After the scope review, a qualification exam was given on Tuesday, March 7th to simulate
a professional certification exam. Members from the various departments created and
disseminated learning materials to help each other prepare for the test. The exam was
divided into two portions that covered the functional knowledge areas of project
management to include finance, human resources, procurement, quality, risk, and
scheduling. The general knowledge portion contained material the whole class was
expected to know; whereas, the specific knowledge portion covered in-depth material
associated with particular functional departments.

Functional reviews immediately followed the qualification exam and each department
was expected to schedule a review between March 7th and March 18th. The review
provides an opportunity to assess the competency of individual department members in
their respective functional areas. Each department prepared a packet that contained a
mission statement, services offered, methodologies, and a copy of their presentation
slides. In addition, department members evaluated the presentations of their peers and
performed a self-evaluation using a video recording of their own presentation. Both
departments passed with only one member being asked to return for a second attempt.

Project reviews were the next item on the agenda after the functional reviews. The project
team was required to set up a meeting between April 4th and April 15th in which to make
their presentation. This review assessed project progress and offered a roadmap how the
team would successfully complete the deliverables articulated in the statement of work.
For the presentation, the team prepared a packet that contained a final work breakdown
structure and schedule, progress to date, a plan for carrying out the remaining activities,
and a copy of their presentation slides. The project team passed the review on their first
attempt.

Once the project review was completed, a group exam was given on Thursday, April 20th.
The two-part exam is collegial in nature and designed to strengthen team cohesion while
evaluating project management knowledge. First, department teams competed in a
challenge called Put Your Best Foot Forward. The objective was to formulate and present
a response to address a hypothetical challenge a project might face. Teams were ranked
based on the strategy employed and the content of their response. Second, project
members played Project Jeopardy based loosely on the popular television show
Jeopardy. The objective was to formulate a correct “question” in response to an “answer”
provided in one of five project management areas.

As the end of the semester approached, the project team compiled and documented their
work and recommendations into a final report, IITCP Organization Development Project
[7]. The report was reviewed for content and prepared for electronic distribution. The
final presentation came on Tuesday, May 9th in a closed session due to the sensitivity of
the material being presented [8].

MICS 2008 418

A lessons-learned session took place on the last day of class on Thursday, May 11th. This
session included a systematic review of the activities accomplished over the semester
with discussion of alternate approaches in light of their experience. An economic
assessment of the monetary value of their work was conducted based on similar projects
found in industry or funded by external grants.

Finally, class members were asked to submit a formal peer evaluation and an essay
describing their experiences in class. The peer evaluation required participants to
objectively rate the performance of members in their project and department teams. The
essay gave students an opportunity to tell their story about what they did and offer advice
to future students. All the essays were compiled in a document called the Project
Management Cookbook [9].

Project Outcomes

Before examining the particular outcomes of the capstone project, it is useful to consider
the dynamics of the consolidation effort that stimulated much uncertainty and ambiguity.
In hindsight, issues stemmed from tension between the two IT organizations;
administrative turnover; and changes to project expectations. To begin with, department
methods used to service administrative and academic functions brought to light a number
of managerial differences. This led to increased concerns regarding the direction of the
new organization, job security, and job satisfaction. The slow pace of the merger only
agitated staff further heightening their sensitivity to external measures.

In addition, the consolidation project exercised its directive during a transitory period in
the University’s administrative ranks. The foundation of project was formulated and
prepped under one Provost who resigned to pursue another opportunity as the project was
being launched. Soon thereafter, an interim Provost was announced as a search for a
permanent replacement was set in motion. By 2006, a new Provost had been recruited
and was poised to take the operational reins of the University beginning that February.

If that were not enough, worsening fiscal conditions further impacted the operating
budgets of the University. It was fully anticipated at the beginning of the merger that the
new IIT Department would be allowed to fill vacant positions once complete; therefore,
the proposed organization structure adopted a modest growth strategy. Near the end of
the project, however, budget pressures mounted forcing a reconsideration of the strategy
to a no-growth staffing plan that could survive a potential downsizing effort.

Fortunately, there was a measure of separation between turbulence created by these
external conditions and the capstone project itself. This allowed the project team to
formulate a concurrent strategy to pursue the three objectives outlined at the onset of the
project. Nonetheless, students still faced uncertainty and ambiguity as they engaged the
process.

Compiling a uniform set of job descriptions was the primary objective of the project.
Neither organization maintained a detailed list of jobs that could be used to assess the

MICS 2008 419

areas where the missions of the two departments overlapped. However, both departments
maintained up-to-date position descriptions that contained employee duties and
responsibilities. Most of these records were quite detailed although content and style
varied by department and employee type.

Positions and jobs are complementary views of accomplishing work in an organization. A
position defines a resource—an employee—available in fixed-time increments (full-time,
half-time, etc.) to accomplish work; whereas, a job defines related tasks needed to
accomplish work. Conceptually, positions and jobs exist as two distinct sets related by a
many-to-many relationship. In practice, however, position descriptions are written for
employees often without specific reference to a formally defined set of jobs as in this
instance.

Indirectly creating a formal set of jobs from position descriptions caused considerable
uncertainty and ambiguity for the project team. This situation is analogous to learning the
dual solution for the Simplex Method. You have to really understand what the primary
solution means before the dual solution makes sense. In response, team members created
a structured form that included common attributes to describe each job, such as job title,
job summary, qualifications, duties and responsibilities, evaluation, knowledge, and the
individuals currently assigned.

Using this standard form, the project team compiled an inventory of 49 distinct jobs
based on 18 position descriptions. (Note: This number includes full-time and part-time
staff and supervisors, and excludes the two Director positions.) Some jobs could be
clearly articulated while others needed further information to describe them completely.
It is interesting to note that nearly a 2.5:1 ratio exists between the number of jobs and
positions across this organization as a whole. Nonetheless, a standardized form created
the framework in which to conduct a systematic inventory.

Recording each position’s constituents, systems, and affiliations (CSA) was the second
objective of the project. A CSA analysis documents relationships an employee has with
constituents—the external population an employee serves, systems—the technologies and
processes an employee works with, and affiliations—the other members of the
organization an employee collaborates with. These relationships were crucial to finding
the functional overlap between the two departments.

Originally, the option of letting students interact directly with the IT staff to perform the
CSA analysis was available. Unfortunately, members of the two departments objected to
any student involvement as the consolidation project moved forward. The author
responded to these objections by limiting student participation to nonintrusive activities.
The uncertainty and ambiguity caused by this midcourse correction required project team
members to find a new way to acquire the data needed for the analysis.

Team members considered four alternatives to help the project facilitator gather the data
needed for the CSA analysis. Alternatives included: implementing a survey, conducting
one or more brainstorming sessions, using a Delphi Technique, and conducting direct

MICS 2008 420

interviews. After evaluating each alternative, the project team recommended a survey to
overcome access and timing limitations. The team crafted a survey instrument and
proposed a methodology as a starting point to collect data.

Identifying training opportunities for individuals filling the coordinator positions in the
new IIT organization was the third objective of the project. Coordinator positions serve
two purposes. First, coordinators were expected to manage the day-to-day activities of a
five to six member team. This enabled a division of labor strategy to minimize span of
control problems as the two departments merged. Second, coordinators were expected to
work with the CIO to develop tactical plans to reconcile strategic and operational
activities. This was particularly important in light of the new executive responsibilities
granted the CIO.

Identifying and selecting training opportunities to prepare coordinators for their new
duties proved quite challenging. The project team had to adopt a new perspective of
learning that included objective-based professional training presented as workshops and
seminars. In addition, students needed to consider training objectives and assess how
training programs met those objectives. This view of training is substantially different
from the college experience most were familiar with and caused uncertainty and
ambiguity for the project team.

Initially, the project team misunderstood the training objective and began to look at
training programs for specific technical skills. They soon realized that they were ill-
equipped to recommend training in specialty areas that members of the two departments
already possessed. A meeting with the project team helped them revise their
understanding of the objective and how to proceed. The resulting search yielded six
potential training programs that addressed the supervisory and tactical planning needs of
the coordinator position. For each training program, team members wrote a summary,
listed pertinent topics, performed a cost analysis, and addressed procurement issues.

Summary

This paper considers the influence of uncertainty and ambiguity in a project management
environment. The capstone class of 2006 provided an exceptional opportunity to observe
how students manage project dynamics while striving to learn project management skills
and practices. A description of the project, class, and activities depicts the setting in
which student learning takes place. The approach used by students to overcome
uncertainty and ambiguity is presented in the context of achieving project outcomes.

This work recognizes the importance of learning to manage uncertainty and ambiguity.
Learning is a dynamic process and includes conditions that elude quantification. Even the
most experienced instructors have difficulty anticipating the all circumstances that give
rise to unplanned events and behaviors in a capstone class. Yet, acknowledging these
conditions is an essential part of capstone pedagogy. Recognizing the intangible aspects
of education and openly discussing classroom experiences offers insight into the
mechanisms that contribute to a successful learning environment.

MICS 2008 421

Finally, this work continues to add to the body of knowledge regarding capstone
experiences; however, there is more work that needs to be accomplished. Further studies
may include identifying specific factors that precipitate uncertainty and ambiguity in a
project management environment, the degree that structured methodologies lessen the
impact of uncertainty and ambiguity, and measures to gauge an organization’s ability to
manage uncertainty and ambiguity.

MICS 2008 422

References

[1] Lynch, S. M. The Capstone Experience: Integrating Curricular Outcomes with Real-
World Practice. Proceedings of the 37th Midwest Instruction and Computing
Symposium. Morris, MN, 2004.

[2] Lynch, S. M. The Capstone Experience: Balancing Formal Project Management

Methodologies with Student Creativity and Innovation. Proceedings of the 40th
Midwest Instruction and Computing Symposium. Grand Forks, ND, 2007.

[3] Meachen, E. Report on the UW-Superior Organization. University of Wisconsin-

Superior, Superior, WI, 2005.

[4] University of Wisconsin-Superior. 2004-2006 General Catalog. Superior, WI, 58-59,

2002.

[5] Schwelbe, K. Information Technology Project Management. Course Technology,

2006.

[6] PMI Standards Committee. A Guide to the Project Management Body of Knowledge.

Project Management Institute, 1996.

[7] Lynch, S. M., Ferguson, K., Dahlberg, C., Samarasekera, K., and Padmasiri, D.

IITCP Organization Development Project. IIT Consolidation Project: University of
Wisconsin-Superior. Superior, WI, 2006.

[8] CIS 456 Project Management. Capstone Presentation. University of Wisconsin-

Superior, Superior, WI, 2006.

[9] CIS 456 Project Management Class of 2006. CIS 456—Project Management

Cookbook, Class of 2006. University of Wisconsin-Superior, Superior, WI, 2006.

MICS 2008 423

AN ALGORITHM TO RESTORE DATA BASE

CONTENT TO PAST DATES IN REAL TIME

Christopher Brown, Dennis Guster and Brittany Jansen

Business Computing Research Laboratory

St. Cloud State University

St. Cloud, MN, 56304

chrisb@stcloudstate.edu

Abstract

Although it is important to devise an accurate and reliable methodology for updating a data base

(so that current information can be rapidly accessed), there are times when it is equally important

to be able to roll back the transactions (Date, Darwen, & Lorentzos, 2003). This is so that reports

can be generated that draw on that data in its past form. This need makes it important to have the

capability to both draw from the actual data base table(s) as it is and draw from the historical

data base table(s) as it was. Currently, there are three popular methodologies regarding this,

which include restating, tracking or taking a snapshot of the history. However, a method was also

devised, featuring an algorithm that addresses relational constraints. This algorithm, and its

deployment on an operational level, makes it possible to go back and generate reports for any

given day.

MICS 2008 424

Introduction

Although it is important to devise an accurate and reliable methodology for updating a

data base (so that current information can be rapidly accessed), there are times when it is

equally important to be able to roll back the transactions (Date, Darwen, & Lorentzos,

2003). This is so that reports can be generated that draw on that data in its past form. This

need makes it important to have the capability to both draw from the actual data base

table(s) as it is and draw from the historical data base table(s) as it was. An example of

this might be a university system that reports grade point averages. Perhaps a comparison

from year to year is desired. A report might be run in 2005, and when its users wish to

run the program again in 2006, the people requiring the data wish to include a break out

by gender, which was not included in the 2005 report. It is easy to get the current

information, but in order to be able to generate the report for 2005, some type of roll back

mechanism would be needed. Devising a methodology to provide such capability is not

trivial and requires much thought, due to the volume of data that is probably involved. A

quick overview of the concerns and frustrations appears in Date (2003).

Obviously, one method would be to create historical snapshots of the reported data on a

periodic basis, such as the end of each business day. However, this may not provide the

required flexibility to recover to a specific transaction point and would require the storage

of massive amounts of data, which may also limit speed of access. Currently, there are

three popular methodologies described in the literature. Mundy (2007) describes the

Kimball Method which advocates the following three techniques.

 Type 1: Restate history by updating the dimension attribute in place.

Type 2: Track history by adding a new row to the dimension table that contains

the new view of the dimension member.

Type 3: Snapshot history by adding new columns to the dimension table that

holds the attribute's values at a specific date, often year-end.

Although the effectiveness of these methods has been proven, there are still issues with

overhead, performance or ease of use by end-users. All of these issues can be directly

related to operational cost. Tao and Papadias (2005) recognize the need to cost optimize

the history process and feel that other models that reduce cost merit investigation. For the

application to be delineated in this paper, Type 2 offered much promise in regard to the

output desired and the adaptability to the current database structure. However, the

overhead and potential performance required lessened its attractiveness. An analysis of

the temporal requirements revealed that it provided a higher degree of granularity than

was needed.

The type two model provides granularity at a per transaction level, when all that was

needed was a per day level. In other words, any updates to a given record will override

each other that occur on the same day. More specifically, a method was devised,

featuring an algorithm that addresses relational constraints. That is, the historical table is

actually part of the same database, which allows for consistency within the search key

methodology. For each table, a custom history table was devised using the current table

MICS 2008 425

as a base template and adding a column for a history date, record action (Insert, Update,

Delete), and a history surrogate key. Historical records were retrieved by sending the

historical report date to a cross applied view of the history table and a calendar day table,

where the appropriate date/time in history was reached by pulling records with the max

date <= the report date and where record action != Deleted.

The preliminary analysis has revealed that this method integrates well into an existing

database and only generates about 110% more storage overhead. The additional

processing overhead are minimal, due to indexing that can be done on the history table,

and as the writes are minimal. The development cost of implementing this history

method is relatively 10% of the total development cost of the ETL process. It is important

to note the flexibility of selecting which stage in the ETL development process this

history model can be implemented. Due to the trigger relationships, the cross apply

function, and with the single stipulation of a required segregate key on the modeled table,

the history method can be implemented at any stage in the ETL development process

with negligible difference in development cost.

An added benefit of this method was observed in the simplicity of converting a regular

dynamic report to a historical report by changing the table name to the view name and

adding a report date qualifier. This change was realized through the table structure that

mirrors history to the original table with the addition of the three prior mentioned

columns. Through triggers and the use of a cross apply operation, it becomes essential,

from a performance standpoint, to optimize the use of indexes and maintain a

maintenance plan for each history linked table. Although it was devised on a university

record keeping system, it appears the basic templates have wide transferability to a wide

variety of data base applications. A more detailed description follows later in paper,

including flow charts depicting the storing history and reporting history. Further, tables

illustrating an historical inquiry will also be used to clarify the logic of the algorithm and

trigger. View templates will be provided to assist the reader in adapting the methodology

to other database designs.

Review of Literature

The material synthesized in Date Darwen & Lorentzos (2003) indicates that are effective

ways to deal with resetting a database to some date (or transaction point) in history.

However, databases are complex in nature, and although the basic algorithm options

appear sound, there is a need to customize the basic algorithms for the sake of

performance or to reduce cost (Tao and Papadias, 2005). On the server side, one of the

prime concern is performance, which is compounded by the change requirement of both

data and structure associated with historical resets (Yang and Widom, 2003). One

approach in dealing with this performance problem is to focus on the algorithm. The

work of Moon, Lopez & Immanuel (2003) focuses on query processing as related to the

temporal grouping. They report success and some of their parallel adaptation have

achieved almost a linear speedup and scale up. They further state that this contribution is

of particular importance given the fact that the rate of increase in data size and response

MICS 2008 426

time requirements has outpaced achievements in processor and mass storage systems.

Gao, et al (2004) agree that as data bases get larger it becomes more and more difficult to

meet the desired performance targets and that parallel processing becomes a very useful

tool in solving this problem. In addition to the basic algorithm, there is also promise in

focusing on the indexing method. Stantic, Khanna and Thorton (2004) state indexing

strategies may need to be customized to deal with and optimize the data. This, of course,

is in the new time dependent world, where a substantial amount of the data may be now-

relative instead of fixed within the basic defined structure of the database. In some cases,

they have even achieved better efficiency by a factor of 20.

On the client side, where the inquiries are devised, there also concerns that is cost-related.

Zimanyi (2006) reports that often the historical related systems have not been devised to

take advantage of standard SQL or have the required complex SQL coding. His paper

provides insight and methodology on how to realize temporal aggregates and temporal

universal qualifiers using standard SQL. Kang, Chung & Kim (2004) also agree on the

importance of temporal aggregates and have used and have developed a methodology to

transform the time interval of a single record into a single value to make queries easier to

define.

Details of the Algorithm

Two flow charts and a series of four tables are used to describe the algorithm and

methodology. The first flow chart provides an overview of how the history data will be

used. This flow chart, Figure 1, is depicted below. The entry point into this chart is the “if

condition”: Does the inquiry request information from a prior date? If not, then it is

simply a matter of using an existing table and then ending the process. However, if a

prior date is requested, then it is necessary to determine if a dynamic or a static report is

required. The dynamic report reports all data (including past data) as it is and looks to the

active non-history table for all record inquires. Whereas the static report reports history

data as it was. This requires that the database be rebuilt and rolled back to the desired

date using the where maximum history data < report data and action != delete conditional

within the cross apply operation.

MICS 2008 427

Storing History
V 2.2

Update – Occurs when a PK in

the original record matches the

PK in the changed record and

one or more non-PK field

values have changed

Delete – Occurs when a prior

PK entry is removed from the

original table

Insert – Occurs when a new

PK entry is added to the

original table

Reporting with History

Prior date?

Report from table

Dynamic

report?
Static report?

Report history

where max(history

date) < report date

and action != D

Yes

No

YesYes

End

Report from table EndNo

No

Figure 1: Overview of Storing History Data

MICS 2008 428

The storing of history is depicted in Figure 2 and provides a detailed assessment of the

logic used. The first level of logic depicted is whether or not the action is to be an update,

add or delete. If update is selected, then it is necessary to determine if there was a prior

entry in history today. If not, then a new record is added to history with an action flag of

“U.” If there is a history record for today, the action flag is checked, and if set to “I,” the

history record for today is updated accordingly. However, if there is an existing record

for today and the action flag is not set to “I,” then the action flag is set to “U’ and no

further updates are made to that history record.

If add is selected, then it is necessary to determine if there was a prior entry in history

today. If not, then a record is inserted to history with an action flag of “I.” If there is a

history record for today, it is then an erroneous situation because the logic of the method

does not allow it, as it would be in violation of a constraint requiring the unique

occurrence of a record ID to one per day. This would be undoubtedly intercepted by the

db engine error handling and would not progress to the trigger. However, if there is not

an existing record for today, then the action flag is set to “U” and no further updates are

made to that history record.

If delete is selected, then it is also necessary to determine if there was a prior entry in

history today. If not, then a deleted record is added to history with an action flag of “D.”

If there is a history record for today, then the action flag is checked, and if set to “I,” the

history record for today is deleted accordingly, as the record was inserted earlier that day

and would not require any historical indication of being added. However, if there is not

an existing record for today, then the action flag is set to “D” and no further updates are

made to that history record.

One observable logical inference within this model relates to the multiple pass

operations. For example, when performing an add, update, update operation, the

outcome will vary from an update, delete, add operation. The first example (A,U,U)

would leave the history record with a value of the final update. Alternatively, the later

example (U,D,A) would leave the history record with a value of the initial record value.

This is important logical construct, as it enables retention of initial values with the

exception of adding a record. This imbedded logical construct can be understood as

preserving record data on a per day basis. One that is initiated with an update or delete

action, and overwriting records change on a per day basis as well, originating with an add

operation. Construction of a truth table can assist with mapping out these embedded

constructs.

MICS 2008 429

Storing History
V 2.2

Add record?

Update record?

Delete record?

Prior entry in

history for

today?

Add inserted

record to history

action = I

End

Add new record to

history

action = U

Prior entry in

history for

today?

End

Prior entry in

history for

today?

End

Set today’s history

record

action = D

Yes

Yes

Yes

Yes

Yes

Today’s history

record

action = I?

No

Delete history

record for today
Yes

Add deleted record

to history

action = D

No

No

Today’s history

record

action = U?

Yes

Set today’s history

record

action = U

No

No

No

Today’s history

record

action = I?

No

No

Yes

Yes

No

End

No

Set today’s history

record

action = U

Update history

record for today

action = I

Error

Figure 2: Storing History and Logic Use

Table 1 provides three examples that delineate the some of the possible action scenarios

listed in the truth table that checks the validity of action combinations. The examples are

MICS 2008 430

based in a database that keeps track of student grades. It is possible that grades could

change over time due to such mechanisms as IP (in progress), I (incomplete) or a

calculation error may even result in a change from one letter grade to another after the

fact. The examples show how a historical related grade change would be handled by the

database logic described herein. In example one, the sequence insert, update, delete is

explored. In the first row there is no record for today so a value must be inserted. That

value is inserted into the table record and then also placed in the history record. The

second row depicts an update in that the table record has a value of A- so the history table

receives the same value due to the initial insert earlier that day. The third row then shows

a situation that should not occur because it would result in the generation of a duplicate

primary key, and the record would have to be deleted before it could be re-added. The

fourth row has similar logic to the second row except this is an additional change to the

record. In other words, the record had been modified twice within the time period

specified. The fifth row depicts a delete, which results in no record in either table. Again,

adding or deleting records in history only occurs when the initial entry in history has an

action type of insert. The sixth row then demonstrates an attempt to update a record that

does not exist, which of course is not allowed. Finally, the last row illustrates adding a

record, which would satisfy the database engine requirements as the insert follows a

delete.

In the second example the sequence update, delete, insert is explored. In the first row,

there is no historical action variable. The new action variable dictates an update so the

history record is added with the action variable set to update and grade value set to A to

reflect the grade prior to the edit. In the second row, a delete is requested, which removes

the value from the table record, changes the history action to delete but leaves the history

grade value untouched so it can be used in future inquiries if needed. The third row

illustrates an insert, which adds a record to the current table with a grade of C+. The

history action variable would be changed from delete to update. If the initial action had

been insert, the history action variable would be set to insert and the history grade value

would be set to C+; however, it is necessary to persist to the original value of the record,

requiring the update action as a means of preserving the initial grade value. In the fourth

row an update is depicted in which the C+ value in the table is updated to a B-. The

action variable in history would not change as its state prior to the update is consistent

with the action performed. The last row, in example two, depicts a second delete process

that occurred within that allotted activity timeframe. The action variable in history would

change from update to delete to reflect the action performed.

The third example depicts the delete, insert, update sequence. In the first row there is no

historical action variable. The new action variable dictates a delete so the table record is

deleted and an A remains in the history record. In the second row, an insert is requested,

which changes the history action variable from a delete to an update while retaining the

history grade value of A. The third row illustrates an update, which results in the table

record being updated to an A and no change to the history action variable. In the fourth

row a delete is taking place, which means no grade value is left in the history table; of

course, the history action variable is set to update, and the history grade record remains

untouched. The last part of Table 1 depicts allowable actions based on the database logic.

MICS 2008 431

The check marks indicate the sequence is allowed and the x’s indicate that the sequence

is not allowed.

One challenge of using this logic model is the costly overhead to eliminate unnecessary

records in history. An example of this occurs when the final result of the record is the

same as the initial state. In this case, history would not require a record for that

timeframe. The trigger would have to contain additional logic to "clean up" any history

records reflecting a record final value equal to its initial state.

Multiple changes on same day:

Note the Action Variable and data

record when same-day sequential

data loads are performed.

Example1: Insert Update Delete

History
Id

History
Date Operation

History Action
Variable

New Action
Variable

Table Record
Value

History Record
Value

2 12/13/2007 Update none for today U C A
2 12/13/2007 Delete U D A
2 12/13/2007 Insert D U C+ A
2 12/13/2007 Update U U B- A
2 12/13/2007 Delete U D A

Example2: Update Delete Insert

History

Id

History

Date Operation

History Action

Variable

New Action

Variable

Table Record

Value

History Record

Value

3 12/1/2007 Delete none for today D A

3 12/1/2007 Insert D U C A

3 12/1/2007 Update U U A A

3 12/1/2007 Delete D D A

Example3: Delete Insert Update

History

Id

History

Date Operation

History Action

Variable

New Action

Variable

Table Record

Value

History Record

Value

1 11/1/2007 Insert none for today I I I
1 11/1/2007 Update I I A- A-

1 11/1/2007 Insert
1 11/1/2007 Update I I A A

1 11/1/2007 Delete I

1 11/1/2007 Update

1 11/1/2007 Insert none for today I A A

*** Duplicate PK - Operation Not allowed ***

*** No record to update - Operation Not allowed ***

MICS 2008 432

NOTE:

The X’s indicate errant

combinations, due to database

constraints

Step 1 Step 2 Step 3 Ok?
Insert Update Delete

Insert Delete Update

Update Insert Delete

Update Delete Insert

Delete Insert Update

Insert Update Update

Insert Delete Insert

Delete Update Insert

Figure 3: Insert, Update and Deletion Examples

Discussion and Conclusions

There are some applications in which being able to rollback the database to align its

contents to some point in history is critical. If that is the case, there is always a concern

over the required overhead to support that capability and provide adequate performance

in regard to inquiries that need to access it. One method to address these problems is to

examine the degree of granularity that is truly required for a given application. The

ultimate level is on a per transaction basis. However, this level may not be needed for all

applications. In the example described herein, involving the recording of student grades,

a granularity on the day basis is adequate. In other words, being able to display the grade

of record at the end of any given day is the goal of records department. Therefore,

supporting per transaction granularity is not needed and would entail a waste of

resources.

The strategy used herein, in which any updates to a record will overwrite each other in

history on the same day resulting in a per day granularity, has several advantages over the

per transaction level. First, the overwrite per day process results in a database that takes

up less space. Second, because the database is smaller retrieving data is quicker and

easier. Third, the generic process used makes it easier for developers and end-users. This

is especially attractive to end-users and the people that need to support them because the

complexity of the search is lessened. This means that a greater proportion of the search

can be made directly by end-users without help from the database team.

From a design perspective it was also found that there were advantages to integrating this

functionality into the existing database structure rather than create a second database just

to support the history roll back function. To achieve the desired functionality, a new

history table was devised for each table, requiring history tacking within the existing

database structure and populated accordingly by an initial mirroring of the original table,

and then sustained through three triggers (update, insert and delete). This made the design

MICS 2008 433

much simpler, but there was a concern that this additional overhead might slow down the

primary function of the database, which was real time access to the current records. By

properly applying indexes, performance latency no more than doubled that of querying

the original table. This concern can be reduced to a more acceptable point by building

the historical records on a separate disk spindle.

In summary, as a result to this algorithm and its deployment on an operational level it is

now possible to go back and generate reports for any given day that was not generated

when the data was originally staged. A prime example of this type of need was a grade

report generated by course ID on the department level that was seen during strategic

planning by the Dean’s office, who decided it would be useful to have that same report

on that same day but generated for the whole college. The design described herein not

only makes that possible, but it can be generated quickly, efficiently and, most

importantly, cost-effectively. This scenario means that not only is the information

somewhere in the computer system but is readily available in real time to support core

decision making, which is a testament to the functionality and flexibility of the design.

References

Date, C. (2003). “On modeling history. Database Debunkings.

Date, C., Darwen, H., & Lorentzos, N. (2003). Temporal Data and the Relational Model.

Gao, et al. (2004). Main memory based algorithms for efficient parallel aggregation for

temporal databases. Distributed and Parallel Databases, 16(2): 123-163.

Kang, S., Chung, Y. & Kim, M. (2001). An efficient method for temporal aggregation

with range-condition attributes. Information Sciences—Informatics and Computer

Science. 168(1-4): 243-265.

Mundy, J. (2007). Handling arbitrary restatements of history. Intelligent Enterprise.

Stantic, B., Khanna, S. & Thorton, J. (2004, January). An efficient method for indexing

now-relative bitemporal data. Proceedings of the 15
th

 Australasian Database Conference.

Dunedin, New Zealand, January 1, 2004 (pp. 113-122). Darlinghurst: Australian

Computer Society, Inc.

Tao, Y. & Papadias, D. (2005) Historical spatio-temporal aggregation. ACM

Transactions on Information Systems 23(1): 61-102.

Yang, J. & Widom, J. (2001). Incremental computation and maintenance of temporal

aggregates. International Journal of Very Large Databases 12(3): 262-283.

MICS 2008 434

Zimanyi, E. (2006). Temporal Aggregates and temporal universal quantification in

standard SQL. ACM SIGMOD Record 35(2): 16-21.

MICS 2008 435

A Methodology for Design, Development, and
Implementation of Data Warehouse Project for

University Upper Level Course using
Microsoft SQL Server Analysis Services

Cyrus Azarbod, Muhammad Rizwan Farooq
Department of Computer & Information Sciences Department

 Minnesota State University at Mankato,
273 Wissink Hall, Mankato, MN 56001

cyrus.azarbod@mnsu.edu

Abstract

Data warehousing is an emerging technology that provides users the ability to perform
better analysis and to make business decisions easier. In order to gain competitive
advantage, organizations use systems that automate business processes to offer more
efficient and cost-effective services to their customers. As a result of that typically
everyday an organization captures large amount of data in its operational systems.
Organizations need to turn their archives of data into a source of knowledge, so that a
single integrated / consolidated view of the organization’s data is presented to the user. A
data warehouse was deemed the solution to meet the requirements of a system capable of
supporting decision-making, receiving data from multiple operational data sources. Many
institutions and universities offer data warehousing in their advanced database course or a
course by itself. Most of the curriculums emphasize on providing a theoretical overview
of various components and basic concepts of the data warehouse systems. However, they
do not include hands on project dealing with complete life cycle of designing and
implementing data warehouses.

This paper will propose a curriculum for a data warehouse course to offer not only
theoretical concepts of data warehousing but also to involve students in a hands on
experience of designing and implementing a data warehouse system using Microsoft SQL
Server Analysis Services.

MICS 2008 436

Why Data Warehousing?

Everyday organizations typically capture large amounts of data to offer more efficient
and cost-effective services to the customer. This data provide some indication of how
businesses currently operate. For example, a retail store chain captures all sorts of data
for every product, customer, purchase orders, return orders, backlogged orders, and
promotions it is offering. This data provides facts such as:

 How many customers the store currently have
 What are the products it currently has in stock?
 What products its waiting for vendors to deliver

However, the captured raw data does not provide information on trends or predict how
the organization may operate in the future. Business Information can be derived by
exploring and analyzing the raw data in several different perspectives and from several
different points of view. The process involves identifying facts that describe a condition
and extracting the critical data that reflects the overall business goals and objectives [1].

In the case of a retail store chain typical questions that may arise after analyzing data are:

 What products are they selling on different year?
 What products are they not selling on different year?
 What is the effect of product promotions?

Operational databases are not designed to support such business questions. Organizations
need to turn their archives of data into a source of knowledge, so that a single integrated /
consolidated view of the organization’s data is presented to the user. Data Warehouse
systems are specifically designed data stores that support an organization’s business
analysis process. Often implemented as enterprise wide decision support architecture, a
data warehouse system provides a reporting environment to facilitate data analysis. As
opposed to operational systems, data warehouse systems are designed to get strategic
information out of the database [2, 5]. A data warehouse system transforms and integrates
data from heterogeneous sources into a single repository database. “A data warehouse is
a subject oriented, integrated, time variant and nonvolatile collection of data in support of
management’s decision” [6].

Data Warehouse Architecture

A data warehouse system begins with source systems that capture the business
transactions. These source systems can be in heterogeneous environments and consist of
multiple operational systems. Data from these operational systems then transform,
consolidate and integrate into a staging environment, and from there the data is moved to
data marts periodically depending on the business requirements. Figure 1 shows the
basic components of a typical data warehouse system.

MICS 2008 437

Figure 1: Typical Architecture of the Data Warehouse System

Data Warehouse Design Life Cycle

The main purpose of designing the data warehouse is to provide a system that can be used
to perform data analysis. Careful planning is required in order to achieve this goal. The
following are different components of the design and implementation of a data warehouse
system:

 Business requirements, scope and content
 Data sources
 Data cleaning / filtering
 Design DW schema
 Data migration
 Staging database
 OLAP database
 Analysis

OLAP in Data Warehouse

OLTP systems are designed on relational models and support day-to-day business
processes. Standard Query Language (SQL) is the standard interface to perform such
activities in the systems based on relational model. SQL is a data manipulation (select,
update, insert, or delete data) and definition language (create table, alter table etc.). Basic
reports can be generated from OLTP systems using SQL. However, these reports do not

MICS 2008 438

provide multidimensional view of data to the users. Once these reports are generated,
users can not drill down to lower levels to find interesting results [2, 10].

Data warehouse systems, on the other hand, are designed to provide substantial analysis
of the data to the users. Data marts are stored in multidimensional structures to support
dimensional analysis. Meaningful analysis typically involves retrieval of large amount of
data, number of calculations and summarization of the data on the fly. Many queries
follow each other in order to get interesting results. SQL could be use to perform such
analysis, but in that case SQL statements will be very complex, and likely to involve
multiple joins, full table scans, grouping, complex calculations. Hence, performance of
the system will be badly effected [2, 10].

On-line Analytical Processing (OLAP) is the answer to provide multidimensional
analysis and to support ad-hoc queries with a fast execution time. E.F. Codd, in 1993,
defines OLAP as [1]: “On-Line Analytical Processing (OLAP) is a category of software
technology that enables analysts, managers and executives to gain insight into data
through fast, consistent, interactive access in a wide variety of possible views of
information that has been transformed from raw data to reflect the real dimensionality of
the enterprise as understood by the user.”

Data Model

This section describes the different type of data modeling techniques used to design data
marts. Data mart is a prevailing extension of the data warehouse and provides the data at
a very granular level. One of the main goals of data warehousing is to provide faster
query performance. To achieve this goal data warehousing must be designed very
carefully. There are two distinct types of data marts based on their design.

 Relational data marts
 Multidimensional data marts

Relational Data Marts

OLTP or operational systems are typically designed using Entity Relationship (E-R)
modeling with no data redundancy. Like OLTP, Relational data marts are designed based
on ER modeling. Relational data marts store detailed and summarized data in two
dimensional structures, supported by relational database technologies [8, 9].

Multidimensional Data Marts

Multidimensional modeling is a logical design technique that is used in data warehouse
systems. The purpose of dimensional modeling is to design business dimensions that
support data analysis and reporting requirements. Multidimensional modeling produces
de-normalized data structures that simplify the database complexity by reducing the

MICS 2008 439

number of tables. As the structure is de-normalized, the number of joined tables in
queries is much lower than in a relational model. It is highly optimized for queries and
provides for fast and easy data access to the users. Due to its flexible design,
multidimensional modeling can more easily accommodate new data elements and design
changes [2, 8, 9]. The main components are:

 Fact Table. A central table in a data warehouse or data mart presenting numeric data

in a context that describes a specific event within a business.
 Measures. A quantitative, numerical column in a fact table. Measures typically

represent the values that are analyzed.
 Dimension Table. A table in a data warehouse or data mart representing a business

entity.

Data Warehouse Schema Design

Star schema

Star schema is characterized as having one central fact table surrounded by many
dimension tables that contain de-normalized description of the facts. Fact tables contain
numeric measures and references to the dimension tables. The measure should generally
be additive and numeric because these values are the basis of a calculation. Reference to
the dimension tables are implemented by using foreign key columns [2, 7, 8].

Snowflake Schema

Snowflake schema is the normalized form of Star schema. It consists of a fact table and
multiple related dimensions table. In OLTP systems, normalization increases the
performance of the system by reducing the redundancy of the data. Transactions can
easily update, delete, and insert new data in normalized OLTP systems. On the other
hand, normalization degrades data warehouse performance because of the additional joins
in the queries [2, 7, 8].

Starflake Schema

Starflake schema is a hybrid structure that contains a combination of normalized and de-
normalized structures. It is a compromise between Snowflake and Star Schema. Figure 3
shows a starflake schema [2, 7, 8].

Microsoft Data Warehousing Strategy

The main objective of Microsoft data warehousing strategy is to simplify the procedure
of designing, implementing, and managing the data warehouse system. The components
comprising the strategy are [10]:

MICS 2008 440

 OLTP systems conduct core business processes by tracking real-time transactions.

[2, 10].
 Data Transformation Services is a workflow that is bundled into SQL Server.
o Transform data between data sources.
o Automate loading of OLAP cubes.
o Automate the imports, exports, and transformations of the databases.
o Define the import, export and transformation as packages that can be used
repeatedly

 Data Warehouse Storage
 Analysis services is bundled with SQL Server.
o Analysis Services can be used with any ODBC / OLE DB complaint relational

data sources e.g Microsoft Access, Oracle [10].
o Analysis Services accesses data from the relational database and provides data to

the reporting application. It functions as an intermediate layer that converts
relational warehouse data into a form that makes it fast and flexible for creating
analytical reports [10].

 Client Applications
o Excel 2000 is Microsoft’s own OLAP client. Within Excel 2000, PivotTables

have been enhanced to work smoothly with Analysis Server.
o Most major third-party OLAP client products that interface with other OLAP

tools also interface with Analysis Server.
o Custom front-end applications can also be created to access Analysis Server by

using OLE DB for OLAP [10].

Proposed Curriculum

The proposed curriculum is based on the study and overview of concepts of data
warehouse system, life cycle of DW design and Microsoft Analysis Services data
warehouse strategy. It aims to offer a data warehouse course to students, in which they
will learn not only the theoretical concepts of data warehousing and various components
of data warehouse system, but it will also give them hands on project dealing with
complete life cycle of designing and implementing data warehouse using Microsoft
Analysis Services, as a class project. Table 1 shows the proposed curriculum for a project
based DW course.

1. Teach the Main Concept of DW, Introduction to Microsoft Analysis Services and

concept of data warehouse development life cycle.
2. Identify the specifications and scope.
3. Study and understand given specifications
4. Analyze the participating operational databases
5. Identify related sub-schema of individual databases
6. Perform Data Cleaning / Filtering Tasks
7. Identify Global Schema
8. Identify the Entities required to solve the problem

MICS 2008 441

9. Design DW schema
10. Data Migration
11. Develop cubes by administrator
12. Analysis of implementation
13. If proposed design does not meet the specification go back to the step Design DW

schema (step 9)
14. If objectives still do not meet specifications then go back to the step Identify related

sub-schema of individual databases (step 4)
15. If the objectives still does not meet specifications then go back to the step Identify the

specification and scope step (step 2)
16. Develop appropriate reports and evaluations

Table1: Proposed Curriculum for a Project Based Data Warehousing Course

Implementation of Proposed Curriculum

To demonstrate the proposed curriculum, an order entry database is used to implement a
data warehouse project using Microsoft Analysis Services (OES_DW). Order Entry
System (OES) database used as the data source for this project. Figure 2 shows the data
model of OES databases. OES keeps track of information such as customers, orders,
branches, employees, and vendors. Figure 3 shows the flow chart of the methodology.

Figure 2: OES Data Model

MICS 2008 442

Figure 3: Flow Chart of Proposed Methodology

MICS 2008 443

Brief discussion of the steps involved in the proposed methodology

 Step 1: Teach the Main Concept of DW, Introduction to Microsoft Analysis Services.

Step 2 & 3: Identify and understand the specifications and scope. For the OES project,
specifications derived from OES database were:

 Analyze all the sales by products, customers, and employees that were made in
different geographical areas

 Following Queries were developed after examining the specification
o What products are selling?
o What products are not selling?
o In different states what is the trend Customers that means is there increase of

customers in that area or are we losing them
o What is the progress of Employees?
o How many sales Employees have made?

Step 4: Analyze the participating operational databases. All tables of OES databases were
stored in Oracle database. In order to eliminate distributed query processing, it was
decided to bring in all the data from Oracle into SQL Server.

Step 5: Identify related sub-schema of individual databases: It was decided to use the
whole OES schema in our DW design.

Step 6: Perform Data Cleaning / Filtering Tasks: Since there was no missing data in OES
and there was no other database therefore there was no need to clean the database. It was
also decided to bring all rows for each table and no filtering was needed.

Step 7: Identify Global Schema. As OES schema was from one database in Oracle so
there was no need of creating a global database.

Step 8: Identify the Entities required to solve the problem

 DIM_PRODUCT
 DIM_CUSTOMER
 DIM_EMPLOYEE
 FACT_ORDER_DETAIL (provides consolidated view of data from underlying

tables FACT_ORDER and FACT_ORDERLINE)

Step 9: Design DW schema. From the previously identified entities, the Star DW schema
was designed (Figure 4).

MICS 2008 444

Figure 4: OES Star Schema

Step 10: Data Migration to Staging environment is another very critical step of
implementing DW project. Staging Environment is used

 To secure Production system
 Avoid extra load and effect performance of Production systems
 To Keep Historical Data as opposed to Production that only keeps current state of the

data
Microsoft Data Transformation Services (DTS) is used to bring the data from OES
production database in Oracle to SQL Server and from there to OES_DW staging
database (Figure 5).

Figure5: Migration of data from OES Oracle database to OES_DW Staging database

MICS 2008 445

Step 11: Develop cubes by administrator. This step involves the OLAP administrator to
implement the DW and develop cubes. The cubes were built by the following steps

 Analyze the staging database and design of DW to verify all components are
available to create the Cubes. Possible problems can be:
o What is on Staging database that’s not in DW design
o What is in DW design that’s not in Staging database
o Or any other obvious error

 Implement the design by creating Cubes and Dimensions.

 Give Read Only Access to the Users

Step 12: Analysis of implementation. This is a very important step in Life Cycle of DW
design. This step involves initial evaluation and analysis of the report generated to find
out any issue or missing information in the DW.

Cube Browser feature of Analysis Services was used to generate report and browse the
data. Following Report (Figure 6) was generated that shows the Product sales by
Employees.

Figure 6: Report showing Product sales by Employees

MICS 2008 446

Step 13: If proposed design does not meet the specification go back to step 9 (Design DW
schema). In our implementation the initial analysis revealed that there is no information
about time that when these sales were made? So it brought the need to change the design
of DW and introduced the need for the time dimension. Process was repeated and the
DW Schema was re-designed.

Figure 7: Implemented DW design

Figure 7 shows the revised star schema model. Following report (Figure 8) was generated
based on new DW design using Cube browser feature of Analysis Services to do the
initial analysis.

Report from Figure 7 reveals that Microsoft brand were sold mostly in 2nd Quarter of
2003. It also revealed that Samsung Brand was mostly sold during 1st and 2nd Quarter of
2003. There was no sale for Sony products.

Step 14: If objectives still does not meet then go back to he step Identify related sub-
schema of individual databases (step 4)

MICS 2008 447

Figure 8: Report showing Product purchase by customers in 2003

Step 15: If the objectives still does not meet then go back to reviewing the Specification
(step 2)

MICS 2008 448

Step 16: Develop appropriate reports and evaluations. Once the initial analysis shows that
the specifications has been met. Final reports will be generated and evaluations will be
done. We used Microsoft Office Excel to generate reports. Figure 9 and 10 shows two
reports developed with Microsoft excel component of Microsoft Analysis Services.

Figure9: Report showing trends in different quarters of year

Figure 10: Visualization of trends in different quarters of year

MICS 2008 449

Conclusion

Based on the literature review a curriculum for a project based data warehousing course
using Microsoft Analysis Services was proposed. An implementation of proposed
methodology was also presented by developing OES_DW data warehouse system.
However, the implementation did not emphasize on heterogeneous database environment,
also no data cleaning / filtering was performed. Future work, a follow up study should
focus on heterogeneous environment and data cleaning / filtering tasks should be
performed based on the proposed methodology

References

[1] Stenmark, Dick, “Information vs. Knowledge: The Role of Intranets in Knowledge
Management” in Proceedings of the 35th Hawaii International Conference on System
Sciences, 2002.

[2] Ponniah, Paulraj, Data Warehousing Fundamentals. New York: Wiley, 2001.

[3] Workman, M. Expert decision support system use, disuse, and misuse: A study using
the theory of planned behavior. Computers in Human Behavior 21: 211-231. 2005.

[4] S. Chaudhuri and U. Dayal, “An Overview of Data Warehousing and OLAP
Technology,” SIGMOD Record, Vol. 26, No. 1, 1997, pp. 65-74.

[5] Kimball, R., The Data Warehouse Toolkit, New York: Wiley, 1996.

[6] W.H. Inmon and C. Kelley, Rdb/VMS: Developing the Data Warehouse, QED
Publishing Group, Boston, Massachussetts, 1993.

[7] Bogdan D. Czejdo, Johann Eder, Tadeusz Morzy, Robert Wrembel: Design of a Data
Warehouse over Object-Oriented and Dynamically Evolving Data Sources. DEXA
Workshop 2001: 128-132.

[8] Adamson, Christopher, and Michael Venerable, Data Warehouse Design Solutions,
New York: Wiley, 1998.

[9] Singh, Harry, Interactive Data Warehousing, Upper Saddle River, NJ: Prentice Hall,
1999.

[10] Microsoft Corporation. The Microsoft Data Warehousing Strategy. MSDN Library.
Retrieved July 21, 2006,

[11] E.F. Codd, "Providing OLAP (on-line analytical processing) to user-analysts: an IT
mandate". Technical report, E.F. Codd and Associates, 1993.

MICS 2008 450

An Experience in Teaching a Short Summer Robotics
Course for High School Students

Andy Lopez
Computer Science,

University of Minnesota, Morris
600 East 4th St, Morris, MN 56267

alopez@morris.umn.edu

 Elena Machkasova
 Computer Science

University of Minnesota, Morris
600 East 4th St, Morris, MN 56267

elenam@morris.umn.edu

Abstract

In this paper we describe our experience in teaching two sections of a robotics short
course to gifted high school students during summer 2007. We used Lego RCX 2.0 and
NXT robots and the Lego MINDSTORMS software, Inventions 2.0 for the RCX 2.0 and
the NXT 1.1 for the NXT robots. We chose to break the two sections by gender. The
students had very diverse backgrounds and levels of interest. Having two instructors
share the responsibilities for the class was very helpful. A collaborative group-based
approach to learning was used. Most of the students successfully completed their group
projects by the end of the second week.

MICS 2008 451

mailto:alopez@morris.umn.edu

Introduction

This class was designed and first offered in June 2007 during the 34th Annual Henjum
Creative Study Institute for high school students. This program is aimed at challenging
very capable 12 to 17 year old high school students in the arts, music and technology for
two weeks at the University of Minnesota, Morris. The institute was the creation of Dr
Arnold Henjum, a retired faculty member in secondary education at the University of
Minnesota, Morris.

This past summer the students had the option of taking up to three classes of
approximately 2 hours each for the two weeks. The students in our classes ranged in age
from 12 to 18 years old. The exact distribution appears in Figure 1. Because of a
conjecture [1] that female students may be intimidated by male students in technology
classes, we requested that separate sections be created for male and female students. The
male section of the class had twelve students and the female section had five students.

Age and Gender of students

0

0.5

1

1.5

2

2.5

3

3.5

12 13 14 15 16 17 18

Years Old

N
um

be
r o

f S
tu

de
nt

s

Female

Male

 Figure 1 Age and Gender of the Students in the Robotics class Summer 2007

As the chart illustrates, we had over twice as many males students as female students.
The age and background difference among the male students was very noticeable. The
majority of the younger male students were more interested in building different types of
robots than programming them.

MICS 2008 452

Another challenge for our classes was what type of robots to use. The college had a
couple of Lego RCX 2.0 that were used in a college class a couple of years earlier and a
newer Lego NXT robot that a faculty member had secured with faculty initiation funds.
Upon the advice of Elizabeth Jensen who had run a one week robotics camp for the
previous three years in Pennsylvania, we decided to adopt the Lego Invention 2.0
software running on RCX 2.0 robots. Another two RCX 2.0 robots were purchased.
Sensing that five robots may not be enough for a class of 12 students and due to the lack
of affordable RCX 2.0 robots in the market place, we caved in and also purchased one
additional Lego NXT robot.

Both the Lego Invention 2.0 software and the Lego Mindstorms NXT software provide
drag-and-drop graphical interfaces in which users build programs by placing blocks into a
work area, adjusting their parameters (if any) by drop-down menus, and connecting them
by drawing “wires” between the blocks. However, the interfaces have substantial
differences in the types of available building blocks and the way programs are built [2,3].
We discuss the major differences encountered where applicable.

Course Material and Structure

Introductory Steps

More than a half of students in the class were from Morris and knew each other from the
high school; the others were from out of town and got acquainted during the introductory
events of the Institute. Since students knew each other, we felt that the best way to divide
students into teams would be based on their preferences. To accomplish this and to get to
know students better, we gave students a questionnaire. In addition to questions about
students’ interests and robotics experiences, we gave them the following question about
their group partner preferences. The complete questionnaire is given in Appendix A.

 Most students chose the last option for the answer to the question about working in
groups and named 1-4 of others as their preferred group partners. It turned out that most
preferences were mutual. We easily divided the male section of 12 into 4 groups of 3
each and the 5-student female section into two groups, of 3 and 2 students respectively.

In this class students will be working in groups of 2 or 3. What are your preferences for
working with others? You may choose more than one of the options below. We will try to
follow your preferences, if possible.

• I can work with anyone
• I would prefer to work with someone who... (fill in your preferences, such as “is

close to me in age”, “is close to me in the level of experience with robotics”, etc.)
• I would prefer to work with a person (or people) I already know (please write

their names)
You may add other comments for your group preferences.

MICS 2008 453

The female class only used the NXT robots. Students mostly preferred to work with
someone close to their own age, except in one case when a 10th grade student was
“mentoring” two younger students. The team distribution by grades was:

Male section 7, 7, 7 8, 9, 9 6, 7, 10 8, 9, 9
Female section 8, 8, 9 10, 12

However, one of the male teams of grades 8, 9, and 9 split into two groups since the
eighth grader chose to work with his own NXT robot.

Lesson structure.

Given a long class period time and the young age of students, we faced a challenge of
keeping the students focused on the material. Therefore, for the first week, we divided
lessons into a short (about 20 minutes) “lecture” time followed by exercises based on the
lecture material. A lecture covered a particular topic, such as choices (if/else statements)
or use of robot sensors. The very first class also involved introductions (each instructor
and each student had to say a few words about themselves) and an interactive discussion
of robotics – what is it, where it is used, references to robots in books and movies, and
similar things. The goal was to get to know students better and also to make them
comfortable in the class. At the beginning of the class we also introduced rules for class
behavior which included care in working with equipment and robotics parts. For instance,
the rules required that students do not remove Lego pieces from their work-stations
unless actually using them in a robot and test robots only in specially marked areas of the
floor (and never on a table to avoid falls). We included instructions for downloading
programs into robots (RCX robots had to be covered with a box during the transmission
to avoid interference; NXT use USB ports) and for recharging batteries and saving
battery energy. We also listed general classroom rules, such as not leaving the room
without permission of an instructor. With a long class time and young audience, we found
that clearly defining the rules was to our great benefit: after the first couple of slips, most
students followed the rules without even thinking about them which made the class go
very smoothly.

The classroom setting included three rows of desks with a projector and a whiteboard in
the front that we used for lectures and demonstrations, a desk with extra robotic parts,
such as sensors and gears that student could borrow for their project, a work-station for
each group with an individual robot set and a computer, and a clear area of the floor
covered with cardboard in the back of the classroom which was used for robot testing. As
the class progressed, we also added wooden blocks and large heavy books to the testing
area which were used as obstacles or barriers for robots (these objects had to be heavy
enough so that a robot would not move them when it bumps into them). Sharing a
common area for robot testing led to more collaborative behavior as students watching
other groups often exchanged ideas and suggestions.

MICS 2008 454

Material covered.

In both groups we covered approximately the same areas and concepts:
• Basics of building robots: connecting moving parts to motors, connecting sensors

to ports, following instructions for robot building (especially with NXT) and
developing one’s own design (especially with RCX).

• Basic robot movements and turns; for NXT – controlling a robotic arm or a
“stinger” in the scorpion model.

• Basic robot output devices (sound).
• Use of sensors in robots and the ability to use the input from the sensors to

determine the robot’s behavior.
• Calibrating sensors based on environment measurements.
• Use of variables in programs.
• Using predefined functions.
• Use of conditionals in programs.
• Loops for repeating an action a given number of times and for continuing an

action until a certain condition is met; nesting of loops and conditionals.
• Using a random number generator to create “random” robot behavior.
• Defining functions (blocks in RCX software) to “package” repetitive or long parts

of a program.
• Multi-threading – covered partially for both RCX and NXT groups.

The lecture material was somewhat different for the two sections due to differences
between the RCX and NXT robot models: RCX has only basic sensors and no good way
of detecting sounds or measuring distances. However, it provides a very intuitive and
easy to use programming interface with a lot of helpful built-in functions, such as a
versatile random number generator, and Lego pieces are very easy to combine to build
new kinds of robots. NXT makes it easier to detect sounds and has built-in recordings of
music and phrases. It also allows one to program in terms of distances and turns, rather
than by the timing of motor movement. However, we found that building with NXT is
too rigid (it is very difficult to build a new robot not in the instructions, and even
following instructions is often challenging) and we found its programming interface to be
quite confusing, even for some tasks that we expected to be simple.

Initial Building and Programming Assignments

Given these discrepancies, we tailored our lectures and exercises (which we called
“challenges”) to each of the two groups separately. With the RCX we started by using
very basic sensors, such as light sensors and touch sensors, and used them as inputs for
loop or if/else blocks. For instance, one of the first challenges was to have the students
make a robot turn around when a certain condition has occurred. For the RCX group, the
condition was to touch a wall (or an obstacle) with a touch sensor. The NXT group did a
similar challenge, but the robot was supposed to turn around when it hears a sound, such
as clapping. On the programming side, we spent more time with the RCX group on

MICS 2008 455

programming robot turning. With the NXT robots, loops and using the random number
generator turned out to be very challenging. The problem with loops was that the
condition was only checked at the end of the loop, so if the loop was supposed to
continue until a clapping sound is heard, the robot could miss the sound if it happened
when the program was in the middle of the loop’s execution. The random number
generator in NXT needs to be connected via the right kind of an input in a program block
which was quite difficult to figure out. There are different kinds of inputs, such as an
integer or a Boolean, which presumably correspond to the respective types in the
underlying programming language. While the type system would make sense for college-
level students who have experience with a higher-level language, it is very difficult to
understand for high-school students and seems out of place in a drag-and-drop interface.

We designed challenges in such a way that they would motivate students to focus on
programming rather than just on building robots. Some of the more advanced challenges
included: detecting and following a black line, finding an object within a given area using
random moves, going around obstacles, and finding an exit in a maze. Not all groups
were able to accomplish all of the tasks, but all groups tried and worked on their
necessary robot-building and programming skills and achieved different levels of
success. For instance, all groups in the male section were able to write a program for
following a line in simple cases (slightly curving line), but less than a half of the groups
were able to extend the program to follow sharper line turns and to try to find the line
once it was lost. Due to issues with NXT construction and programming and less
motivation in the female groups, they accomplished less than the male ones in terms of
challenges. However, they achieved more success on robots following sound signals and
detecting and following an object – tasks that are easier to accomplish with NXT robots.

Working on final projects

Early in the class we announced that during the second week of classes each group will
work on a project of their own design. All projects were to be demonstrated to parents
and guests during an open hour on the last day of the Institute, and the best projects were
to be shown on stage during the final all-Institute presentation. This motivated at least
some of the students to pay closer attention to the lecture material and examples since
they were trying to estimate which of those would be useful for their projects. In fact,
students included extended versions of some of the given challenges as a part of their
final projects (for instance, finding an exit in a maze).

As the classes progressed and students started focusing more on the projects, the lectures
where no longer needed since students became motivated by a variety of individual
project-related goals. At that point the role of instructors became more consultative,
although we also occasionally needed to keep students from being distracted by things
unrelated to the class. We were also trying to challenge the students to include more
features into their projects.

MICS 2008 456

Final Projects and Observations

The level of difficulty of final projects varied greatly between groups. For instance, we
observed that younger students and female students tend to focus more on sounds and
appearance, whereas the middle (8-9th grade) and older (grades 10-12th) males picked
more challenging programming or engineering tasks. Since the final projects demonstrate
students’ level of accomplishments and their interests, we discuss them in detail:

• An RCX robot looking for an exit in a maze. This was the most advanced project
from the standpoint of programming. We were very impressed by extensive use of
user-defined functions in the program. The students used infrared sensors to
measure distances to walls. Unfortunately, despite hours of adjustment attempts,
the sensors did not have enough precision to be able to detect which of the two
walls (the left or the right) was closer. Therefore the robot relied on precision of
turns and moved in a straight line until finding the next wall. Since turns could not
be perfectly calculated, the robot would accumulate small mistakes after the first
2-3 turns, and occasionally would hit a wall with its side and get stuck. Despite
these mechanical problems, the students did an excellent programming job. Their
robot was able to navigate simple mazes successfully more than a half of the time.
This work (by two male 9 graders) was exactly the kind of project we were
hoping for. For those teaching robotics classes with RCX robots, we recommend
investing in a set of high-quality sensors, if you can find them.

• An RCX robot climbing stairs. This group (boys of grades 8, 9, 9) focused on the
engineering side of the project. Calibrating the robot’s speed when it is climbing
stairs turned out to be a challenging programming task. The students modified
their design of the robot several times. In particular, after many attempts, the
group abandoned the idea of the robot pushing itself up by a long Lego piece at its
front and settled for a simpler design. The group overcame many challenges,
both in engineering and in group communications, and came up with a very
successful project.

• Another advanced project was an NXT robot built by a male 8-grader who used
his own NXT kit. He used the scorpion version of the robot and wrote a program
that made a robot go around in a walled area that had upside-down plastic cups
placed in random positions. The robot was making random moves looking for
cups, moving toward one when it was detected, hitting it with its “stinger” and
then turning away from it to look for more cups. The program exploited NXT
strengths, such as detecting objects. However, programming the robot to make
random moves was a substantial challenge. Adjustments also needed to be made
with respect to the force with which the robot hits the cups (so that it doesn’t
actually break them) and to prevent the robot from getting stuck in corners.
Overall, it was a very challenging project from the programming standpoint and a
very successful one.

• Another male group came up with a project that was not very challenging in a
programming sense but showed their creativity. They came up with a pair of
robots: a simple random movement robot used for massaging a person’s back and
a human-looking robot in a hat that was greeting people and waiving its “hand”.
The group was making slower progress than the more advanced groups in the

MICS 2008 457

challenges and put a lot of effort into trying to keep up. They put their project
together in the last couple of days so we feel that they had a good learning
experience in the class and also got a chance to show their creativity.

• The group of male students in 7th grade encountered several challenges, mostly
stemming from the fact that they were not able to adjust their designs based on
testing feedback. For instance, their robot was not sturdy enough, and despite
multiple tests in which it broke and numerous suggestions from instructors and
fellow students to use more robust design, they kept using the problematic one.
They programmed the robot to play music which involved a lot of repetitive
programming, and did not follow the advice to use functions. The group also had
a lot of communication problems, with two group members not very well
motivated. The final project for that group was a music-playing robot which
worked well but was not very sophisticated. It is possible that our lesson style
worked better for older students and we needed to come up with somewhat
different approaches for younger ones. Additionally it may be a good idea to have
a tryout time for group work (for instance, the first two days) and if the group
dynamics seem to be problematic, students may be switched at that point.

• Students in the afternoon (female) section, unfortunately, were not as invested in
the projects as those in the male student section. While a part of the reason was
the use of more complex NXT robots, another problem was lack of motivation.
Building some of the NXT models or even following instructions precisely, is not
an easy task. The students were interested in building a human-like figure (one of
the possible robot configurations). Unfortunately, the instructions are so unclear
that even with substantial participation of both instructors during a two-hour
building session the resulting robot failed to walk properly. As a result, the
students built a simpler moving robot that reacted to loud sounds by turning. This
was not a very challenging project, but, given the circumstances, we were glad to
see a finished project. It was entertaining, however, and the audience at the
showcase performance liked it.

Overall, the projects let students use more a goal-oriented personalized learning approach
which worked for most groups. Students developed problem-solving skills, learned to
adjust their work based on real-life tests, worked on their communication skills in groups
and in seeking help from instructors, and got a chance to approach the projects creatively.
We found that in the all-male section, we successfully developed a collaborative
environment that included all students and both instructors. For instance, in every project
there were times when someone not in the group, often another student, worked with the
group members on a tricky hardware problem or on a programming challenge. We also
felt that the ability to be creative and artistic was important for many students and
contributed quite a bit to the success of the class. Unfortunately, these strategies brought
little success in the all-female section. The reasons for it, as we pointed out above, were
not the gender of the students, but the smaller size of the group, the initial lack of
enthusiasm for the subject of the class (only one female student chose this class because
of her interest in robotics), and the learning curve for building NXT robots that turned out
to be steeper than for the RCX model.

MICS 2008 458

Conclusions

The students seemed to have enjoyed the classes. The evaluations contained statements
like ‘I liked the part where we got to try to overcome challenges by not only changing the
program but the robot as well’, ‘The robots were pretty nifty’ and ‘Robots was my
favorite’ (of three classes that each student took). The students also seemed to be satisfied
with the instructors (the authors of this paper) when they said ‘They were very good and
know what they are talking about’ and ‘Even though they know a lot more than us, they
speak a language we can understand’. When asked whether the instructors were able to
answer their questions, one student stated ‘Yes, except when I had a question that not
even the NXT forum could answer, but we found a different way around it’.

One important question to ask is, ‘what did the students learn?’. In terms of learning the
material, all students were able to build and program basic robots. All of the students
demonstrated working knowledge of the programming concepts, such as simple
programming blocks, conditionals and loops. At least half of the students successfully
used more sophisticated sensors and more complex programming concepts, such as
variables (not necessarily required in a drag-and-drop interface, and thus considered a
more advanced concept) and functions.

The purpose of the class, however, was not just to teach robot-building and programming
skills. Our more general goal was to teach approaches needed for successful work with
modern technologies. The authors would argue that the students learned that constructing
and programming robots takes creativity, patience and endurance. At times it was hard to
convince the students that there was more than one way to accomplish a task. Toward the
end of the two week period, we found the students more willing to go to the board and
discuss their solutions prior to coding them. Some of the solutions implemented by the
students were very creative, like having the robot play sounds that simulated a particular
musical piece or trying to get a robot to ‘dance’ to a particular tune or having the robot
listen for sounds and change course on the basis of the sound received.

We also feel that in the larger, more motivated male class, we successfully created a
collaborative learning environment where solutions to problems that a group would run
into were found by productive discussion both within the group and with other students
and instructors. This taught students important skills in dealing with others in a goal-
oriented environment. Unfortunately, the collaborative approach was less successful in a
smaller and less motivated female class, although there were many productive
discussions in that class as well, mostly within groups or between individual students and
instructors.

Another important question would be: did the gender split work? This is a difficult
question to answer. The female class accomplished considerably less than the male class.
On the other hand there were substantial differences between the two classes, the female
class had a higher incident of student absences, a higher proportion of ‘home schooled’
children and appeared to have less experience with devices like robots. Overall, the
authors feel that the female class was a success because they were presented with the task

MICS 2008 459

of building and programming their own robots and had to respond to the challenges
themselves which may not have happened in a coed class.

The instructors did face a couple of other challenges. First there was a very significant
age and experience difference among the members of the male class. The younger
students had more difficulty building and programming their robots and remaining
focused on their work. The differences in age and experience also required that the
instructors create multiple assignments that were suitable to the age and ability of each
subgroup of students.

Another challenge was the difference in hardware and software. Because we were using
two substantially different types of hardware and software, it was hard to provide
instruction and assignments that would apply equally to all students. On the other hand,
having different hardware and software allowed us to demonstrate a principle easier on
one of the platforms than the other.

In conclusion, the students learned a reasonable number of principles about robotics and
the dynamics of working with technology. The instructors learned how challenging it is
to create suitable activities for students of different ages and academic backgrounds, and
how satisfying it is to watch students create their own inventions.

References

1) Gender, Perceptions and Reality:Technological Literacy Among First-year
Students, Madigan, E; Goodfellow,M.; Stone, J.; ACM SIGCSE Bulletin, Vol 39,
No 1, March 2007

2) How Lego MINDSTORMS NXT Works,
http://www.ni.com/academic/mindstorms/works.htm

3) Introduction to Lego MINDSTORMS Robotics Invention System 2.0,
http://badlink.com/lego_mindstorms/index.htm

Appendix A

Questionnaire administered the first day of class

What is your name?
How do you prefer to be called (if different from your name in the class list)?
What is your home town and the high school?
What grade will you be in next school year?
What are your favorite subjects in school?
What activities do you participate in besides school?

MICS 2008 460

http://badlink.com/lego_mindstorms/index.htm
http://www.ni.com/academic/mindstorms/works.htm

We don't expect you to be familiar with robotics, but if you have any experience, it would
be helpful for us to know. Have you done any robotics before? If yes, what system(s) did
you use and for how long?
In this class students will be working in groups of 2 or 3. What are your preferences for
working with others? You may choose more than one of the options below. We will try to
follow your preferences, if possible.

• I can work with anyone
• I would prefer to work with someone who... (fill in your preferences, such as “is

close to me in age”, “is close to me in the level of experience with robotics”, etc.)
• I would prefer to work with a person (or people) I already know (please write their

names)
You may add other comments for your group preferences.

MICS 2008 461

 1

Lightweight Software Cost Estimation Model

Izzat Alsmadi
Department of computer science
North Dakota state university

1353 N University Dr
Fargo, ND 58102

izzat.alsmadi@ndsu.edu

Abstract

There are several software cost estimation models available in the software research and
industry fields. One of the problems that prevent many companies from using such
models for cost, size or effort estimation is the amount of required inputs for those
models. In additions, the nature of the required inputs is complex to quantize in numbers
or even scales.

The calculated cost is highly depending on those inputs and in many cases such inputs
require judgments and not calculations which may put the whole results in jeopardy or
questioning.

This paper suggests a lightweight cost estimation model that is intended to be practical
and feasible through selecting some parameters or metrics that can be, relatively, easily
gathered and that is not human or expert dependent.

Keywords

Prediction model, software cost estimation, reverse engineering, software metrics, and
analogy.

1. Background

How can we estimate the amount of resources required to build a software project or a
specific release? Do we measure effort depending on previous projects or requirements
only? How can we normalize requirements into categories that may require the same
amount of resources!?

Using analogy and prediction models, we can compare projects in terms of project
resources, complexity, and size. Many data mining problems can be transformed to

MICS 2008 462

 2

prediction models. For example, credit scoring tries to assess the credit risk of a new
customer. This can be transformed to a classification problem by creating two classes,
good and bad customers (i.e. classify customers to decide whether they should be given
credit or not). A classification model can be generated from existing customer data and
their credit behavior. Large amount of information is used as input to the model. This
classification model can then be used to assign a new potential customer to one of the two
classes [2]. Similar to data mining goals, we use the information gathered of several
earlier actual data to come up with a single decision whether to allow or reject this person
credit application. The predictive validity is the capability of the model to predict the
future component behavior from present and past behavior [11].

2. Related work

There are several papers, research projects and tools in the field of software predictive
models. Those are trying to predict some characteristics of future software projects such
as quality, complexity, fault prone modules, or cost estimation.

There are a lot of software cost estimation models (such as COCOMO and COCOTS)
that are often used to estimate the cost or effort for a software project. The project
managers gather information as input to such models. They may have challenges in trying
to define some of the required criteria such as total lines of code, function points, .etc.
In COCOMO, Source Lines Of Codes (SLOC) metric is calculated from historical data,
or expert opinions. [13].

Gathering information from earlier projects, using software metrics, can be used as an
input for those cost estimation models.
Boehm classified several ways to estimate the effort of a software project [12]:

• Algorithmic Models use one or more algorithm to calculate the effort to develop the
software product with major cost drivers as variables. COCOMO is an example of this.

• Expert Judgment is when you ask one or more expert and they give a qualified
"guesstimation" of the effort needed. The Delphi Technique is an example of this type of
estimating method.

• Analogy can be used if you have plenty of data collected from earlier projects. The
idea is to relate the actual cost of a completed project, to an estimate of the cost of a
similar new project.

• Parkinson's principle is about estimating the effort to fill available resources.

• Price to Win is used when you estimate to the prize you believe will win the contract
or to the deadline you believe is needed to be first on the market.

• Top-Down is when you estimate the effort of the entire system and then split it up
between the different modules or components.

• Bottom-Up is then you estimate the effort of every module or component
individually and then sum it up for the total effort.

In analogy, the estimation is based on actual project data. The estimator's past experience
and knowledge can be used which is not easy to be quantified. We need to identify the

MICS 2008 463

 3

differences between the completed and the proposed project. However, we have to
determine how best to describe projects. The choice of variables must be restricted to
information that is available at the point that the prediction required. We also have to
determine the similarity and how much certainty can we place in the analogies.
There are several papers presented in using metrics for software classification models.
Jiang Yue et al explain software classification models as a way to detect fault prone
models in a future software project [6]. They built defect prediction models using
requirement metrics from unstructured data.

Taghi et al combined several software quality classification models. Those are predicting
modules characteristics (such as fault prone or not) [7]. This is one area of software
classification models. In general, classification models should be able to provide some
other helpful information for management such as specifying the amount of resources
required to build such module.

Other papers discuss software classification models in their structure, hierarchy and
function characteristics [8].
Basili et al study measuring the development time or the human effort required for high
performance computers [10]. The study introduced a “time to solution” metric in trying to
calculate the time required for developers to find the proper solution for a particular
problem as well as the amount of computer time required to execute that solution.
Measuring the second part can be straightforward given that the first part is provided in a
suitable way. Since the human factor is an important one in software projects, developing
an accurate prediction model will always be challenged by how accurately we measure
the human efforts and abilities. Dekhtyar et al study the effects of software predictive
models in predicting human decisions toward certain software artifacts [11].
Function Point (FP) is another method or metric for cost estimation. The functionality of
the software is divided into smaller manageable units (i.e. functions). The complexity of
those FPs is estimated and then summed up representing general system and project
characteristics.

3. Goals and approaches

In order to make our suggested lightweight cost estimation model usable in situations
where the available time is not enough to proceed on a rigorous cost estimation process,
expert input parameters should not be more than 5 inputs. The mission is not a critical
system and we want a model to be a tool and not a goal by itself. This will make it more
practical and make the estimation less subjective or largely dependent on human
judgments. Depending purely on software metrics is not a proper complete track. On the
other hand, having many parameters to be evaluated by the users makes the estimation
process easily manipulated.

Both metrics and expert judgments are going to be used as inputs to the model. The
inputs to the model are: the requirements and code metrics from earlier projects (such as
size and effort), requirement metrics from the current project and up to 5 experience

MICS 2008 464

 4

decisions in the current decisions (optional having similar decisions on earlier projects).
The outputs of the model are the size and efforts of the current project.
In estimation by analogy, it is important to calculate the level of similarities between the
current project and those in comparison. We have to compromise between being accurate
in calculating similarities and not to spend too much time in drawing the similarities. The
goal is to be able to make a good judgment of how similar the current project with those
earlier ones. Tables and figures may not be very helpful for managers to make decisions.
Prediction or classification models use extensive information at the bottom of the
pyramid to be able to make micro decisions at the top levels. The judgment of the level of
similarities can be largely depending on business or software experts.

Let’s take the equation: Level of similarity = 100 [(requirement A/requirement B) + 4*
experience judgment factor]/5, where A and B represent the current and previous projects
respectively. The expert judgment factor is a value between 0 and 1 to indicate the
difference between the current project and the earlier one(s).

Requirement metrics, such as function points, can be used to compare the similarity
between projects. We should have this information available for the current project as
well as those previous ones. If we know the time required to build software and have the
list of tasks, features or modules implemented in the project, we can have an approximate
picture of the development speed (given that the project is going to be developed in the
same company or environment). As explained earlier, cost estimation is not meant to be
accurate (although it should be close enough).

Usually the time given for cost estimation is not long enough to process rigorous cost
estimation techniques. Usually in project lifecycle, the further we go into the project, the
closer our cost estimation becomes to its actual amount. We don’t have to spend long
time on something that will eventually be known, adding to that is the amount of the
unknowns or the things that will eventually be changed; shrink or enlarge project cost.

Besides the need for expert judgment in the level of similarity between the current project
and earlier ones, experts or managers needs to decide the level of knowledge developers
team has, the project level of complexity and the environment. In COCOMO II model,
there are 17 cost drivers divided into 4 categories: product, computer, personnel, and
project. This research goal is to summarize each category drivers into one judged by
experts. The original 17 drivers or the new 5 suggested ones are expected to help
managers in cost, effort or defect estimation. For example, the 5 cost drivers in the
product category are: Required Software Reliability, Database Size, Software Product
Complexity, Required Reusability and Documentation match to life-cycle needs.

All of those values are going to be “subjectively” evaluated. This is not much different
from having one factor that can be called product complexity (or productivity) evaluated
by experts. The goal is not to spend long time trying to evaluate values that will be for
most cases individually dependent. Same thing applies to combining all computer
categories parameters (i.e. Execution Time Constraint, Main Storage Constraint, and
Platform Volatility) into one parameter that can be called computer complexity.

MICS 2008 465

 5

Function points metric represents the list of functionalities in a software project. It is
expected that this metric is available for both current and previous projects. The level of
similarity can be assist through comparing function points.

Uncertainty and Cost estimation

There are many factors in software projects such as scope, available tools, environment,
product complexity, and/or productivity that can not be completely specified or known
during the planning stage. It is also difficult to specify the amount of uncertainty in any
of those areas. Typically in cost estimation, it is more realistic to specify a range for cost
estimation parameters and not a value. Eventually the cost will converge to a value,
hopefully, within the pre-specified range. For example, we can say that the expected cost
of a certain software project is in the range of $300,000 to $500,000, the expected time is
between 9 to 12 months. What is the best and most realistic range? We will be 100 %
accurate if we set a very wide range (i.e cost from $500 to $500,000,000, or time
between 3 to 60 months). We will then loose the point of why we estimate (by having
such a wide range).

4. Conclusion and future work

This paper introduces a new approach for software cost estimation that can be practically
used in the software industry. In most scenarios, companies do not have enough resources
and knowledge to pursue some of the known rigorous cost estimation approaches. Future
work will include using some available datasets to evaluate using the suggested
lightweight cost estimation track. The information required to process cost estimation
should not be complicated and largely subjective. The main goal of cost estimation is to
provide a lightweight helpful asset to software projects managers.

Cost estimation is expected to be approximate, not exact or accurate. It is also expected to
be a mean or a tool for project managers and not a goal by itself.

References

[1] Coates, Anthony and Miley Watts. A context model and methodology proposal for
UCM. < http://www.unstandards.org>. Sep. 2007.
[2] Chapman, Pete, Julian Clinton, Randy Kerber, Thomas Khabaza, Thomas Reinartz,
Colin Shearer, and Rudiger Wirth. CRISP-DM-1.0. Step-by-step- data mining guide.
SPSS Inc. <http://www.crisp-dm.org/CRISPWP-0800.pdf>. 2000.
[3] Shepperd, Martin and C. Schofield, “Estimating Software Project Effort Using
Analogies”, IEEE Transactions on Software Engineering. 1997.

MICS 2008 466

 6

[4] Shepperd, Martin and Magne Jørgensen. A systematic review of software
development cost estimation studies. IEEE transactions. VOL 33. No.1 2007.
[5] Muller, Hausi, Jens Jahnke, Dennis Smith, Margaret-Anne Storey, Scott R. Tilley,
and Kenny Wong. Reverse Engineering: A Roadmap. <
http://www.cs.ucl.ac.uk/staff/A.Finkelstein/fose/finalmuller.pdf>.
[6] Jiang, Yue, Bujan Cukic, and Tim Menzies. Fault Prediction using Early Lifecycle
Data. ISSRE 2007.
[7] Taghi M. Khoshgoftaar, Erik Geleyn, Laurent Nguyen, and Lofton Bullard. Cost-
Sensitive Boosting In Software Quality Modeling. Proceedings of the 7th IEEE
International Symposium on High Assurance Systems Engineering (HASE’02). 2002.
[8] Wuyts, Roel and St´ephane Ducasse. Unanticipated Integration of Development Tools
using the Classification Model. ESUG Smalltalk Conference. < http://esug2003.esug.org/
academic/5-wuyts.pdf>. 2003.
[9] Lanubile, Filippo, and Giuseppe Visaggio. Evaluating Empirical Models for the
Detection of High-Risk Components: Some Lessons Learned.
http://www.di.uniba.it/~lanubile/papers/sew95.pdf. Proc. of the Twentieth Annual
Software Engineering Workshop. 1995.
[10] V. Basili, S. Asgari, J. Carver, L. Hochstein, J. Hollingsworth, F. Shull, and M.
Zelkowitz, “A Pilot Study to Evaluate Development Effort for High Performance
Computing,” University of Maryland, CS-TR-4588, April 2004.
[11] Dekhtyar, Alex, Jane Huffman Hayes, and Jody Larsen. Make the Most of Your
Time: How Should the Analyst Work with Automated Traceability Tools? PROMISE
2007. <http://promisedata.org/pdf/mpls2007DekhtyarHayesLarsen.pdf. 2007>.
[12] Boehm, Barry. Software Engineering Economics, Prentice Hall, 1981.
[13] Boehm Barry, Chris Abts, A. Winsor Brown, Sunita Chulani, Bradford Clark, Ellis
Horowitz, Ray Madachy, Donald Reifer, and Bert Steece. Software cost estimation with
COCOMO II. 2000. Prentice hall.

MICS 2008 467

ISOMER – Augmenting Software Testing
Confidence by Automated Comparison with a

Lightweight Model

Darren Kulp and Daniel Ernst
Department of Computer Science

University of Wisconsin – Eau Claire
Eau Claire, WI 54702

{kulpdm,ernstdj}@uwec.edu

Abstract

Non-algorithmic constraints on software development can hinder testing efforts by creating
pitfalls for the programmer or by hiding data-dependent errors in complex codes. The ISO-
MER framework improves testing efficacy and confidence by further automating software
component and program testing. Using a familiar expression syntax to define constraints
on the random stimulus generated, ISOMER subjects software interfaces to dynamically-
generated test cases, adding value over time.

MICS 2008 468

1 Introduction

The development of any complex piece of software inevitably uncovers numerous faults.
Unfortunately, not all bugs are caught in the time (if any) set aside for debugging; every
bug that escapes to production reduces the value of the finished product and increases total
costs. Bugs caught early are easier to repair than bugs caught late. Some types of bugs,
particularly data-dependent bugs, resist detection, surfacing only in relatively rare cases
which may never occur during normal testing.

Our system “ISOMER” helps find data-dependent errors in software programs or compo-
nents by subjecting their input interfaces to random inputs constrained to thoroughly ex-
ercise their input space, and by comparing their output with that generated by lightweight
models. Because the input is generated randomly but constrained to valid and “interesting”
areas by programmer-supplied rules, the testing framework that results adds value over
time; unlike normal “directed” unit tests, which test fixed input and output combinations,
our testing system continually produces new tests and improves confidence in correctness
and robustness.

In section 2, we will overview previous work and background information that bears on our
design and implementation. Section 3 will describe the novel aspects of our design; section
4 will discuss implementation details thereof. Section 5 evaluates the goals of the system
in spheres of functionality and performance, and section 6 concludes this document.

2 Background

2.1 Problem

In some development environments, there can be a significant expenditure of time by the
programmer on issues stemming not from the problem to be solved but from constraints
imposed by the environment. Heap management, for example, can be tedious and error-
prone, but is an integral part of practically every production C / C++ program. Typical test
cases may not account for unexpected behavior stemming from such errors, and even if a
developer is aware of the possibility of such faults, it is difficult or impossible to design
a static test or suite that will detect them. Of course, problems caused by heap manage-
ment are only a possible manifestation of the more general phenomenon: data-dependent
failures.

MICS 2008 469

2.2 Use of random stimulus

Random stimulus as a basis for testing has precedent in both hardware design and software
development; we mention hardware design specifically because it was the original inspira-
tion for this project [2] and because its use in hardware is more mature and widespread.

2.2.1 In hardware design verification

ISOMER’s premise of constrained-random inputs and lightweight models is not novel; it
exists today in the domain of hardware design verification [2]. A lightweight model of the
device or design under test (“DUT”) is constructed, to which random inputs, constrained by
declarative code to valid and/or “interesting” areas, are fed. The same stimuli are supplied
to the real design, and the outputs are compared. Assuming the model perfectly imple-
ments the design’s designed behavior and that the comparison code is perfect, a mismatch
indicates an error in the DUT. The efficacy of the concept lies in the word “lightweight”:
the model is necessarily easier to construct than the DUT.

2.2.2 In software testing

This system is well suited to hardware testing, partly due to the stable, synchronous in-
terfaces of hardware components, and partly due to the great amount of simplification that
can be achieved by a model over the real implementation. In hardware design, a significant,
sometimes enormous amount of effort is expended not on algorithmic complexity, but on
time or space optimizations, since hardware’s realization in silicon constrains it in ways
unknown to software.

These techniques have not been as commonly applied to software, but solutions do exist
under the name of “automatic specification-based testing” [3] [6]. See section 2.3 for more
specific information on software precedents.

External constraints in hardware or software design can create their own problems, some-
times the most insidious and difficult to diagnose. In hardware design, external constraints
include timing problems and physical implementation size; in software design, they include
implementation language and library requirements. For example, when using C or C++,
where it is necessary for the programmer to manage memory allocation and where failure to
do so properly can result in hard program failure, it can be difficult to debug data-dependent
errors, and it is especially vital to ensure that such bugs do not remain hidden, since error
recovery at run-time is often poorly supported – segmentation faults are not user-friendly.

In such situations, a lightweight model implemented in a rapid-development language such
as Perl or Python can be developed in parallel with its heavyweight equivalent to test
correctness. This lightweight model might even act as a prototype, implemented before

MICS 2008 470

the heavyweight version; in cases where this prototype stage already exists, adding the
constrained-random-stimulus system represents a significant gain – greatly improved con-
fidence in program correctness – at low cost – small amounts of glue code to harness the
test system to the implementations.

2.3 Existing tools in the domain

As mentioned previously, tools attacking the problem addressed by ISOMER exist, but
generally suffer from fundamental limitations including

• dependence on a particular language or platform

• restriction to synchronous function interfaces

The original inspiration for the ISOMER project was the Synopsys Verification Method-
ology Manual for SystemVerilog [2], which defines a technology and a methodology for
subjecting hardware designs in hardware description languages like Verilog to interesting
randomized inputs. In this system, the “model” we refer to is called a “scoreboard”, and
includes the logic used to compare actual outputs with expected ones; in our design, these
functions are separated.

In the software universe, this technique, automatic specification-based testing, is most
precedented in functional environments. The code on which ISOMER is based, LectroTest
[6], is itself written in Perl, which is not a specifically functional language, but it is based on
and borrows heavily from an implementation called QuickCheck [3], whose website links
to implementations in Erlang, Scheme, Common Lisp, Python, and ML, all but one of
which are functional languages. ISOMER therefore explores relatively uncharted territory
in applying these techniques to alternate programming models.

3 Novel design

3.1 Goal

Our project facilitates the detection of data-dependent errors by, among other things,

1. more thoroughly exploring the problem input space than otherwise feasible

2. collecting counterexamples / problematic inputs for regression tests

3. providing an extensible framework on which to build additional tools

MICS 2008 471

3.1.1 Input space exploration

The fundamental advantage of constrained-random-stimulus (CRS) testing is that the tests
it creates are both dynamic and intelligently guided to interesting areas. It is here that it
differs from existing testing tools and methods including unit testing (“xUnit” for various
values of x) and fuzzing tools (for example, fuzz and zzuf [5]). CRS is more dynamic than
xUnit, and more intelligent than fuzzers. ISOMER, while having important similarities to
these tools, does not replace them.

The fundamental difference between ISOMER and a unit-testing system is the presence
in ISOMER of a lightweight model and associated input-generating code. Typical unit
tests are “directed,” meaning they check for specific, pre-recorded responses generated in
response to specific, pre-recorded inputs. ISOMER’s use of a model and uniform, entropic
inputs subject to programmer-specified rules potentially greatly increases confidence in
program correctness because of the relative dynamicity of the tests produced by ISOMER.

ISOMER also differs from “fuzzing” programs, which attempt to produce program crashes
by subjecting the program to random input. Fuzzing, however, does not generally produce
valid stimuli and does not make use of a reference model, so it can increase confidence
only in program robustness in the face of erratic input and not in program correctness. An
implementation of our method with no specified constraints (or with constraints that do not
represent the valid program input space) is functionally equivalent to a fuzzing program,
but such a use does not involve behavior modeling and is therefore unrelated to the project
goal. In addition, ISOMER, unlike fuzzers, is not limited to interacting with user-level
interfaces (stdin/stdout, for example), but can access APIs directly as well.

3.1.2 Counterexample generation

The output produced by ISOMER is of various types; it can replay the exact inputs needed
to produce a particular failure, it can be adapted to turn such a replay into a static, “directed”
(possibly xUnit-style) test, or it can simply collect the random seeds that deterministically
led it to a set of failures, which can be regenerated later. The ability of the system to
“replay” a failure scenario (to generate a “counterexample” to a property assumed about
program behavior) is very useful both for integration with existing test systems and for
regression testing.

3.1.3 Lightweight modeling

It is worth discussing the meaning of “lightweight” in the context of software development.
In hardware design (the original inspiration for this technique), external constraints such as
timing and space requirements and concerns about simulating physical characteristics of a
design add greatly to the design burden. These non-algorithmic concerns are stripped away

MICS 2008 472

in a lightweight hardware model, resulting in an algorithmically-equivalent but significantly
simpler-to-develop design. In software, similar external constraints (e.g., implementation
language, frameworks, human-interaction interfaces) exist, but they are often less sepa-
rable and less obvious than their hardware counterparts. It is well-recognized that some
languages and development environments are well-suited to Rapid Application Develop-
ment (RAD), and it is still true that a large portion of commercial software is not developed
with these tools, due in many cases to their immaturity or other stigma. In ISOMER’s con-
text, “lightweight” can mean “developed using a RAD tool or methodology instead of one
imposed by production constraints.” The efficacy of our system depends on the rapidity of
development and ease of maintaining the model; a C++ model for a C++ product, for ex-
ample, is very unlikely to represent an overall gain, unless there are significant algorithmic
optimizations that can be avoided in model development.

3.2 Limitations

3.2.1 Conceptual limitations

Despite the advantages to automatic specification-based testing (constrained-random verifi-
cation), there are important limitations. Perhaps most obvious is the fact that a model must
be written; although in some cases the model can be harvested from a prototype created
before the production version, more often it must be written from scratch. If the advan-
tages of ISOMER are not clear, a developer or team might be convinced with difficulty to
add this to an already-compressed workload. We believe that the long-run advantages of
ISOMER far outweigh the initial investment time, but this is a decision that must be made
per project.

It is important to note that the constrained-randomly-generated-stimulus approach is not
universally applicable; some problem domains do not lend themselves to “lightweight”
modeling. For example, constraining random stimuli into a valid MPEG stream may not
be reasonably implemented in a lightweight fashion. However, there remains a large class
of algorithmic problems to which this approach could be usefully applied.

3.2.2 Technical limitations

ISOMER aims to be a more general solution to the problem presented than the exist-
ing tools; by using a language-neutral syntax (unlike the mixed Haskell/Perl syntax of
LectroTest [6]) and by using technology-independent, time-proven interfaces like POSIX
pipes, ISOMER offers a single system that can be used across multiple projects and which
can be learned without previous knowledge of a particular platform. However, this flexi-
bility comes at a cost: a POSIX-pipes-only implementation makes interacting with whole
programs easier but increases the effort necessary to interact with more granular compo-
nents like functions. Language-specific shims can be automatically generated to limit the

MICS 2008 473

impact of this limitation, but clearly an interface cannot be simultaneously entirely generic
and perfectly granular.

3.3 Usage examples

For example, take a solution engine for the popular Sudoku numbers puzzle, written in C.
Such a system might well use a backtracking engine with state objects being created and
destroyed thousands or millions of times during a single program invocation. A program-
mer used to C++ or Java and their use of implicit copy constructors or garbage-collected
references, respectively, might mistakenly return a pointer to a state stored on the program
stack, for example. If this bug is hidden in an infrequently-used code path that is not
well-exercised in the developer’s test cases, it may go unnoticed for a long time. Even a
simple set of constraints fed to ISOMER and allowed to run nights and weekends on the
developer’s own machine significantly raise the likelihood of discovering such a flaw by
producing a set of inputs that produce deviant output. More carefully-written constraints
and dedicated compute nodes can attack even far more complex problems. Another exam-
ple might comprise a bio-informatics program developed in C++ compared to a rapidly-
developed version using Perl and existing tools like BioPerl [1]. In cases like these, where
the solution being developed is an innovation on an available tool or process rather than an
entirely new one, the cost of developing the model may be negligible: BioPerl programs
can’t compete with commercial variants in speed, but they may well compete in correct-
ness, which is the only requirement ISOMER makes.

Another field where ISOMER could be useful is the verification of multi-threaded appli-
cations when compared to their single-threaded ancestors or to a simpler, single-threaded
but equivalent model. With the recent advances in multi-core processor technology, multi-
threaded software is becoming necessary more rapidly than it is becoming available. Using
ISOMER to compare a new multi-threaded system with a known-good single-threaded ver-
sion or prototype could capture race conditions or undefined behavior much more quickly
than a static testing framework could.

4 Implementation

Our implementation so far comprises the following elements:

1. a grammar (Figures 1 and 2) for the constraint system

2. a parser which consumes that grammar and generates an abstract syntax tree

3. a reserialization component (for testing and programmatic modification

4. a random stimulus generator, producing reproducible sequences of typed data

MICS 2008 474

1 <autotree>
2 Top: Declaration(s?) Constraint(s?) EOF { bless +{
3 declarations => bless($item[1], ’DeclarationList’),
4 constraints => bless($item[2], ’ConstraintList’)
5 }, $item[0] }
6 Declaration: Type Dimension(s?) Ident(s /,/) ’;’ {
7 $thisparser−>Extend("VarName: " .
8 join ’ | ’, map ’/\b’.$_−>_dump.’\b/’, @{ $item[3] });
9 bless +{ type => $item{Type},
10 dimensions => $item[2],
11 idents => $item[3] }, $item[0];
12 }
13 Type: ’int’ | ’nybble’ | ’byte’
14 Dimension: ’[’ /[0−9]+/ ’]’
15 Constraint: ’constraint’ Ident CGroup
16 Evaluable: VarName { $item[1] } | Number { $item[1] }
17 VarName: <reject> # Starts out empty, gets extended by Declaration
18 Ident: /\b[A−Z_]\w*\b/i
19 Number: /\b\d+\b/
20 CGroup: ’{’ Statement(s /;/) ’;’ ’}’ { bless $item[2], $item[0] }
21 Statement: Implication { $item[1] } | BExpr { $item[1] }
22 BExpr: InsideExpr { $item[1] } | CGroup { $item[1] } | IExpr { $item[1] }
23 IExpr: ISExpr[$arg[0] || 0] { $item[1] } |
24 IUExpr[$arg[0] || 0] { $item[1] } |
25 IPExpr { $item[1] }
26 IPExpr: ’(’ IExpr[0] ’)’
27 ISExpr: <leftop:IAtom[$arg[0]] IBiOp[$arg[0] || 0] IAtom[$arg[0]]> {
28 if (@{ $item[1] } == 1) { $item[1][0] }
29 else { bless $item[1], $item[0] }
30 }
31 IUExpr: IUnOp IAtom[$arg[0]]
32 IBiOp: <matchrule:IBiOp$arg[0]>
33 IBiOp8: <commit> <reject>
34 IBiOp7: ’**’
35 IBiOp6: ’*’ | ’/’ | ’%’
36 IBiOp5: ’+’ | ’−’
37 IBiOp4: ’<<’ | ’>>’
38 IBiOp3: ’&’ | ’|’ | ’^’
39 IBiOp2: ’<=’ | ’>=’ | ’<’ | ’>’
40 IBiOp1: ’==’ | ’!=’
41 IBiOp0: ’&&’ | ’||’
42 IUnOp: ’~’ | ’−’ | ’+’
43 IUnOp: ’!’
44 IAtom: IUExpr[$arg[0] || 0] |
45 { ($arg[0] || 0) < 8 || undef } IExpr[($arg[0] || 0) + 1] { $item[2] } |
46 Evaluable { $item[1] }
47 InsideExpr: IExpr ’inside’ ’[’ IList ’]’
48 IList: IAtom(s /,/) { bless $item[1], $item[0] }
49 Implication: BExpr ’−>’ BExpr { bless [@item[1,3]], $item[0] }
50 EOF: /\z/

Figure 1: Grammar text

In s ideExpr IExpr ’inside’ ’[’ IList ’]’

IExpr
ISExpr [$arg[0] | | 0]
IUExpr [$arg[0] | | 0]

IPExpr
IList <lef top: IAtom / , / IAtom>

I U E x p r IUnOp IAtom[$arg[0]] I S E x p r <lef top: IAtom IBiOp IAtom> I P E x p r ’(’ IExpr[0] ’)’

IAtom
IUExpr [$arg[0] | | 0]

IExpr [($arg[0] | | 0) + 1]
Evaluable

Eva luab le
VarName
N u m b e r

IUnOp

’~’
’-’
’+’
’!’

N u m b e r / \b\d+\b/ V a r N a m e < r e j e c t >

IBiOp5
’+’
’-’

IBiOp7 ’**’

I d e n t /\b[A-Z_]\w*\b/i

IBiOp0
’&&’

’||’

IBiOp

IBiOp$arg[0]
IBiOp0
IBiOp1
IBiOp2
IBiOp3
IBiOp4
IBiOp5
IBiOp6
IBiOp7
IBiOp8

IBiOp8 < c o m m i t > < r e j e c t > IBiOp2

’<=’
’>=’
’<’
’>’

IBiOp6
’*’
’/’

’%’
IBiOp3

’&’
’|’

’^ ’
IBiOp4

’<<’
’>>’

IBiOp1
’ = = ’
’!=’

EOF /\z/

Type
’int’

’nybble’
’byte’

Cons t r a in t ’cons t ra in t ’ Ident CGroup

N

S t a t e m e n t
Impl ica t ion

BExpr

Top Declara t ion(s?) Const ra in t (s?) EOF

Dec la ra t ion Type Dimension(s?) <lef top: Ident / , / Ident> ’ ; ’

Dimens ion ’[’ /[0-9]+/ ’]’

Impl ica t ion BExpr ’->’ BExpr

BExpr
Ins ideExpr

CGroup
IExpr

Figure 2: Grammar (graphical depiction)

MICS 2008 475

1 int a, b, c, d, e;
2 int[100] large_array, intersecting_array;
3

4 constraint shell_game {
5 1 inside [a, b, c];
6 a == 1 −> b == c && c == 0;
7 b == 1 −> c == a && a == 0;
8 c == 1 −> a == b && b == 0;
9 }

10

11 constraint complex_constraint {
12 a >= 0 −> {
13 c == 0 || b inside [1, 2, 3, 5];
14 a inside [1, 2, large_array] −> !a inside [intersecting_array];
15 };
16 a < 0 −> ~(b >> 2) & c ^ d == e;
17 }

Figure 3: Example constraint file

5. a DUT wrapper, providing a common input/output interface to DUTs using POSIX
pipes

6. an output comparator

The grammar is semantically complete but may eventually be extended to differentiate
integer and Boolean expressions, which are currently treated in a weakly-typed fashion, as
in Perl or C.

The grammar and parser are implemented using the Parse::RecDescent parsing module [4]
for Perl. This parser-building framework builds, as its name implies, a recursive-descent
parser from an LL(k) grammar. The potential inflexibilities of an LL(k) grammar were
outweighed by the ease of producing and understanding such a grammar.

An example of a file that conforms to the grammar can be found in Figure 3. This arbitrary
set of constraints does not represent the requirements of a typical constraint problem, but it
does demonstrate the expressiveness and readability of the grammar. Developers familiar
with C-like languages will feel at home with the syntax; the mathematical operations follow
the semantics and precedence of the host language (i.e., Perl, and therefore very C-like).

A schematic diagram showing ISOMER’s main components is shown in Figure 4. The
top two boxes represent the combination of the grammar in Figure 1 and the parser; the
third from the top is a translation layer that converts the expression tree into a format com-
patible with Test::LectroTest. The “Filter Actuator” is the Test::LectroTest framework’s
TestRunner, being supplied entropy on the “left” by its generation framework. The arrows
emanating from the actuator represent the parallel POSIX pipes to the concurrently-running
model and DUT (“PUT” in the diagram); the comparator is, due to the simple line-oriented
interface, simply a patterned string comparison.

MICS 2008 476

Constraint
Specification

Recursive-Descent
Parser

Filter-tree
Generator

Filter ActuatorEntropy
Source

Filter tree

Abstract syntax tree

Text

Program Under
Test

Test
vector (text)

Model

Test
vector (text)

Comparator

Test
result (text)

Test
result (text)

Output Store

XML

Text Reporter

Output Format
Choice

XML

HTML ReporterTest-case
Generator

Data stored in custom XML
format, specification to be

determined.

Entropy is gathered from the
system random number

generator and provided in the
form of integers, which can be

transformed by mapping
functions into the required types.

Type MapperInteger
data

Typed
data

The type mapper converts a
sequence of integer inputs
into a sequence of typed

data (sequences of same or
different cardinality).

Text file provided by user,
conforming to a specified

grammar consumed by the
rule parser.

A recursive-descent parser
accepting an LL(k) grammar,

implemented using
Parse::RecDescent.

Reference
test vector

The comparator returns both
boolean pass/fail metrics and
actual results from both PUT

and model.

At higher levels of
sophistication, the output
could be used to generate
test-cases for a regression

database (for example).

Characterization
Engine

XML

With a feedback mechanism to
control future inputs, a

characterization engine could
make and test inferences
about failure causes and

generate test suites or counter-
examples.

Feedback

Both program wrapper and
model communicate with

their respective components
through POSIX pipes.

The filter actuator applies the
filter-tree structure to the

typed data it receives from the
entropy source and drops

data that do not match.

It may be useful to break the
comparator into several

simpler components.

Figure 4: Schematic diagram

MICS 2008 477

5 Evaluation

Two important areas in which to evaluate ISOMER are its level of functionality and its
performance constraints. We address these in the paragraphs following.

5.1 Functionality

The functional evaluation can be divided into two subsets: type support and interface or
I/O support. Other functional areas of course exist; these are simply the two spheres where
ISOMER differentiates itself most from its predecessors.

5.1.1 Type support

ISOMER currently supports a limited set of types, specifically 32-bit, 8-bit, and 4-bit
signed integers. Support in the underlying LectroTest framework exists for more com-
plex types, including strings, lists of other types, and arbitrary structural types through
concatenation. In order to support some of these types, ISOMER’s grammar will have to
be extended; for the present we limit ourselves to integral types for simplicity.

5.1.2 I/O support

As mentioned previously, ISOMER communicates with programs using POSIX pipes.
Even under the current system, access to library functions and other program-internal com-
ponents can be effected using shims. These shims must currently be created individually,
but their creation can be automated in the future on a per-language basis to provide easy
access to the function-level granularity that other CRS systems offer.

5.1.3 Functionality example

To demonstrate ISOMER’s functionality simply, we set up a constraint configuration with
a purposely broken version of bc, a UNIX command-line calculator. The broken version
substitutes the digit 4 for the digit 3 in its input, causing most expressions containing a 3
to fail. The “model” in this case was the normal version of bc. Figure 5 shows the log of a
brief (5-trial) run of ISOMER on this configuration.

MICS 2008 478

1 Seeding with 686968504 at ./harness.pl line 33.
2 First failure at test number 2
3 Stimulus prior to failure:
4 2 + 1
5 1 + 1
6 2 + 1
7 1 + 1
8 2 + 3
9 3 + 1

10 4 + 2
11 Faults:
12 −−−
13 − dut_output: 6
14 input: 2 + 3
15 model_output: 5
16 − dut_output: 5
17 input: 3 + 1
18 model_output: 4
19 1..0

Figure 5: Example ISOMER run on bc

5.2 Performance

It was foreseen that ISOMER might create significant run-time overhead, which, if suffi-
ciently severe, could render large-scale use impracticable. The current implementation has
not been subjected to significant optimizations; as Donald Knuth said, “Premature opti-
mization is the root of all evil.” At the moment, the filter-based entropy system, which does
not benefit from any compilation of constraints to optimized generators, consumes most
of the time in a typical run. While a simple design under test (a doubly-linked-list library
wrapper) consumed 250 tests in 11ms, the entire run took on average about 9400ms to
complete.

Clearly this level of performance is undesirable, but it is important to note that this major
gap in performance closes as the DUT slows. For a non-trivial DUT, the time per test might
be orders of magnitude slower, while the constraint generation time per test, which is stable
and dependent directly on the complexity of the constraints (only negligibly on the number
of variables being constrained), and since the generation and consumption of tests occur
concurrently, the loss is not so great as it first appears. Naturally, performance issues will
be explicitly addressed in future revisions.

6 Conclusion

We believe the underlying concept behind constrained-random-stimulus testing to be solidly
proven in theory and in real use with hardware, and we feel an exploration of its application
to software development will result in long-term improvements to developer productivity
and product quality.

MICS 2008 479

References

[1] Main Page - BioPerl. http://www.bioperl.org/.

[2] BERGERON, J., CERNY, E., HUNTER, A., AND NIGHTINGALE, A. Verification
Methodology Manual for SystemVerilog. Springer, 2005.

[3] CLAESSEN, K., AND HUGHES, J. QuickCheck: An Automatic Testing Tool for
Haskell. http://www.cs.chalmers.se/˜rjmh/QuickCheck/.

[4] CONWAY, D. Parse-RecDescent-v1.95.1 - search.cpan.org. http://search.
cpan.org/dist/Parse-RecDescent/.

[5] HOCEVAR, S. zzuf - multi-purpose fuzzer. http://sam.zoy.org/zzuf/.

[6] MOERTEL, T. Moertel Consulting’s Community Projects :: LectroTest. http://
community.moertel.com/ss/space/LectroTest.

MICS 2008 480

Detecting Source Code Plagiarism

Joseph Degiovanni and Imad Rahal (advisor)
Computer Science Department

College of Saint Benedict Saint John’s University
Collegeville, MN 56321
J1degiovann@csbsju.edu

Abstract

The intention of this paper is to act as a tutorial on the subject of the detection of source
code plagiarism. The first section is a short introduction to the problem. Then there is a
section explaining some of the popular plagiarism detection approaches including
Halstead’s Software Science Metric, McCabe’s Cyclomatic Complexity, Lancaster Word
Pairs, and Longest Common Substrings. The third section briefly describes some
common plagiarism detection engines that implement the approaches described earlier.
Finally, the last section summarizes the discussion and also suggests further research on
the topic.

MICS 2008 481

1. Introduction

Plagiarism has been defined as the act of fully or partially submitting someone else’s
written work as one’s own. The problem, or plague as described in the literature, is very
common in written works especially among university students due to various reasons
such as time pressure, lack of understanding of what constitutes plagiarism, and the
wealth of digital resources available on the Internet which make “copy/paste” activities
almost natural!

There are many types of plagiarism. Some of the types are described by the category of
media that is being plagiarized, such as journalistic plagiarism, musical plagiarism, film
plagiarism, and even plagiarism of scientific experiments. Another way of classifying
plagiarism describes where the original document was retrieved from in relation to the
corpus. A corpus is a collection of documents within which plagiarism could likely occur.
Plagiarism can be described as intra-corpal or extra-corpal. Intra-corpal plagiarism occurs
when both the source and plagiarized documents exist within the corpus, for example, a
student copying another student’s assignment in the same class. Extra-corpal plagiarism
then, not surprisingly, is when the source document exists outside of the corpus, for
example, a student turning in a term paper from an online term-paper mill such as
a1essays.com or termpapergenie.com. This paper will focus specifically on source code
plagiarism which is defined as the act of plagiarizing source code written in programming
languages such as Visual Basic, Java, C++, etc…, and how it is being detected.

In any academic department, plagiarism is harmful to a student’s education, but it can be
particularly harmful within computer science. The reason for this is that programming is
a skill that is best (and arguably can only be) learned through experience. Therefore
students who plagiarize on programming assignments are usually the ones who do not
comprehend what is taught in the classroom.

Source code plagiarism may be a more common practice than one is inclined to think. In
a survey given to 110 UK HE computing schools [3], 35 out of 52 instructors who
responded to a question regarding “the proportion of students involved in a typical
outbreak of source code plagiarism on initial programming courses” reported that they
think more than 10% of students would be involved. Four of the 52 respondents reported
that they think it is more than half! If one thinks that these figures are exaggerated, here is
something to consider: “The evidence of previous UK surveys on student behavior
suggests that tutors under-estimate the extent of cheating behavior” [3]. Keeping this
information in mind, it is apparent that source code plagiarism is a real problem in
schools worldwide that are trying to teach students how to write computer software.

In order to deter students from plagiarizing their programming assignments, some schools
have imposed severe punishments for submitting a plagiarized assignment. For example,
at the College of St. Benedict/St. John's University in Minnesota, students automatically
fail the course and are at risk of expulsion from the school on their second offense.
Students who are caught plagiarizing three times are automatically expelled. However, in
order for these rules to be effective, they need to be enforced, which brings us to the issue

MICS 2008 482

of detecting plagiarism. A primitive approach to detecting plagiarism is by visual
inspection. This works fine as long as the number of documents to be inspected is
somewhat small, say 20-30. However, in introductory programming courses, enrollment
can be much higher, making visual inspections time-consuming and impractical. This
approach can lead to cases such as the one quoted in Clough’s article: “Recently, two
students handed in exactly the same essay. One stole the essay from a computer used by
both. The two copies differed only in the name at the top. The culprit assumed that, given
a class of 200 students in which the work is marked by five different tutors, the forgery
would go undetected. That was, in fact, a pretty safe assumption since the discovery was
entirely accidental” [1]. In such cases, automated systems are necessary in order to
effectively detect and thus deter plagiarism.

So how do we build an automated system for detecting plagiarism? The problem with the
definition provided in the first sentence of this paper is that it is not concise. Where do we
draw the line between plagiarism and coincidence? There needs to be some way to
measure how similar two documents are so that we can clearly say that the documents are
too similar to happen by pure coincidence.

2. Plagiarism Detection Techniques

In plagiarism detection engines (computer systems for detecting plagiarism) metrics are
used to compute the similarity of two documents, usually producing a similarity score. A
similarity score is a numeric value in a certain range, like 0-100, that indicates how
similar two documents are, where a similarity of 100 means that they are exact copies of
each other and a similarity of 0 means that they have absolutely nothing in common.

Many types of metrics have been proposed to measure the similarity among source code
submissions. Lancaster and Culwin classify these metrics based on three criteria: 1) the
number of submissions that have to be analyzed consecutively to generate metrics, 2) the
complexity of the metric, and 3) whether or not the metric applies tokenization to the
submissions [2].

The first criterion is divided into two categories. All metrics that have currently been
introduced in the literature analyze either one or two submissions at a time. If a metric
analyzes just one submission at a time it is called a singular metric. The term singular
metric can be deceiving, because it does not mean that the submission is not compared
with any other submissions; it just means that the metric is computed with respect to only
one submission (e.g. Mean number of characters per line). On the other hand, metrics that
analyze pairs of submissions to calculate similarity are called paired metrics. An example
of a simple paired metric is the number of words two submissions have in common. Most
current plagiarism detection engines today use paired metrics because they are generally
thought to be more effective.

The second criterion is also divided into two categories, superficial and structural.
Lancaster and Culwin define a superficial metric as a metric that can produce a numerical

MICS 2008 483

representation of a document or set of documents where knowledge of their linguistic
properties is not necessary. Similarly, a structural metric is one where knowledge of their
linguistic properties is necessary. One large advantage that superficial metrics have over
structural metrics is that they are language-independent; therefore the metric can be
applied to a broader range of documents. This advantage also comes with the drawback
that they are easier for a potential plagiarist to fool by replacing some of the original
syntax with different structures that produce the same function in the language. For this
reason, the majority of plagiarism detection engines in use today use structural metrics.
Lancaster and Culwin also mention that distinguishing superficial metrics from structural
metrics can be difficult [2].

The last metric classifier is much easier to determine. It is determined by whether or not
the metric uses tokenization. Tokenization is the process of replacing commonly used
phrases or constructs of a language with a condensed version, or “token”, that carries the
same (or very similar) meaning. For example, variable declarations in Visual Basic like:

Dim myNumber As Integer

Could be replaced by a two character token such as:

VI

Where ‘V’ stands for variable declaration and ‘I’ stands for the variable type, which
happens to be Integer in this case. This process of tokenization is particularly useful in
detecting plagiarism that has been concealed by one or more of the thirteen techniques
that students use to alter source code that they plagiarize. These thirteen techniques have
been identified by Whale [10] and they are:

1. changing comments
2. changing formatting
3. changing identifiers
4. changing the order of operands in expressions
5. changing data types
6. replacing expressions with equivalents
7. adding redundant statements
8. changing the order of time-independent statements
9. changing the structure of iteration statements
10. changing the structure of selection statements
11. replacing procedure calls with the procedure body
12. introducing non-structured statements
13. combining original and copied program fragments

For example, technique number three could be attributed to a novice programmer who
might just replace the identifier ‘myNumber’ with his own variable name like ‘num’.
Tokenizing the code makes non-important and interchangeable features such as
identifiers irrelevant when comparing documents.

MICS 2008 484

There is no perfect way to tokenize a submission. Each style has advantages and
disadvantages. For example, the example above could be just reduced to the token “V”
and the type could be disregarded. This would make the tokenization more resistant to a
programmer who replaced the integer type variable with a variable of type single (which
can represent fractional values). On the negative side, it would also make non-plagiarized
seem more similar to each other, because some of the uniqueness of that specific line of
code was lost.

2.1. Halstead’s Software Science Metric

In 1977, Maurice Halstead proposed one of the earliest software metrics, named
Halstead’s software science metric [4]. Halstead’s software science metric is a singular
superficial metric. The way that this metric is implemented in detecting plagiarism is very
simple. A system takes a count of the following attributes in each programming
submission within a corpus:

Number of unique operators (n1) (+,-,*,/, etc...)
Number of unique operands (n2) (myVariable, name, etc...)
Total number of operators (N1)
Total number of operands (N2)

If two submissions have counts that are exactly the same, they are viewed as very similar
and would require further investigation. Other possible implementations using this metric
would be to compute the 4-dimensional distance using a formula like Euclidean,
Chebychev, or Manhattan (city block) distance. Submissions with near zero distances
would then be viewed as suspicious and require further investigation.

A problem with this metric is that for small, simple programs (typical of those assigned to
introductory computing classes) the 4-attribute tuples can be very similar or even exactly
the same even though this is usually doesn't mean that plagiarized has occurred. Also, for
programs of different sizes, this metric would be very ineffective at detecting plagiarism
if only small portions had been plagiarized because the counts of operands are closely
correlated with program length.

2.2. McCabe’s Cyclomatic Complexity

McCabe’s cyclomatic complexity was proposed around the same time that Halstead’s
metric was introduced. It directly measures the number of linearly independent paths
through a program's source code [7]. Using a graph of the control flow of a program, the
cyclomatic complexity is calculated as the number of edges (e) minus the number of
nodes (n) plus two times the number of connected components (p): V(G) = e-n+2p.

MICS 2008 485

In the figure above, there are nine edges and eight nodes. Since there is only one
component, the number of connected components is equal to one. The nodes represent
blocks of code and the edges represent possible paths from the entry point (node 1) to the
end point (node 8).

By itself, McCabe's cyclomatic complexity is not a very good metric for detecting
plagiarism because there are many control flow graphs with the same complexity
number, albeit, the structures could look very different. Also, it suffers from the same
problem as Halstead's metric: it is not effective when the corpus consists of a large
number of submissions working on the same simple problem, because those submissions
are very likely to have the same complexity graph due to the nature of the small
assignment. In the end, in order for cyclomatic complexity to be effective it should be
coupled with other metrics that will give more information about the compared programs.

2.3. Lancaster Word Pairs

This is a paired superficial metric. The idea behind Lancaster word pairs is that if two
submissions have a substantial amount of pairs of words that occur consecutively and
they are common to both, then the two submissions are very similar. For example, if two
submissions have the word pair “green apple” in common, then they are more similar
than if they had nothing in common. The more word pairs two submissions have in
common, the more similar they are.

An outline of the algorithm is listed below:

Figure 1: Complexity graph [7]

MICS 2008 486

Consider two Visual Basic projects, denoted A and B.

For each document, compute a sorted list of all pairs of

consecutive words, along with a count of the number of times

this pair appears. Denote these lists A and B respectively.

Compute values c1, c2, c, u1, u2 and u, representing

commonality and uniqueness between the projects, where:

c1 is the number of times a pair of words occurs in A, so

long as it occurs at least once in B.

c2 is the number of times a pair of words occurs in B, so

long as it occurs at least once in A.

C = c1 + c2.

u1 is the number of times a pair of words occurs in a, so

long as does not occurs in b.

u2 is the number of times a pair of words occurs in b, so

long as does not occurs in a.

U = u1 + u2

Then similarity score for A and B = 100*C / (C + U).
 [6]

Lancaster and Tetlow implemented and compared this metric with other metrics that have
been proven to be effective at detecting collusion in programming assignments, and they
found it to be very effective [6].The results are surprising because it was originally
thought that a superficial metric would not be nearly as effective as a structural metric in
detecting source code plagiarism. However they also state that there is a major drawback
to Lancaster word pairs over other metrics such as tokenized longest substrings because it
does not indicated where the two submissions are suspected to be plagiarized. One
difficult task for tutors would be figuring out why two submissions were flagged by the
system, which, on its own, could prove to be a time consuming procedure.

2.4. Tokenized longest common substrings

This is a paired, structural, tokenized metric. The first step in using this metric is to
tokenize an entire set of documents. The result will be a compressed version of the
original documents that still contains the important information that will be used to
compute similarity between two documents. The second step is to find the longest
common substrings within the tokenized versions of two documents.

MICS 2008 487

When a set of words or tokens exist in two documents in the same order, this is known as
a common substring. Consider these two hypothetical tokenized documents:

SUBVSVIVIFORV+=ENDEND

SUBVIVSWHILEV-=ENDV-VEND

They both have this substring in common:

SUBVIV=ENDEND

This also happens to be the longest common substring, but any section of that string
would also be a common substring as long as the order is preserved. The following is a
basic outline of how the tokenized longest common substrings metric can be used to
compute a similarity score for two documents:

Consider two Visual Basic projects, denoted A and B.

Produce two further documents, denoted a and b respectively,

which are tokenized versions of A and B. Denote the length

of these documents, in words and tokens, as la and lb

respectively.

Compute the longest substring common to both A and B, with a

minimum length of five words or tokens. A common substring

is defined as a series of words and tokens common to both

documents and in the same order, but not necessarily

consecutive to one another.

Iteratively repeat this process on the words and tokens in A

and B that have not yet been allocated to a substring, until

no further allocations are possible.

Denote the total length of these substrings as lc.

Then similarity score for A and B = 200 lc / (la + lb).
[6]

This metric was originally used for finding similarity in genetic code to help identify
genes that are common among different species. It is one that is very commonly used in
current plagiarism detection engines because it is resistant to attempts aimed at disguising
plagiarism by adding white spaces or redundant code.

2.5. Winnowing

MICS 2008 488

Winnowing is an algorithm that makes use of a technology called Fingerprinting [9].
Fingerprinting makes string comparison much more efficient because it reduces strings
into representative numerical figures, called “fingerprints”. These fingerprints are derived
from strings of a given size, k, which are called k-grams. K-grams are created from a
document by finding all consecutive substrings of size k. Step c in the figure below
shows all of the k-grams, such that k is equal to 5, from the string in step b. The basic
idea is that if two documents share a fingerprint, it is extremely likely that that they share
a k-gram (suggesting potential plagiarism). The following example illustrates the
winnowing process:

A do run run run, a do run run

(a) Some text.

adorunrunrunadorunrun

(b) The text with irrelevant features removed.

adoru dorun orunr runru unrun nrunr runru

unrun nruna runad unado nador adoru dorun

orunr runru unrun

(c) The sequence of 5-grams derived from the text.

77 74 42 17 98 50 17 98 8 88 67 39 77 74 42

17 98

(d) A hypothetical sequence of hashes of the 5-grams.

(77, 74, 42, 17) (74, 42, 17, 98)

(42, 17, 98, 50) (17, 98, 50, 17)

(98, 50, 17, 98) (50, 17, 98, 8)

(17, 98, 8, 88) (98, 8, 88, 67)

(8, 88, 67, 39) (88, 67, 39, 77)

(67, 39, 77, 74) (39, 77, 74, 42)

(77, 74, 42, 17) (74, 42, 17, 98)

(e) Windows of hashes of length 4.

17 17 8 39 17

(f) Fingerprints selected by winnowing.

[17,3] [17,6] [8,8] [39,11] [17,15]

(g) Fingerprints paired with 0-base positional information.
[9]

Steps a through d in the figure above are typical of most fingerprinting techniques.
However, the idea of a window in step (e) is unique to the winnowing algorithm. A
window is pretty much the same as a k-gram except that the length is calculated from a
number of input variables and not a direct input value like 'k'. The length of the windows
is w = t - k + 1 where t is the threshold set by a user that is the smallest substring that is

MICS 2008 489

guaranteed to be matched if it exists in both documents. For example, if both documents
share a substring of size s > 9 and t = 9, then that substring is guaranteed to be detected as
common to both documents after comparing fingerprints. Similarly, k is the threshold that
is guaranteed to ignore substrings that are smaller than k. So if k = 5, the substring “the”
will be disregarded as noise. Schleimer, Wilkerson, and Aiken [9] prove that w is the
correct length for windows to guarantee those thresholds.

Step (f) uses the hashes in the windows to select appropriate fingerprints, starting with
the first window, winnowing selects the smallest hash in the window and moves to the
next window. Then, if the selected hash is still the smallest hash in the new window, no
new hash is selected for a fingerprint. If the new window does contain a smaller (or
equal) hash, that hash is selected as another fingerprint and becomes the new current
fingerprint. This process continues until all of the windows have been processed. Finally,
step (g) adds positional information to the set of fingerprints. This positional information
is useful for visualization tools that point out where the similarity has occurred within
documents such as this tool used by JPlag:

Figure 2: JPlag's visualization tool [8]

2.6. Greedy String Tiling

MICS 2008 490

Greedy String Tiling (GST) is considered to be very effective in detecting similarities
between strings even if the order has been rearranged. It searches for matching elements
of a pattern string, P, within a text string, T. McElory Hoffman uses the following
example:

Suppose that

T = TheQuickBrownFoxJumps
And

P1 = Brown
P2 = FoxBrown

Using the Tokenized Longest Common Strings (LCS) approach, the similarity values for
P1 and P2 are 38.5% and 34.5% respectively. As you can see, P2 is negatively affected
because order matters in LCS. GST corrects this shortcoming by using the idea of a ‘tile’.
A tile is a ‘maximal match’ in which every element has been ‘marked’. Maximal matches
are found by comparing the all the elements in the pattern string to all the elements in the
text string. Then, if a match is found, the maximal match can be extended if the next
element in P matches the next element in T. It continues to be extended until there is a
non-match, end-of-string, or marked element. Maximal matches that have a length less
than a given value, the minimum match length, are disregarded as noise; if they are equal
to or larger than the minimum match length, then they are deemed as marked and become
tiles. Similarity is then computed with the following formula:

and |P| + |T| = the number of elements in P added to the number of elements in T [5].

3. Plagiarism Detection Engines

Plagiarism detection engines are computer systems that implement one or more metrics in
an attempt to detect code plagiarism. Currently, most of those systems are publicly
accessible via the Internet. The main application for these engines is for educators to
check student submissions for plagiarism.

Lancaster and Culwin have surveyed the known plagiarism detection engines and have
provided the following table that classifies the engines by the metrics they use:

MICS 2008 491

[2]

Here you can see that most engines use a paired structural tokenized metric. It is also
worth mentioning that the two most commonly used and recommended engines, MOSS
and JPlag, also implement paired structural tokenized metrics. An evaluation of JPlag by
Malpohl, Philippsen, and Prechelt show that nearly all plagiarism attempts were
discovered, and even caught more than 90% of simulated plagiarisms where the subjects
knew that their purpose was to disguise their work for a plagiarism detection engine [8].

4. Summary

Even though a lot of research efforts have been invested in detecting source code
plagiarism for over 30 years now, there is still a lot of debate about which metrics work
the best. Literature on the topic from different academics still seems to disagree with each
other with a lot of ambiguity on the terminology used to classify metrics and the engines
that implement them. Furthermore, a number of publicly accessible systems have not
been in described in the literature in an attempt to discourage students from
understanding how they work so as not to find workarounds. In addition, there are new
programming languages that are being taught in computing schools that do not have any
support from the plagiarism detection engines yet. Even older, more commonly used
languages such as Visual Basic are not supported by most engines.

More work needs to be done in this area to improve on the current engines or to devise
new, more efficient, easy-to-use engines with established performance in order to
encourage educators to use them and enhance the academic integrity of computing
courses in universities around the world.

MICS 2008 492

5. References

[1] Clough, P. 2000. Plagiarism in natural and programming languages: an overview of

current tools and technologies. July 2000. Department of Computer Science,
University of Sheffield

[2] Culwin, F. and Lancaster, T. 2005. Classifications of Plagiarism Detection Engines.
 ICS (Jan. 5, 2005). http://www.ics.heacademy.ac.uk/italics/Vol4-2/Plagiarism
 %20-%20revised%20paper.pdf

[3] Culwin, F. MacLeod, A. & Lancaster, T. 2001. Source-code Plagiarism in UK HE
 Computing Schools, Issues, Attitudes and Tools. Technical Report No. SBU-
 CISM-01-02. South Bank University.

[4] Halstead, M.H. Elements of Software Science. Prentice-Hall, Inc., New York, 1977

[5] Hoffmann M. The Plagiarism Detector Copy-D-Tec. Project 478. Department of

Computer Science, University of Stellenbosch. November 2004. Private Bag X1,
7602 Mateieland.

[6] Lancaster, T. and Tetlow, M. 2005. Does automated anti-plagiarism have to be
 complex? Evaluating more appropriate software metrics for finding collusion. In
 Balance, Fidelity, Mobility: Maintaining the Momentum, Proceedings of the 2005
 ASCILITE Conference.[http://www.ascilite.org.au/conferences/brisbane05/blogs/
 proceedings/42_Lancaster.pdf]

[7] McCabe, T. J. 1976. A Complexity Measure. IEEE Transactions on Software
 Engineering, Vol. SE-2, no. 4, December 1976

[8] Prechelt, L., Malpohl, G., and Philippsen, M. 2000. Finding plagiarisms among a set

of programs with JPlag. Submitted to Journal of Universal Computer Science;
http://wwwipd.ira.uka.de/jplag. http://citeseer.ist.psu.edu/prechelt00finding.html

[9] Schleimer, S., Wilkerson, D. S., and Aiken, A. 2003. Winnowing: local algorithms for
 document fingerprinting. In Proceedings of the 2003 ACM SIGMOD
 international Conference on Management of Data (San Diego, California, June 09
 - 12, 2003). SIGMOD '03. ACM Press, New York, NY, 76-85. DOI=
 http://doi.acm.org/10.1145/872757.872770

[10] Whale, G. 1986. Detection of Plagiarism in Student Programs, “Proceedings of the

Ninth Australian Computer Science Conference, Canberra”, pp. 231-241

MICS 2008 493

Parallelizing the Computation of the SPT Statistic

Todd Frederick
Department of Mathematics, Statistics, and Computer Science

St. Olaf College
Northfield, MN 55057

frederit@stolaf.edu

Abstract
Partition theorist George Andrews defined spt(n) as the number of smallest parts of par-
titions of n, and proved several congruences for spt, patterns that are similar in form to
congruences discovered by Ramanujan for the partition function. To aid investigation of
these congruences, an algorithms class at St. Olaf developed a method of computing spt(n)
in quadratic time using linear working memory. We develop a parallel version of this
algorithm that runs on a Beowulf cluster, a MIMD parallel computer, with noticeable per-
formance improvements.

MICS 2008 494

1 Introduction

1.1 Integer Partitions
The set λ = (λ1, λ2, · · · , λk) is a partition of n if λ1 + λ2 + · · · + λk = n and λ1 ≥ λ2 ≥
· · · ≥ λk. We say λ has k parts. The single part n is the trivial partition of itself.

The partition function p(n) is the number of distinct partitions of n. For example, there are
5 partitions of 4.

4
3 1
2 2
2 1 1
1 1 1 1

Values of p(n) increase exponentially and are therefore difficult to compute for large values
of n.

1.2 Partition Function Congruences
Mathematician Srinivasa Ramanujan discovered a series of patterns in the partition function
called congruences, including

p(5k + 4) ≡ 0 (mod 5)

p(7k + 5) ≡ 0 (mod 7)

p(11k + 6) ≡ 0 (mod 11)

As an example, the first congruence states that the number of partitions of any integer of
the form 5k + 4 is divisible by 5.

1.3 The Smallest Parts of Partitions
Partition theorist George Andrews defined the statistic spt(n) as the number of smallest
parts in the partitions of n [1]. Each partition of n denoted by λ has a smallest part that
occurs mλ times in λ. The value of spt(n) is the sum of mλ for all λ. For example, we
count the smallest parts in the partitions of 4.

4 1
3 1 1
2 2 2
2 1 1 2
1 1 1 1 4

10 = spt(4)

MICS 2008 495

The first partition, the trivial partition, has one part, 4 itself. This part 4 is the smallest part
in the trivial partition, and it occurs 1 time. A partition may have multiple occurrences of
its smallest part. The smallest part of the fourth listed partition is 1, and it occurs 2 times
in that partition. When we sum the smallest parts of each partition, we get spt(4) = 10.

1.4 Congruences with SPT
Andrews also proved several congruences for spt(n), including

spt(5k + 4) ≡ 0 (mod 5)

spt(7k + 5) ≡ 0 (mod 7)

spt(13k + 6) ≡ 0 (mod 13)

Andrews did not find a congruence modulo 11, such as exists for the partition function,
motivating a search for new congruences for spt(n), starting with conjectures of possible
congruences. Searching for possible congruences requires a large set of data in which
to search, but the existing generating function-based method of calculating spt(n) proved
prohibatively slow for computing a large set of values of spt(n).

1.5 Initial Approaches
St. Olaf Mathematics Professor Kristina Garrett posed the challenge of generating a large
spt data set to Professor Olaf Hall-Holt’s algorithms class, which included this author. The
class investigated different methods of calculating spt(n) with the goal of significantly in-
creasing the number of values of spt(n) that could be computed in a fixed amount of time
[3][2]. An existing method using a generating function on a popular symbolic calculation
system computed hundreds of values in a few minutes. A worthwhile search for possible
congruences would require at least thousands or tens of thousands of values.

We first implemented a simple exhaustive search algorithm that listed partitions of n and
counted the number of their smallest parts. This algorithm ran in exponential time, yeilding
absolutely insufficient performance. We then discovered a recurrence relation for spt(n)
that we developed into a far more efficient algorithm.

2 Computing SPT

2.1 Serial Algorithm
We generate the set S of all spt(ni), where 1 ≤ ni ≤ nmax for a maximum integer nmax,
through a recursive method of counting the partitions of each ni. By counting partitions
according to their possible smallest parts, we can keep track of the number of each smallest

MICS 2008 496

part for each ni and sum these counts to get spt(ni).

Let Pn be the set of possible smallest parts of partitions of n. The integer n, the smallest
part of the trivial partition of n, is in Pn. If there were some p ∈ Pn, part of a non-trivial
partition, such that p > bn/2c, then the remainder n− p could not be distributed into a part
larger than p, so p could not be a smallest part. Thus, we have

Pn = {p : p = n or p ≤ bn/2c}

Consider a partition of n denoted by πa with a smallest part pa and the partition of n − pa

denoted by πb with a smallest part pb ≥ pa that is equivalent to πa with a single part pa

removed. To count the occurrences of pa in πa, we add 1 to the number of occurences of
pb in πb. To count the occurrences of pa as a smallest part in all partitions of n, we add the
number of occurences of pa as a smallest part in all partitions of n − pa to the number of
partitions of n− pa that have a smallest part ≥ pa.

To clarify this recurrence, we present an example. We count the occurrences of 1 as a
smallest part of partitions of 5. Any partition of 5 with a smallest part of 1 is a partition of
4, that has an original smallest part≥ 1, with a 1 joined to the end. Recall the partitions of 4.

4
3 1
2 2
2 1 1
1 1 1 1

All of these partitions have a smallest part ≥ 1, so adding a 1 to the end of each parition
will form all the partitions of 5 with a smallest part of 1.

4 1
3 1 1
2 2 1
2 1 1 1
1 1 1 1 1

Notice that 1 occurs 7 times as a smallest part of partitions of 4. When we form partitions
of 5 that have a smallest part 1, we add an extra 1 to each of the 5 partitions, so there are
12 occurences of 1 as a smallest part in the partitions of 5.

To compute this recurrence relation, we store βni,pi
, the number of occurences of pi as a

smallest part in all partitions of ni. We also store αni,pi
, the number of partitions of ni

that have a smallest part that is ≥ pi. The values of βni,pi
are computed by the recurrence

MICS 2008 497

relation as described above. The values of αni,pi
are computed by adding the number of

partitions of ni − pi that have a smallest part ≥ pi to the number of partitions of ni that
have a smallest part > pi, or ≥ pi + 1. The values of αni,pi

and βni,pi
are summarized in

Figure 1 and by the following equations

α β α β

α β

p

p+1

n−p n

++

Figure 1: Calculating an α, β pair.

αni,pi
= αni−pi,pi

+ αni,pi+1

βni,pi
= αni−pi,pi

+ βni−pi,pi

Because βni,pi
counts the occurrences of a single part pi in the partitions of ni, we can de-

fine spt(ni) in terms of βni,p.

spt(ni) =
∑

p∈Pni

βni,p

As there is one trivial partition of ni, in which ni occurs once, αni,ni
= 1 and βni,ni

= 1. To
compute the elements of S, we compute αn,p and βn,p for all n ∈ {n : 2p ≤ n ≤ nmax} for
all p ∈ {p : 1 ≤ p ≤ bnmax/2c}. Note that we iterate p in decreasing order because αni,pi

depends on αni,pi+1. These values of α and β form a triangle when arranged graphically
by their coordinates, as shown in Figure 2. Because of the dependencies in the definitions
of α and β, only two horizontal rows of this triangle, the row representing the pi being
computed and the row for pi +1, must reside in working memory at a given time. As a row
p is completed, each βni,p is added to a cumulative value σni

. After p = 1 is computed,
spt(ni) = σni

.

MICS 2008 498

nmax

nmax /2

1
1
p
p+1

2p

Figure 2: Memory triangle of α, β pairs.

2.2 Complexity
The range of parameters for α and β span two dimensions, where both dimensions are
proportional to nmax, so computing S takes Θ(n2) time in nmax. Because we are using this
spt data to search for congruences with a modulus, we store all values modulo some fixed
modulus, so any given value of α or β occupies a constant amount of working memory. As
only the sets of all βni,p, βnp,p+1, and σni

are stored in working memory at a given time for
some p ∈ P, and all these sets are proportional to nmax, the amount of working memory
used is Θ(n) in nmax. This is a vast improvement over an exhaustive search method.

3 Parallelization

3.1 Motivation
Our algorithm generated the first million values of spt(n), but this method is still limited to
a single processor. We investigated ways of overcoming this next barrier. To encourage for-
rays into the world of parallel computing, St. Olaf operates a small Beowulf cluster. This
cluster is a collection of off-the-shelf computers connected by a gigabit Ethernet network.
Programs written for this system typically use a message passing-based approach to paral-
lelization. Any processor, called a node, may send a message to any other node containing
arbitrary data. Each node assigned to run a particular program determines how many other
nodes are running the program and its unique index in this group of nodes. As the speed
of a gigabit Ethernet network is many orders of magnitude slower than the speed of each
machine’s internal bus, care must be taken to balance the cost of network communication
with the cost of not sharing work among processors.

MICS 2008 499

3.2 Parallel Algorithm
An ideal parallelization of our algorithm would evenly distribute the computation of all
αni,pi

and βni,pi
, represented by the triangle of Figure 2, among some number of nodes

r > 1. The recursive dependencies in the definitions of α and β make this distribution of
work not ideal and non-trivial.

We first consider parallelizing the computation of a single row of Figure 2, that is, a range
of ni for a given p. We assume that each node already has all necessary αni,p+1 values to
compute αni,p in its local memory. To compute αni,p or βni,p, a node must have the value of
αni−p,p and βni−p,p. The first p values of αni,p and βni,p may be computed independent of
any other value because they are constant base cases in the recurrence. If a node computes
αni,p and βni,p, it will have the necessary values to compute αni+p,p and βni+p,p. Thus, we
may divide the first p elements of {n : 2p ≤ n ≤ nmax} among r nodes so that each
node computes αn,p and βn,p for its assigned n ∈ {n : 2p ≤ n ≤ nmax} and all αapn,p and
βapn,p for each integer a such that apn ≤ nmax. Figure 3 shows the values that a single node
might compute on a single row. Each separate grouping of values, separated by a distance p,
is called a hop, because a node hops between them without computing anything in between.

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

nmax

������
������
������
������
������

������
������
������
������
������

Columns computed by an arbitrary node

2p
p

p p p

Figure 3: Values of α, β computed by a single node on a single row.

Now we consider parallelizing the next row, for part p− 1. If the same distribution of val-
ues among nodes were used, each node would have the necessary αni,p values to compute
αni,p−1 in its local memory. However, the first p−1 elements of {n : 2(p−1) ≤ n ≤ nmax}
are not the first p elements of {n : 2p ≤ n ≤ nmax}. One solution to this problem would
be for all nodes to share their computed values on each row with each other, but this would
incur an extremely high communication cost.

We address this problem by synchronizing only a small fraction of rows, a subset T of
{p : 1 ≤ p ≤ bnmax/2c} such that a constant s divides t ∈ T. We call s a stride length
because nodes stride by s rows before communicating with each other. If synchronizations
are only made at rows in T, then nodes will not have certain values in local memory needed
to compute their assigned elements of α and β. We remedy this problem by having each
node compute αni,pi

and βni,pi
for certain extra values of ni for which it does not contribute

to σni
. At any row pi, we assign a node to compute the values αni,pi

and βni,pi
that it will

be assigned to compute at the next row in T. Rows in T follow the distribution procedure

MICS 2008 500

described above.

To determine the extra values that a node must compute, consider the hop on a row t ∈ T
that is closest to nmax. On row t, a node computing this hop will have already computed
the values the hop depends on. But on the previous row, t + 1, the node would be missing
a single value immediately preceding the previous hop, because of the dependencies in α
and β related to the index of the current row. This missing value would itself depend on
another missing value two to the left of the next previous hop, and so on, such that the
number of missing values preceding each hop is equal to the number of hops to the end of
the row. On previous rows, furthermore, the number of these missing values is multiplied
by the number of rows to t. These missing values must be computed by each node, and
they form a triangular wedge preceding each hop. Figure 4 shows all the hops and wedges
for an arbitrary node.

����
����
����

����
����
��������
����
����

����
����
����

Assigned columns (hops)

Extra columns (wedges)

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
�
�
�

�
�
�
�
�

��
��
��
��
��

��
��
��
��
��

��
��
��

��
��
����

��
��
��

��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��

��
��
�� ���

���
���
���

���
���
���
���

������
������
������
������

������
������
������
������

�������
�������
�������
�������

�������
�������
�������
�������

������
������
������
������

������
������
������
������

�����
�����
�����

�����
�����
�����
���
���
���
���
�
�
�
�

�
�
�
�

���
���
���
���

���
���
���
���

��
��
��

��
��
��

�
�
�
�

�
�
�
�

Figure 4: Hops and wedges of a single node.

When the value of s is decreased, the size of all wedges, wasted computation, decreases, but
the communication frequency, and cost, increases. The parameter s represents the balance
between communication cost and computation cost.

3.3 Performance Improvements
We empirically selected values for s and managed to see modest improvements in the wall
clock running time of the algorithm over the serial version. For example, the serial algo-
rithm ran on our hardware for nmax = 100, 000 in about 5 minutes. The parallelization ran
in about 3.5 minutes with r = 5 and s = 10, 000. The algorithm’s performance fails when
nodes reach low values of p, which have large numbers of hops and therefore large wedges.
Even with larger values of nmax, the parallelization never improved over the performance

MICS 2008 501

of the serial algorithm by more than a quarter of the wall clock time. The largest data set
feasible on our parallel implementation is only marginally larger than that of the serial im-
plementation.

In the future, we hope to improve the performance of this parallelization by varying the
value of s after each synchronization. We have timed the computation speed and com-
munication speed of our implementation and could use this data to optimize s as nodes
compute rows with high numbers of hops.

4 Conclusion
In developing this parallelization, we explored the tradeoff between gained efficiency and
sunk communication costs from parallel computing, as applied to a new algorithm. The
serial algorithm does not obviously lend itself to parallelization, but a compromise that
wastes some computation time can still be made that improves overall performance. In
the end, this parallelization was a useful and non-trivial exercise in the synchronization of
independent processors. Measurable performance improvements demonstrated the validity
of the parallelization approach, and potential minor modifications may reveal the algorithm
to be useful for generating larger data sets than its serial counterpart.

References
[1] G. E. Andrews, The number of smallest parts in the partitions of n, to appear.

[2] K. Garrett, New congruences for Andrews’ SPT, project description.

[3] T. Frederick, M. Krahulec, C. McEachern, Generating SPT values in quadratic time
and linear memory with resulting conjectures, in preparation.

MICS 2008 502

Applications of Beowulf Cluster Computing to
Problems in Biology

Spencer Debenport Dr. Richard Brown
 St. Olaf College Computer Science
 Class of 2010 St. Olaf College

 debenpor@stolaf.edu rab@stolaf.edu

Abstract

The field of Biology provides a large number of problems that can be applied to Beowulf
cluster computing. Using the two clusters at St. Olaf College, projects including
searching through Tetrahymena thermophila DNA, modeling nitrogen flow through
riparian zones, and creating databases of neurological data were taken on in order to
further interdisciplinary research. Over the course of our research we were very
successful in laying the groundwork for this research to continue on in future years.

MICS 2008 503

mailto:rab@stolaf.edu

1 Introduction

The field of Biology provides many problems and issues which can be applied to
Beowulf cluster computing. Genetics, ecological models, databases of neurological data;
all of these are rich testing grounds for the applications of large scale cluster computing.
Over the past summer I took on three projects in order to further integrate the fields of
biology and computer science. Using these projects as examples, it should be clear that
there is a large area of research that can be aided using Beowulf cluster computing.

2 Beowulf Cluster Computing

Beowulf is a design for high-performance parallel computing using inexpensive personal
computer grade computer hardware. The idea behind a Beowulf design is that for a small
amount of money, high performance can be obtained using only everyday hardware,
software and networking. This way, the entirety of the cluster is replaceable and
reproducible at very low costs. Additions to the cluster can be made very easily by
simply adding another node to the network.

While there is no specified software to allow programmers to utilize a Beowulf cluster,
the most common is the Message Passing Interface (MPI) or Parallel Virtual Machine
(PVM). In our research we used MPI to perform communications throughout our cluster.
A cluster application typically uses a head or control node which directs the actions of
multiple computational nodes. Not every program can be easily coded to run efficiently
on a Beowulf cluster. A program must be able to have its computations split evenly
among the computational nodes. For example, in calculating the definite integral of a
function using the trapezoid rule, the region under the graph of f(x) can be divided evenly
among available nodes (perhaps including the head node) to carry out the calculations
quickly.

At St. Olaf college, we have two Beowulf clusters at our disposal, referred to as the
development and production clusters. The development cluster is composed of retired
machines that we salvaged in order to have a good testing platform for our parallel
programs. This allows us to keep our production cluster, composed primarily of server
grade Sun machines, free to be used for research runs of finished programs.

3 Projects

3.1 Modeling Riparian Systems

A riparian zone is defined as the intersection of land and a body of water. Since they act
as barriers to erosion and nutrient leakage, riparian zones are quite important junctions.
More specifically, riparian zones between farmland and moving bodies of water such as
rivers and streams are very important to monitor and maintain, as they allow for the
absorption of chemicals in runoff that can be very dangerous for aquatic life.

MICS 2008 504

This project consisted of modeling the flow of nitrogen through one such riparian zone
using Beowulf computing. A model, designed by Professor John Schade (Environmental
Science) and implemented in a program written by student Tony Waldschmidt at St. Olaf
College, outlined all of the equations and computations needed to represent the complete
nitrogen flow inside of a riparian plant [1]. This included the initial concentration of
nitrogen found in water entering the plant, the uptake needed to perform reactions
necessary for the life of the plant, denitrification or chemical reduction of organic
nitrogen by the plant, and finally the amount of nitrogen released back into the
surrounding water. Since this model used a flowing river as its water source, we can
reasonably assume that the nitrogen export of one plant would make up the input value of
the next plant downstream. This allowed for an interesting use of the Beowulf cluster, by
creating a system of plant models.

Each plant model in this system needed to perform a number of computations in order to
determine the amount of nitrogen absorbed and the amount exported. To fully use the
capacity of the cluster, I had each node of the cluster act as an individual plant,
performing all of the computations needed to determine nitrogen export, and then
passing on its export value to the next plant model downstream in the system. This
allowed for each node to perform calculations simultaneously, with very little delay
waiting for a new input value from another node.

I found that there was a simple linear trend in the number of plants needed to reduce the
concentration of nitrogen in field runoff to a safe level for aquatic organisms. This was to
be expected using our current model as each plant was using the same equations as all of
the others. Currently more work is being done to form models that correspond to specific
plants in order for real world applications to be possible.

3.2 Patterns in Tetrahymena thermophila DNA

Deoxyribose nucleic acid (DNA) plays the very important role of serving as the template
upon which every protein in our body is based upon. DNA consists of a double stranded
helix composed of sugars, phosphate groups and nucleotides. It is these nucleotides that
serve as the code for creating proteins.

Some details about how cells create proteins from DNA will help in explaining our
Tetrahymena thermophila application. Each DNA strand has directionality to it, being
read in what is known as “the 5' to 3' direction.” These strands exist in opposite parallel,
with the 5' end of one strand aligned with the 3' end of the other strand. In forming
proteins, only one of the two strands is transcribed into RNA, and eventually used to
construct a protein. A start codon is defined as a triplet of nucleotides that signals the
start of a protein while a stop codon is a triplet that signals the end of a protein. A gene is
considered to be a region of the DNA that codes for a protein, although through the a
process known as splicing out introns, instructions for building multiple proteins may be
coded using only one gene.

Professor Eric Cole (Biology) believed that he observed a phenomenon when looking at

MICS 2008 505

the DNA sequence for a histone gene in Tetrahymena thermophila. He saw that opposite
the coding region of this gene, on the reverse direction of the other strand, there seemed
to be another coding region beginning with a promoter region and a start codon with no
immediate stop codon. This is quite peculiar since only one strand of the DNA in a gene
is thought to code for a protein. Even stranger, this opposite region seemed to have a
similar sequence to the strand that it was bound to, meaning that the gene was mildly
palindromic. Was this apparent “reversible coding region” actually a phenomenon, or
was this simply there by chance?

Professor Steven Freedberg (Bioinformatics) wrote a PERL script to generate random
genome patterns typically found in Tetrahymena thermophila and check the reverse
opposite strands of coding regions, to see just how common this event was. I modified
this script in order to make dozens of runs on our Beowulf cluster,with each node
creating and analyzing a unique genome so that we could harvest large quantities of data
in a very short amount of time.

With the amount of data we collected over our two month session, I found that the
likelihood of this event occurring by random chance was unfortunately high. This means
that it is highly possible that the example observed by Professor Cole is indeed a random
event instead of an evolutionary phenomenon. There is still more data to be collected and
perhaps some alterations to the PERL script are necessary before we can assuredly say
that there is nothing of relevance to be gained from this observation.

3.3 Creating a Database of S-Cell Neuron Models

The S-cell neuron in the leech Hirudo medicinalis is considered to be the single cell that
controls the organism's learning. This one neuron allows for the leech to react to a
stimulus according to past experiences with that stimulus. If this cell is removed from the
leech, the organism will no longer 'learn' from experiences with stimuli, but will instead
have the same reaction to a stimuli every time. For example, if a leech with it's S-cell
intact is touched on the anterior end gently, at first it will pull away quickly, but upon
multiple occasions of being poked with no harm done to the leech it will pull away less
and less every time. Conversely, if that leech's S-cell is removed, the leech will have the
same harsh reaction every time it is poked, even though no harm is being done to it.

Professor Kevin Crisp (Neuroscience)seeks to create a database of computational models
for the S-cell, using that neuron's action potential as a partial key, together with graphical
information about firing behavior for each model. Once this database has been
constructed, Professor Crisp will be able to search it for graphical matches to firing
patterns he encounters in his research lab, yielding candidate computational model
parameters for the biological neuron he is studying in the lab. By simply dividing the
broad range of possible input values by the number of available Beowulf nodes, this
database can be calculated and formed in a fraction of the time it would take with a
different computational architecture.

This S-cell database project is one of several Beowulf computing initiatives in progress
that support Professor Crisp's neuroscience research.

MICS 2008 506

4 Conclusion

In just this small sampling of projects, it is easy to see that there are quite a few projects
in Biology that can utilize Beowulf cluster computing. The general outlines of each of
these projects (genomics, nutrient balance models, and database creation) can be applied
to an endless number of questions that need to be answered using only a fraction of the
time needed with a different computational architecture. While much work still needs to
be done with these projects, they have laid the groundwork for a large quantity of future
work.

References

[1] SCHADE, J. D., AND LEWIS, D. B. Plasticity in resource allocation and nitrogen-
use efficiency in riparian vegetation: Implications for nitrogen retention. Ecosystems 9
(August 2005), 740–755.

MICS 2008 507

Contemporary Technologies and Platforms for

Electronic and Mobile Commerce System Construction

Wen-Chen Hu
Department of Computer Science

University of North Dakota
Grand Forks, ND 58202-9015

wenchen@cs.und.edu

Yanjun Zuo
Department of Information

Systems and Business Education
University of North Dakota

Grand Forks, ND 58202-8363
yanjun.zuo@und.nodak.edu

Lei Chen
Department of Computer Science

Sam Houston State University
Huntsville, TX 77341
LXC008@shsu.edu

Anusha Gopalakrishnan
Department of Computer Science

University of North Dakota
Grand Forks, ND 58202-9015

anusha.g85@gmail.com

Abstract

The emergence of wireless and mobile networks has made possible the introduction of
electronic commerce to a new application and research subject: mobile commerce.
Understanding or constructing a mobile or an electronic commerce system is an arduous
task because the system involves a wide variety of disciplines and technologies and the
technologies are constantly changing. To facilitate understanding and constructing such a
system, this article divides the system into six components: (i) applications, (ii) client
computers or devices, (iii) mobile middleware, (iv) wireless networks, (v) wired
networks, and (vi) host computers. Elements in these components specifically related to
the subject are described in detail and lists of current technologies for component
construction are discussed. Another important and complicated issue related to the
subject is the mobile and electronic commerce application programming. It includes two
types of programming: client-side and server-side programming, which will be
introduced too.

MICS 2008 508

1 Introduction

With the introduction of the World Wide Web, electronic commerce revolutionized
traditional commerce, boosting sales and facilitating exchanges of merchandise and
information. The emergence of wireless and mobile networks has now made it possible
to extend electronic commerce to a new application and research area: mobile commerce,
defined as the exchange or buying and selling of commodities, services, or information
on the Internet through the use of mobile handheld devices. In just a few years, mobile
commerce has become the hottest new trend in business transactions. The future of
mobile commerce is bright, as shown by the following predictions:
• The dramatic growth in demand for smart mobile devices, specifically handhelds,

wireless handhelds, and smart cellular phones, through 2007 is shown in Figure 1
(Canalys, 2004, 2005, 2006, & 2008).

0
5000000

10000000
15000000
20000000
25000000
30000000
35000000
40000000

Q1
2003

Q3
2003

Q2
2004

Q4
2004

Q2
2005

Q2
2006

Q4
2007

Worldwide
total smart
mobile device
market

Figure 1: Worldwide total smart mobile device market.

• Cumulative sales of smartphones will reach 1 billion units by the first quarter of 2011

according to IDC, a market research company (Symbian Limited, 2006).
• Estimated worldwide shipments of the following four types of devices in 2007 were

ο Cellular phones: 1.12 billion (Strategy Analytics, 2008),
ο Laptops: 110 million laptops shipped in 2007, 33.8% growth from 2006 (IDC,

Corp., 2008),
ο PCs: 160 million desktop computers shipped in 2007, 4.3% growth from 2006

(IDC, Corp., 2008), and
ο Smartphones: 118 million, up 53% from 2006 (Canalys, 2008).

Mobile commerce is an effective and convenient way of enabling consumers to engage in
electronic commerce whenever they wish and from wherever they happen to be.
Realizing the advantages to be gained from mobile commerce, may retail companies have
begun to offer mobile commerce options for their customers to supplement the electronic
commerce service they already provide (Yankee Group, 2001). However, a tremendous
effort is required to understand and construct a mobile commerce system because it
involves such a wide range of disciplines and technologies. To address these difficulties,

MICS 2008 509

this chapter will separate mobile commerce systems into six components: (i) mobile
commerce applications, (ii) mobile handheld devices, (iii) mobile middleware, (iv)
wireless networks, (v) wired networks, and (vi) host computers. However, since each of
these components is sufficiently complex to be a research area in its own right, only the
elements specifically related to mobile commerce will be explained in detail. Lists of the
technologies used for component construction are given in the first part of this book and
other important issues, such as mobile security, are also discussed. Related research on
mobile commerce systems can be found in the excellent article by Varshney, Vetter, &
Kalakota (2000).

2 System Structures

This section illustrates the system structures of electronic and mobile commerce and
explains the procedures of mobile commerce transactions. A modular approach will be
used to study the systems.

2.1 An Electronic Commerce System Structure

Electronic commerce describes the manner in which transactions take place over
networks, mostly the Internet. It is the process of electronically buying and selling
goods, services, and information. An electronic commerce system is inherently
interdisciplinary and there are many different ways to implement it. Figure 2 shows the
structure of a traditional electronic commerce system and a typical example of such a
system. The system structure includes four components, some of which are at least partly
shared by mobile commerce systems: (i) electronic commerce applications, (ii) client
computers, (iii) wired networks, and (iv) host computers.

Figure 2: An electronic commerce system structure.

EC applications

Wired netw orks

 Database servers

 Web servers

 Host computers

Users

 User interface

Wired LAN/WAN

Users

EC application programs

 Host computers

association
bidirectional data/control f low

An EC System Structure A Typical Implementation

Client computers Desktop computers

 Databases

 Databases

MICS 2008 510

2.2 A Mobile Commerce System Structure

Much like the concept of e-commerce, mobile commerce is a type of business conducted
100% electronically through computer networks; m-commerce is a concept of buying and
selling goods and services via wireless networks with a mobile device. Compared to an
electronic commerce system, a mobile commerce system is much more complicated
because components related to mobile computing have to be included. Figure 3 shows
the structure of a mobile commerce system and an example of such a system that is
currently possible based on the existing technologies (Hu, Lee, & Yeh, 2004). The
system structure includes six components: (i) mobile commerce applications, (ii) mobile
handheld devices, (iii) mobile middleware, (iv) wireless networks, (v) wired networks,
and (vi) host computers. The network infrastructure for mobile commerce systems
consists of mobile middleware and wired & wireless networks. The wired networks
component has the same structure and implementation as that needed by an electronic
commerce system.

MC applications

Wired netw orks

 Database servers

 Web servers

 Host computers

 Users

 User interface

Wired LA N/WA N

 Users

MC application programs

 Host computers

assoc iation
bidirec tional data/control f low
optional component

 An MC Syste m Structure A Typica l Im plemention

 Mobile dev ices Internet-enabled PDA s

 Mobile middlew are WA P

 Wireless netw orks Wireless LA N

 Databases

 Databases

Figure 3: A mobile commerce system structure.

3 Applications

The emergence of electronic and mobile commerce creates numerous business
opportunities and applications. Electronic commerce, defined as the buying and selling
of goods and services and the transfer of funds through digital communications, includes
a wide variety of applications, such as auctions, banking, marketplaces and exchanges,
recruiting, and retailing, to name but a few. Mobile commerce applications not only
cover the electronic commerce applications, but also include new applications, e.g.,
mobile inventory tracking, which can be performed at any time and from anywhere by
using mobile computing technology.

MICS 2008 511

3.1 Electronic Commerce Applications

This sub-section discusses some new business models, which were not seen before,
created by electronic commerce. Other than the “buy-and-sell” model, the following list
gives some other common models created by e-commerce (Turban, et al, 2004):
• Affiliate marketing: Affiliate marketing is a marketing method, which allows other

Websites to receive a commission by selling your products or services. For the
example of Amazon.com’s Associates Program, the associates drive Internet traffic to
Amazon through specially formatted links that allow Amazon to track sales and other
activities. The partners can receive up to 10% in referral fees on all qualifying
revenue made through their links to Amazon’s products and services.

• Comparing prices: This method presents a list of services or products based on a
consumer’s specifications. mySimon.com is a comparison shopping site for apparel,
computers, electronics, jewelry, video games, and more. It gathers prices on millions
of products from thousands of stores, so customers can compare products and find the
best price before he or she buys.

• Customization and personalization: Customization or personalization is to design
and creation of content that meets a customer’s specific needs. For example, instead
of picking one from few standard models, Dell customers can specify their
requirements such as memory sizes and CPU models and Dell will build the systems
based on their specifications.

• Electronic marketplaces and exchanges: Electronic marketplaces are Internet
Websites acting as a meeting point between supply and demand and electronic
exchanges are a central marketplace with established rules and regulations where
buyers and sellers meet to trade futures and options contracts or securities. Electronic
marketplaces and exchanges provide benefits to both buyers and sellers because they
are more efficient than traditional ones.

• Electronic tendering systems: Tendering is potential suppliers bid competitively for a
contract, quoting a price to the buyer. Large buyers usually make their purchases
through a tendering (bidding) system, which is more effective and efficient with the
help of electronic commerce.

• Group purchasing: Large-quantity purchasing usually receives lower prices than
small-quantity purchasing does. Electronic commerce allows a group of customers or
organizations to place their orders together and negotiate for a better deal.

• Name your price: With this model, the product or service prices are set by customers
instead of sellers. Priceline.com is the first company applying this method. With
Priceline's “Name Your Own Price” hotel reservation service, customers choose the
star level of hotel they want, along with the desired neighborhood, dates and price
they want to pay. Priceline then works to find a hotel room at the customer's desired
price. Customers learn the specific hotel name and location after the purchase is
completed.

• Online auctions: Traditional auctions usually require bidders to attend the auctions,
whose items are limited. Online auctions allow bidders from everywhere to bid
products or services provided by various sellers without needing to show up.
eBay.com is the world's largest online auction site. It offers an online platform where
millions of items are traded each day.

MICS 2008 512

3.2 Mobile Commerce Applications

Mobile commerce applications cover almost everything in our daily lives such as
traveling and foods. Table 1 lists some major mobile commerce applications along with
explanations of one application related to map services (Sadeh, 2002).

Mobile
Category Major Applications Sponsors Clients

Advertising Targeted ads and location-based ads Business Travelers

Education Mobile classrooms and labs Schools and training
centers Students

Entertainment Games/images/music/video
downloads and on-line gaming

Entertainment
industry All

Health care Accessing and updating patient
records

Hospitals and nursing
homes Patients

Inventory
tracking and
dispatching

Product tracking and dispatching Delivery services and
transportation All

Retailing Paying at vending machines, and
checking product prices/information Retailers All

Traffic
Global positioning, routing services,
toll/parking paying, and traffic
advisories

Transportation and
auto industry Drivers

Travel and
weather Reservation services Airlines, hotels, and

travel agencies Travelers

Table 1: Major mobile commerce applications.

Map services provide various useful functions to mobile users. Some of the functions
include:
• Directions, which are driving/walking directions from the starting location to

destination,
• Maps, which include traditional clear maps,
• Local hangouts and businesses recommendations, which provide suggestions for

restaurant/gas-station/grocery-store/movie-theater, and
• Satellite imagery, which includes real images from satellites.
A few mobile map services are available. Google Maps for Mobile (n.d.) lets users find
local hangouts and businesses across town or across the country—right from their
phones. Figure 4 shows three screenshots from the Google’s map services where

(a) a clear map of the location with a postal code 58202,
(b) directions from the postal code 58201 to 58203, and
(c) a satellite map of (b) and a menu.

MICS 2008 513

(a)

(b)

(c)

Figure 4: Screenshots of the Google’s map services showing (a) a clear map, (b)
directions, and (c) a satellite image of (b) and a menu.

4 Client Computers or Devices

Desktop and laptop computers are on the client-side of electronic commerce systems,
whereas mobile handheld devices are for mobile commerce systems. An Internet-enabled
mobile handheld device is a small general-purpose, programmable, battery-powered
computer that is capable of handling the front end of mobile commerce applications and
can be operated comfortably while being held in one hand. It is the device via which
mobile users interact directly with mobile commerce applications. The differences
between these two client machines are given in Table 2. There are other kinds of
computers such as tablet computers, which are a special kind of PCs.

 Desktop and Laptop Computers Mobile Handheld Devices

Browser Desktop browsers Microbrowsers

Functions Full Limited

Major Input Methods Keyboards and mice Stylus and soft keyboards

Major Output Methods Screens and printers Screens

Mobility Low High

Networking Wired Wireless and mobile

Transmission Bandwidth High Low

Power Supply Electrical outlets Batteries

Screen Normal Small

Size Desktop Handheld

Weight Normal Light

Table 2: Differences between desktop & laptop computers and handheld devices.

MICS 2008 514

4.1 Client-Side Programming

Mobile or electronic commerce application programming involves a variety of
technologies and languages. It consists of two kinds of programming:
• Client-side programming, which is to develop software running on client computers

or devices. It is mostly related to web interface construction. Popular languages for
web interface construction include CSS, DOM, (X)HTML, JavaScript, WML,
WMLScript, XML, XSL(T), etc. Other than web interface construction, client-side
programming can be used to build client-side applications such as address and
schedule books.

• Server-side programming, which is to develop software running on servers. The
software normally receives requests from browsers and sends the results from
databases/files/programs back to the browsers for display. Popular server-side
languages include C/C++, Java, Perl, PHP, etc. Other than web applications, it can be
used to implement numerous applications such as instant messaging and telephony.

This sub-section discusses web interface construction. The server-side programming will
be covered in the section of Host Computers. Other than building a web system from
scratch by using various languages and tools, some common software packages are
available for developing web applications easily and quickly. Those packages can be
divided into three categories: (i) multimedia editors, (ii) HTML editors, and (iii)
integrated development environments (IDEs):
• Multimedia editors, which are used to create, edit, and post animation, audio, images,

and videos on web pages. Adobe Systems, Inc. provides two popular multimedia
editors:
ο Flash, which is an authoring environment for creating animation, advertisements,

various web-page components, to integrate video into web pages, and more
recently, to develop rich Internet applications. Flash Professional is an IDE while
Flash Player is a virtual machine used to run, or parse, the Flash files.

ο Photoshop, which is image-editing and graphics creation software.
• HTML editors, which are used to create static web pages. Three popular HTML

editors are
ο Adobe Dreamweaver, which is WYSIWYG (What You See Is What You Got)

authoring software that allows web developers to generate HTML and JavaScript
source code while viewing the site as they work.

ο Microsoft Expression Web, which is a design tool to create sophisticated
standards-based web sites. It combines both FrontPage and Visual Studio
technologies in a new user interface for creating XHTML, CSS, XML, XSLT, and
ASP.NET 2.0. Where appropriate, the user interface and features of Expression
Web and Visual Studio are identical.

ο Microsoft SharePoint Designer, which will enable information workers to
develop applications and solutions on top of the SharePoint platform to enable
organizational agility, business process automation, and get the value of Microsoft
Office applications on the SharePoint platform.

The category of integrated development environments (IDEs) will be covered in the
section of Host Computers.

MICS 2008 515

5 Mobile Middleware and Wireless Networks

Mobile middleware and wireless networks are for mobile commerce systems only. The
mobile middleware is optional, but the system will be greatly simplified with it. A
mobile commerce system is already complicated enough. Without mobile middleware,
the mobile system becomes even more complicated.

5.1 Mobile Middleware

The term middleware refers to the software layer between the operating system and the
distributed applications that interact via the networks. The primary mission of a
middleware layer is to hide the underlying networked environment's complexity by
insulating applications from explicit protocols that handle disjoint memories, data
replication, network faults, and parallelism (Geihs, 2001). The major task of mobile
middleware is to seamlessly and transparently map Internet contents to mobile handheld
devices that support a wide variety of operating systems, markup languages,
microbrowsers, and protocols. WAP and i-mode are the two major kinds of mobile
middleware:
• WAP (Wireless Application Protocol), which is a secure specification that allows

users to access information instantly via mobile handheld devices such as smart
phones and PDAs (Open Mobile Alliance Ltd., n.d.). WAP supports most wireless
networks including CDPD, CDMA, GSM, PDC, PHS, TDMA, FLEX, ReFLEX,
iDEN, TETRA, DECT, DataTAC, and Mobitex. WAP is supported by all operating
systems.

• i-mode, which is a mobile Internet service that has caused a revolution in both
business and private lifestyles in Japan (NTT DoCoMo, Inc., 2007). 46 million
subscribers have been attracted to this service since its debut in February 1999 and
currently more than 95,000 Internet sites are providing a variety of contents.

Table 3 compares i-mode to WAP.

 WAP i-mode

Developer Open Mobile Alliance NTT DoCoMo

Implementation A protocol A complete mobile Internet service

Web Language WML (Wireless Markup
Language) CHTML (Compact HTML)

Major
Technology WAP Gateway TCP/IP development

Key Features Widely adopted and flexible Highest number of users and easy to
use

Table 3: A comparison between the two major types of mobile middleware.

MICS 2008 516

5.2 Wireless Networks

Wireless communication capability supports mobility for end users in mobile commerce
systems. Wireless LAN, MAN, and WAN are the major components used to provide
radio communication channels so that mobile service is possible. The wireless telephone
technology includes several generations as follows:
• 0G (1945-1973), which refers to mobile radio telephone systems.
• 1G (1980s), which is analog cellphone standards including NMT and AMPS.
• 2G (1990s), which is digital cellphone standards divided into TDMA-based and

CDMA-based standards depending on the type of multiplexing used.
• 2.5G (late 1990s), which is implemented a packet switched domain in addition to the

circuit switched domain.
• 3G (early 2000s), which includes wide-area wireless voice telephony and broadband

wireless data, all in a mobile environment.
• 4G (2000s), which provides end-to-end IP solution where voice, data and multimedia

streaming can be served at higher data rates with anytime-anywhere concept.
A wide variety of technologies and standards for wireless telephones are available. Some
of the major ones include:
• CDMA (Code Division Multiple Access), which is based on a spread spectrum

method. The method transmits a signal by “spreading” it over a broad range of
frequencies.

• GSM (Global System for Mobile communications), which is one of the most popular
standards for mobile phones and is specifically developed to provide system
compatibility across country boundaries, especially the Europe.

• IEEE 802.11, which includes an encryption method, the Wired Equivalent Privacy
algorithm. WLAN (Wireless Local Area Network), based on 802.11, allows a mobile
user connecting to a local area network (LAN) through a wireless (radio) connection.

• IEEE 802.16, which ensures compatibility and interoperability between broadband
wireless access equipment. WiMAX (Worldwide Interoperability for Microwave
Access), based on 802.16, provides wireless data over long distances, in a variety of
different ways, from point to point links to full mobile cellular type access.

Table 4 shows major technologies and standards used in the wireless telephone
generations.

2G
(10 Kbps – 40
Kbps)

2.5G
(20 Kbps – 171
Kbps)

3G
(60 KBps – 54
Mbps)

4G
(50 Mbps – 1
Gbps)

CDMA track IS-95 CDMA 2000 W-CDMA UMTS Revision
8 (LTE)

GSM track GSM GPRS EDGE
IEEE 802.11 track Wi-Fi
IEEE 802.16 track WiMAX

Table 4: Wireless telephone technology evolution.

MICS 2008 517

5.3 Wired Networks

Wired networks are used to transmit data for electronic and mobile commerce. This
component is a requirement for electronic commerce, but not necessary for mobile
commerce, though mobile commerce would be greatly benefited by applying wired
networks to its data communication because data transmission using wireless networks is
more expensive than using wired networks. Among several types of wired networks,
three major types are
• Local Area Network (LAN), which spans a relatively small space of only a few square

kilometers or less such as an office building. It generally offers a throughput of 10
Mbps or 100 Mbps and is usually based on Ethernet technology.

• Metropolitan Area Network (MAN), which spans a geographical area greater than an
LAN but less than a WAN such as few city blocks or a whole city. MAN typically
uses wireless infrastructure or optical fiber connections to link its sites and it may
connect multiple LANs together.

• Wide Area Network (WAN), which spans a wide geographic area, such as state or
country, and uses specialized computers to connect smaller networks, such as LANs.
It generally offers a throughput of 1.5 Mbps or more. Two examples of WAN are
the Internet, the largest network in the world, and an airline corporation using WAN
to connect its offices around the world.

6 Host Computers

This component is similar for both electronic and mobile commerce systems because host
computers are usually not aware of the differences among the targets, browsers or
microbrowsers, they serve. A user request such as checking out or adding items to the
shopping cart is actually processed at a host computer, which contains three major kinds
of software specifically for electronic or mobile commerce transactions: (i) web servers,
(ii) databases and database servers, and (iii) application programs and support software.
Figure 5 shows a structure of three-tiered client-server web systems.

Figure 5: Three-tiered client-server web system structure.

MICS 2008 518

6.1 Web Servers

A web server is a server-side application program that runs on a host computer and
manages the web pages stored on the web site’s databases or files. There are several
kinds of web server software including public domain software from NCSA and Apache,
and commercial packages from Microsoft, Netscape, and others. Three popular web
servers are
• Apache HTTP servers, which are a collaborative software development effort aimed

at creating a freely-available source code implementation of an HTTP (web) server.
They are jointly managed by a group of volunteers located around the world. Since
April 1996, Apache has been the most popular HTTP server on the Internet. It was
developed in early 1995 based on code and ideas found in the most popular HTTP
server of the time, NCSA httpd 1.3 (Apache Software Foundation, n.d.).

• Microsoft’s Internet Information Services (IIS), which provide a web application
infrastructure for all versions of Windows servers (Microsoft, Corp., n.d). It is the
world's second most popular web server after Apache.

• Sun Java System Web Servers, which provide organizations with a single deployment
platform for web services, JavaServer Pages (JSP), Java Servlet technologies, NSAPI
and CGI (Sun Microsystems, Inc., n.d.). They also offer built-in HTTP reverse-proxy
capabilities to provide a highly scalable HTTP front-end to application servers or
other HTTP origin servers.

6.2 Database Servers

A database server manages database access functions, such as locating the actual record
being requested or updating the data in databases. Some popular databases include:
• IBM DB2: DB2 9 is a hybrid data server with management of both XML and

relational data. It includes the following major features:
o XML data store,
o integration with relational data,
o Eclipse-base developer workbench, and
o integration with leading application infrastructures like PHP, Java, and .NET

• Microsoft: Microsoft provides two kinds of databases: (i) Access for desktop
computers and (ii) SQL Server for the server engines in client-server solutions:
ο Access: The Microsoft Access is a full-featured multi-user relational database

management system that designed for the Microsoft Windows operating systems.
It makes extensive use of drag-and-drop and visual design for queries, forms, and
reports.

ο SQL Server: The SQL Server is a comprehensive database software platform
providing enterprise-class data management and integrated business intelligence
(BI) tools. The SQL Server data engine lies at the core of this enterprise data
management solution.

• MySQL: MySQL is an open-source, multithreaded, multi-user SQL relational
database management system. It is used in more than 11 million installations ranging
from large corporations to specialized embedded applications. Not only is MySQL

MICS 2008 519

the world's most popular open source database, it is a key part of LAMP (Linux,
Apache, MySQL, PHP/Perl/Python), a fast growing open source enterprise software
stack. More and more companies are using LAMP as an alternative to expensive
proprietary software stacks because of its lower cost and freedom from lock-in.

• Oracle databases, whose newest version is Oracle10g. The following list shows the
Oracle database migration (Oracle, n.d.):
ο Oracle7.2, which is a client-server based relational database management system

(RDBMS). The query language is based on SQL.
ο Oracle8i, which is an RDBMS with object capabilities included. Java has been

added to the database capabilities.
ο Oracle9i, which features full XML database functionality with the new Oracle

XML DB feature, and other improvements.
ο Oracle 10g, which is the first database designed for enterprise grid computing.

Grid computing provides an environment in which individual users can access
computers, databases, and experimental facilities simply and transparently,
without having to consider where those facilities are located.

Other than the server-side database servers, a growing trend is to provide a client-side
mobile database or an embedded database to a handheld device with a wide range of
data-processing functionality. Some leading embedded-databases are Progress Software
databases, Sybase’s Anywhere products, and Ardent Software’s DataStage (Ortiz, 2000).

6.3 Application Programs and Support Software

Application programs and support software are responsible for handling server-side
processing. Three generations of programming languages and environments are used for
server-side web application development:
1. 1st generation: Traditionally, conventional programming languages such as C/C++

and Java are used for web development.
2. 2nd generation: Dynamic programming languages such as Perl and PHP gradually

replace conventional languages for web development. A dynamic language basically
enables programs that can change their code and logical structures at runtime, adding
variable types, module names, classes, and functions as they are running. These
languages frequently are interpreted and generally check typing at runtime.

3. 3rd generation: Recently, web development uses a couple of IDEs (Integrated
Development Environments) including: (i) Adobe ColdFusion, (ii) Microsoft
ASP.NET, (iii) Microsoft Visual Studio, (iv) NetBeans IDE, (v) Ruby On Rails
(ROR), (vi) Sun Java Studio IDE, and (vii) Zend Core.

7 Summary

The emerging wireless and mobile networks have extended electronic commerce to
another research and application subject: mobile commerce. A mobile or an electronic
commerce system involves a range of disciplines and technologies. This level of
complexity makes understanding and constructing such a system an arduous task. To

MICS 2008 520

facilitate this process, this article divided a mobile or an electronic commerce system into
six components, which can be summarized as follows:
1. Applications: Electronic commerce applications are already broad. Mobile commerce

applications not only cover those applications, but also include new applications,
which can be performed at any time and from anywhere by using mobile computing
technology.

2. Client computers or devices: Desktop and notebook computers are for electronic
commerce and mobile handheld devices, including smart cellular phones and PDAs,
are used to perform mobile transactions. Numerous mobile devices are available in
the market, but most use one of three major operating systems: Palm OS, Microsoft
Windows Mobile, and Symbian OS. At this moment, Symbian OS leads the market,
although it faces a serious challenge from Windows Mobile.

3. Mobile middleware (mobile commerce systems only): Mobile middleware is used to
facilitate mobile communication. It is not required for mobile commerce systems, but
it can greatly reduce the complication of mobile communication. WAP and i-mode
are the two major kinds of mobile middleware. WAP is widely adopted and flexible,
while i-mode has the highest number of users and is easy to use.

4. Wireless networks (mobile commerce systems only): Wireless communication
capability supports mobility for end users in mobile commerce systems. Wireless
LAN, MAN, and WAN are major components used to provide radio communication
channels so that mobile service is possible. In the WLAN category, the Wi-Fi
standard with 11 Mbps throughput dominates the current market. It is expected that
standards with much higher transmission speeds, such as IEEE 802.11a and 802.11g,
will replace Wi-Fi in the near future.

5. Wired networks: This component is a requirement for electronic commerce systems,
but not necessary for mobile commerce systems, though mobile commerce systems
will be greatly benefited by applying wired networks to its data communication
because data transmission using wireless networks is more expensive than using
wired networks. Among several types of wired networks, three major types are (i)
LAN (Local Area Network), (ii) MAN (Metropolitan Area Network), and (iii) WAN
(Wide Area Network) based on the sizes of their covering areas.

6. Host computers: Host computers process and store all the information needed for
mobile and electronic commerce applications, and most application programs can be
found here. They include three major components: (i) web servers, (ii) database
servers, and (iii) application programs and support software.

Another important issue about mobile and electronic commerce systems is application
programming. Electronic and mobile commerce programming, involving a wide variety
of technologies and languages, consists of two kinds of programming:
• Client-side programming, which is to develop software running on client computers

or devices. It is mostly related to web interface construction. The popular languages
for web interface construction include CSS, DOM, (X)HTML, JavaScript, WML,
WMLScript, XML, XSL(T), etc.

• Server-side programming, which is to develop software running on servers. The
software normally receives requests from browsers and sends the results from
databases/files/programs back to the browsers for display. The popular server-side
languages include C/C++, Java, Perl, PHP, etc.

MICS 2008 521

 References

Apache Software Foundation. (n.d.). Apache HTTP Server Project. Retrieved June 21,

2007, from http://httpd.apache.org/
Canalys. (2004). Global Smart Phone Shipments Treble in Q3. Retrieved December 3,

2006, from http://www.canalys.com/pr/2004/r2004102.pdf
Canalys. (2005). Global Smart Mobile Device Sale Surge Past 10 Million in Quarter.

Retrieved April 25, 2006, from http://www.canalys.com/pr/2005/r2005041.pdf
Canalys. (2006). Smart Mobile Device Market Growth Remains Steady at 55%.

Retrieved December 3, 2006, from http://www.canalys.com/pr/2006/r2006071.pdf
Canalys. (2008). Smart Mobile Device Shipments Hit 118 Million in 2007, up 53% on

2006. Retrieved March 6, 2008, from http://www.canalys.com/pr/2008/r2008021.pdf
Geihs, K. (2001). Middleware challenges ahead. IEEE computer, 34(6), 24-31.
Google. (n.d.). Google Maps for Mobile. Retrieved March 12, 2007, from

http://www.google.com/gmm/
Hu, W.-C., Lee, C.-w., & Yeh, J.-h. (2004). Mobile commerce systems. In Shi Nansi,

editor, Mobile Commerce Applications, pages 1-23, Idea Group Publishing.
IDC, Corp. (2008). PC Market Rebounds with Strong Demand for Portables, Fueling

Hopes for Holiday Sales, According to IDC. Retrieved January 23, 2008, from
http://www.idc.com/getdoc.jsp?containerId=prUS20995107

Microsoft, Corp. (n.d) Internet Information Services. Retrieved June 15, 2007, from
http://www.microsoft.com/WindowsServer2003/iis/default.mspx

NTT DoCoMo, Inc. (2007). i-mode. Retrieved June 12, 2007, from
http://www.nttdocomo.com/services/imode/index.html

Open Mobile Alliance Ltd. (n.d.). WAP Forum. Retrieved from June 13, 2007, from
http://www.openmobilealliance.org/tech/affiliates/wap/wapindex.html

Oracle. (n.d.). Oracle Databases. Retrieved May 25, 2007, from
http://www.oracle.com/database/index.html

Ortiz, S. (2000). Embedded databases come out of hiding. IEEE Computer, 33(3), 16-19.
Sadeh, N. (2002). M-commerce: Technologies, services, and business models, pp. 177-

179, New York: John Wiley & Sons.
Strategy Analytics. (2008). Nokia Reaches 40% Share as 332 Million Cellphones Ship

Worldwide in Q4 2007. Retrieved February 27, 2008, from
http://www.strategyanalytics.net/default.aspx?mod=ReportAbstractViewer&a0=3755

Sun Microsystems, Inc. (n.d.). Sun Java Sysem Web Server. Retrieved June 19, 2007,
from http://www.sun.com/software/products/web_srvr/home_web_srvr.xml

Symbian Limited. (2006). Fast Facts. Retrieved December 10, 2006, from
http://www.symbian.com/about/fastfacts/fastfacts.html

Turban, E., King, D., Lee, J., & Viehland, D. (2004). Electronic Commerce 2004: A
Managerial Perspective. Prentice Hall.

Varshney, U., Vetter, R. J., & Kalakota, R. (2000). Mobile commerce: A new frontier.
IEEE Computer, 33(10), 32-38.

Yankee Group. (2001). Over 50% of Large U.S. Enterprises Plan to Implement a
Wireless/Mobile Solution by 2003. Retrieved December 10, 2002, from
http://www.yankeegroup.com/public/news_releases/news_release_detail.jsp?ID=Pres
sReleases/news_09102002_wmec.htm

MICS 2008 522

A Live View Of The World

Douglas J. Hickok, B.S.
Computer Science

University of Wisconsin – Platteville
Platteville, Wisconsin 53818

hickokd@gmail.com

Dr. Mike Rowe
Software Engineering

University of Wisconsin – Platteville
Platteville, Wisconsin 53818

rowemi@uwplatt.edu

Abstract

A picture may be worth a thousand words, but none of those words are “now”. Internet
enabled webcams offer a sense of “now”, and combining them into a single world view
was a tempting idea. With the college Engineering Expo rapidly approaching, the RAD
(Rapid Application Development) software process was utilized to create a fully
functional, high impact demonstration in a tight timeframe. With some additional work,
the project could end up a useful tool for geography teachers and anyone with an interest
in seeing the world.

MICS 2008 523

1 Introduction

The “Live View of the World” was originally demonstrated at the 2007 University of
Wisconsin – Platteville Engineering Expo. It's a web-based program which combines
webcams from all around the world into a single map in order to convey what the world
looks like at that minute. This paper details the design choices that were taken, the
challenges that were faced, the public reaction during the Expo, and how the system can
be improved. This project proves that with an ideal software process, a good idea can
come to life and capture the interest of others.

2 Design and Implementation

The idea to merge webcams with a world map came only two weeks before Engineering
Expo, on the last possible day to register a project. With my software engineering
background, I knew better than to sit down and start coding whatever came to mind.
Good decisions needed to be made in order to complete this project on time.

The obvious application development process that was needed was RAD. [1] RAD, short
for Rapid Application Development, is geared towards very fast development with
reduced features, usability, and execution speed. It focuses on keeping it simple, but also
keeping good quality despite the lack of features.

The high level requirements for the system were as follows:
● The system shall be web based.
● Live webcam images shall be plotted onto a map.
● The live webcams shall not be abused.
● The map should be zoomable.
● The final result shall look uncluttered and presentable.

Making the system web based instantly made it available to anybody who wanted to
check it out. It also kept the system cross-platform. Most importantly though, it allowed
it to be friendly to the webcam providers (discussed later).

Most people's first reaction would be to implement this in the Google Maps API.
However, the result isn't as elegant as you might think. LiveLook [2] and Goocam [3]
currently does this, and the result is a cluttered map of pegs. In order to see any of the
cameras, the peg must be clicked to open the balloon containing the image. For “A Live
View of the World”, the pegs had to go. At the time, the Google Maps API only allowed
pegs, making the API a bad choice for a presentable implementation.

Instead, I chose to implement the project in PHP. PHP offered rapid development
potential due to it's image manipulation functions and it's ability to easily pull a remote
image. Rapid development was aided by the use of XAMPPlite, a free framework that

MICS 2008 524

includes PHP and an Apache web server that runs locally.

The design for the core code was to simply plot a list of clickable images on a map. The
list of images was originally intended to be kept in a database for easy maintenance, but
the feature resulted in unneeded complexity that made no difference to the intended
audience. It was decided that the easiest route was to place them in a comma separated
text file along with their GPS coordinates.

Zooming capabilities were needed in order to get a better view of a specific continent or
country. The view of the entire world wouldn't be able to show much detail in each
region. Also, zooming in on the world map would result in pixilation of the map image
itself. True zooming was an overly complex option, so it was decided that fixed maps
should be used instead.

The resulting core code was able to generate a webpage with links to various maps, with
the currently selected map appearing below it. The map showed a thumbnail sized live
image of each webcam centered at the webcam's approximate GPS location. Each
webcam was clickable, and clicking it took the user to the full sized original live image.
The project was simple and looked superb.

3 Maps

3.1 Process

Due to time constraints, it was decided that the project should have maps for the world
and for each large land mass. Maps were created for North America, South America,
Europe/Asia, Africa, and Australia. The best webcams from each of those were included
in the world map.

The base maps were generated using Google Maps. A small number of screenshots were
combined into a single larger map image. To remain compliant with the Terms of
Service, the copyright was added to the web page. Nonetheless, this specific use of
Google Maps remains questionable, and is further discussed in the Future Work section.

3.2 Challenges

Mapping is surprisingly complicated when trying to do it manually. The Earth is round,
and the image must be flat. The specific map projection makes plotting GPS points into a
math problem, and plotting those points to a pixel value on the final image requires some
scaling and map calibration.

Google Maps is known to use a Mercator map projection. [4] Luckily, functions exist

MICS 2008 525

that can crunch the math and convert the GPS value to a global pixel value. [5] Since
none of the maps for the project correspond to the resulting pixel value, the values need
to be aligned and scaled. Each map has a manually aligned border associated with it.
The pixel values and corresponding GPS values were found for opposite corners of the
map image, which is needed for the aligning and scaling functions. Finally, we are able
to center the webcam thumbnail image on this calculated point, assuming it is within the
bounds of the map. PHP functions take care of making the thumbnail and plotting it on
the map image.

4 Webcams

4.1 History

The first webcam went live in 1991, and was pointed at the University of Cambridge
Trojan Room coffee pot. [6] The coffee was shared by dozens of people, some of which
were inconveniently far away. The live image saved them countless trips to an empty
pot.

Since then, cameras for computers have gotten smaller and cheaper, to the point of being
included for free when buying a new computer. With free software, a computer's camera
can be made available to the Internet. To skip the whole computer part, webcams are
available that plug directly into the network such as the Axis webcam. [7] Some even
have wireless and allow the viewers to zoom, tilt, and pan the camera remotely.

Because of the cheap hardware and easy setup, people have been putting up webcams
wherever they can. One of the largest webcam aggregators is EarthCam. [8] Going
there, it's clear that webcams exist just about everywhere and point at just about anything.
These webcams are mostly put up by people at home out of interest. The government
puts up webcams to monitor traffic or display live views of landmarks. The weather
service encourages webcams for live weather views. Companies like to show off their
services, such as resorts or car lots. Even most large cruise ships have a webcam on
board. Anyone with an interest in showing off something or an interest in viewing
something remotely is likely to have a webcam.

4.2 Process

In order to keep a clean interface, manually picking webcams was the best option.
Because of this, the number of webcams could start sparse, and become more dense until
time was up for Expo. The general process was to pick an area on the map, browse for
the best webcams for that area, and find the GPS coordinates based on the IP address or
the description of where it was at. If several webcams were located too close, the best

MICS 2008 526

was chosen to keep things uncluttered.

All chosen webcams had to be outdoors for a better “world view”. Indoor cameras such
as office cams and fish cams didn't produce the desired effect. For viewing the world, the
outdoors seemed more appropriate. Cityscapes and landmarks were ideal, because
people could connect with them better.

4.3 Challenges

The major challenge in hunting for webcams is that the Earth is round. Therefore, every
image for half of the world is black, making it difficult to judge the quality of the
webcam or what it's pointing at. With sleep and classes in the way, webcam hunting took
place in the afternoon and evening when all of Europe and Africa were in the dark. I
quickly learned to do work on the America's early in the afternoon, and then switch to
Australia/Oceania and Asia later in the evening. Working on Europe and Africa required
an inversion of my sleep schedule.

Webcams run by the government or by corporations sometimes block direct requests.
The image is displayed correctly on their page, but a direct request results in an alternate
image saying we shouldn't steal the image. This was often discovered after I had done
the work to add it.

Since most webcams are run by typical people at home, they are extremely unreliable.
They only work when the technology is running and when the Internet connection is
working. Many webcams have a short lifespan, and some had even quit working within a
few days prior to Expo.

Some of the newer webcams use streaming video technology instead of an image. This
project was limited to using pictures, so the streaming video webcams were unable to be
used unless they also had the functionality to provide a picture. The Axis webcams offer
both types in parallel.

Image quality is normally questionable with outdoor webcams. The image is often
blurry, distorted, blocked, pixilated, or too small. There are relatively few high quality
cameras, and those were almost always included in this project. Sometimes though, a
bad image is all that's available for an area.

Speed was more of an issue than previously though. A lot of webcams are on very slow
Internet connections at remote places of the world, and are getting hit by people all over
the world. Most webcam aggregators direct clients directly to the image, which results in
every user getting their own copy from the webcam. This is especially hard on the
webcam providers. Timeouts or the inability to connect are common, and the images
sometimes download much slower than dial-up speeds. PHP doesn't have the ability to

MICS 2008 527

multithread, so image downloads have to run one at a time in order to add them to the
base map. If the download fails, the image is skipped. The entire process of
downloading all the images is known to take up to five minutes.

To increase the speed and make the program more friendly to the webcam providers,
caching has been added. A new image is only retrieved if the current cached image is
older than 15 minutes, plus or minus a few minutes. This way, a single image download
from the webcam provider can be reused for every client viewing the project at that time.
Also, each client view can take advantage of the cached versions and may only need to
pull a few new images, which speeds up the time to wait for the page to load.

5 Highlights
North America is fairly packed with webcams. The map goes down to Mexico, where
there are several beach cams along the coast and over to the tropical islands including
Bermuda, the Virgin Islands area, and Hawaii. The central US features live views of the
capital building in Washington DC, the St. Louis arch, the Golden Gate bridge, the view
from behind the Hollywood letters, the Elvis mansion, the Old Faithful Geyser, Pikes
Peak in the Colorado Rockies, and many more. The webcam at the University of
Wisconsin – Platteville was an important one to add, since the view was of the new
building construction on campus and was right by the Expo. Canada contains a few good
quality cams including one in Vancouver and one in Banff National Park. Northern
webcams include a few around Whitehorse, Yukon by Alaska and several weather cams
around Alaska.

South America has a sparse number of webcams, and almost all are of low quality.
There are a couple in Venezuela, Peru, southern Brazil, Argentina, Chili, and Uruguay.
A nice island cam exists off the coast of Brazil at Fernando De Noronha. Also, another is
approaching Antarctica at the South Georgia Islands. At the North, there are a few nice
webcams at the Panama Canal which show the ships traveling through.

To save time, Europe, Asia, and the Middle East were combined into a single map.
Europe is packed with webcams, similar to the US. The rest of the area is somewhat
sparse. There are only a few webcams in the Middle East, Russia, India, and Taiwon.
Korea, and the Middle East likely don't have webcams because of Internet censorship.
China likely has some, but are blocked by the country's firewall. [9] Japan has several
webcams, but only a few can be displayed in such a small area. Europe has the same
problem, since a single webcam image can take up a whole country. The project shows
the Eiffel Tower, Loch Ness, Venice, and several large cities and famous beaches.

Africa is perhaps the sparsest map in the project. On the north, there is a webcam in
Gibraltar, Morocco, Gambia, and two in Egypt. The main one in Egypt is aimed at the
pyramids, and the other is at a beach resort. Towards the south, there's one in Kenya, two

MICS 2008 528

in Tanzania, one in Seychelles, one in Mauritius, one in Namibia, and a few in South
Africa. One of them in South Africa is at a popular elephant watering hole. Lastly,
there's a lone cam in the middle of Africa in Cameroon. It was set up as part of a project
to de-gas lake Nyos in response to the threat of dangerous explosions. [10] The image is
updated via satellite twice a day so that the process can be observed remotely.

Australia and Oceania are full of beach cams. Beach cams are popular around most of
Australia, since that is where the population mostly is. Sydney area and some of the
other big cities have several other cams, including one at a winery, one pointing at the
Sydney Opera House, and several cityscapes. New Zealand has numerous webcams.
French Polynesia does also, but all seem to be owned by resorts. Webcams are sparse in
New Caledonia, Indonesia, Malaysia, Philippines, and Thailand.

The world view takes the best webcams from the other maps, including any famous
landmarks or any webcams which seem to best represent the area. A few additional ones
are added to the world view in places that are not covered by other maps. A hotel cam in
Iceland, and a cityscape in Honningsvag, far north Norway for example. The webcams
near the north pole are difficult to maintain, since they are easily damaged by shifting ice
and storms. [11] Believe it or not, but there are also six webcams around Antarctica at
various research stations, including one at the south pole.

6 Uses

It is often said that people don't know what they want until they see it. This seemed to
hold true during the Engineering Expo. Several people thought that it would make a
valuable tool for a variety of uses.

Teachers can make use of this project in teaching geography. Landmarks and areas of the
world can be taught visually and in relation to where they are on the world map. Students
can see the different types of climates in different areas. They can see where the snow is,
and watch as the hurricanes approach the coastal areas. They can observe the
architecture, and sometimes the people, of different cultures. Using this tool, it's easy to
prove to the youngsters that the Earth really is round, because half of the cameras are
black as night. If anything, the youngsters who saw this project at Expo seemed to
discover a new interest in geography, and a curiosity about other places in the world.

Weather services have already been making use of webcams, but don't seem to have the
same sort of interface as this project. Due to the size of Alaska, the FAA has set up a
network of weather cams to better predict the weather. [12] It uses a map interface, but
forces the user to zoom in to a region and select the camera location before actually
seeing the image. By plotting the thumbnails directly on the map, it may be easier to pick
out larger patterns, and to zoom in to cameras of interest without having to know their
name.

MICS 2008 529

HAM radio operators can even benefit from this project. They are able to speak to
people all over the world, but sometimes have no idea what the area is like that they are
speaking to, or at least what it's like right now. Taking a peek at the others' area should
give them something to talk about.

7 Future Work

Although the RAD software process worked well for getting this project done on time,
there are several areas that need improvement.

The first is to either get better maps or switch to the Google API. The Google API
currently allows custom icons, but it is unknown if there is a limit of different icons or if
it is able to display thumbnails of webcams. The static maps worked for the Expo demo,
but it would be very handy to pan and zoom to different locations. The Google API
would work very nicely for this, as long as it is able to display thumbnails.

The data would need to be moved to a database for easier querying. Also, the work of
requesting the images should be moved to the browser since it can do multiple
simultaneous requests. It should still go through a proxy on the web server though, so
that it can get all the benefits of a cache.

The last technical improvement would be to keep the philosophy of choosing the best
image for a specific location. Webcams should have a rating that is voted on by the
users, and the best rated webcam should appear in a location as the user zooms out. No
matter what zoom level the user is at, the shown webcams should be the best that are
available and should remain uncluttered.

Webcams should be user-contributed, since adding and maintaining webcams can be
overwhelming. Also, the system should support moving webcams. Most of the big
cruise ships have webcams on board, and a webpage listing their current GPS location.
Webcams have also been added to some taxis and semi trucks. It would be interesting to
be able to plot these in their current locations on the map.

8 Conclusion

The RAD process worked like a charm to get the Live View of the World looking good
for the Engineering Expo. The project brought positive reactions, and awakened
curiosity about the rest of the world. With some improvement and user-driven content,
the Live View of the World could prove to be a valuable tool.

MICS 2008 530

References

[1] Automated Architecture, Inc. “Rapid Application Development,” blueink.biz.
[Online]. Available: http://www.blueink.biz/RapidApplicationDevelopment.aspx.
[Accessed Mar. 6, 2008].

[2] LiveLook LLC, “Outdoor Webcams and Live Video”. [Online]. Available:
http://www.livelook.com. [Accessed Mar. 6, 2008].

[3] Butterfat, LLC, “Watch the unsuspecting,” Goocam. [Online]. Available:
http://www.butterfat.net/goocam/. [Accessed Mar. 6, 2008].

[4] Charlie Savage, “Google Maps Deconstructed”. [Online]. Available:
http://cfis.savagexi.com/articles/2006/05/03/google-maps-deconstructed. [Accessed Mar.
6, 2008].

[5] Various Authors, “Mercator,” OpenStreetMap. [Online]. Available:
http://wiki.openstreetmap.org/index.php/Mercator. [Accessed Mar. 6, 2008].

[6] Quentin Stafford-Fraser, “The Trojan Room Coffee Pot”. [Online]. Available:
http://www.cl.cam.ac.uk/coffee/qsf/coffee.html. [Accessed Mar. 6, 2008].

[7] Axis Communications, “Leader in network cameras and other IP networking
solutions”. [Online]. Available: http://www.axis.com/. [Accessed Mar. 6, 2008].

[8] EarthCam, Inc., “Webcam network”. [Online]. Available: http://www.earthcam.com/.
[Accessed Mar. 6, 2008].

[9] Ben Elgin and Bruce Einhorn, “The Great Firewall of China,” BusinessWeek.
[Online]. Available:
http://www.businessweek.com/technology/content/jan2006/tc20060112_434051.htm.
[Accessed Mar. 6, 2008].

[10] Michel Halbwachs, “Webcam on lake Nyos”. [Online]. Available: http://pagesperso-
orange.fr/mhalb/nyos/webcam.htm.[Accessed Mar. 6, 2008].

[11] National Oceanic and Atmospheric Administration, “Live from the North Pole”.
[Online]. Available: http://www.arctic.noaa.gov/gallery_np.html. [Accessed Mar. 6,
2008].

[12] Federal Aviation Administration, “Weather Cams Home”. [Online]. Available:
http://akweathercams.faa.gov/. [Accessed Mar. 6, 2008].

MICS 2008 531

Computer Supported Collaborative Learning in the
Geology Explorer

Otto Borchert, Brian M. Slator, Guy Hokanson, Lisa M. Daniels, John
Reber, Dan Reetz, Bernhardt Saini-Eidukat, Donald P. Schwert, Jeff Terpstra

World Wide Web Instructional Committee
North Dakota State University

Fargo, ND 58102-5057
{Otto.Borchert, Brian.Slator, Guy.Hokanson, Lisa.Daniels, John.Reber,

Dan.Reetz, Bernhardt.Saini-eidukat, Donald.Schwert,
Jeff.Terpstra}@ndsu.edu

Abstract

The Geology Explorer is a multi-user geologic simulation created by North Dakota State
University’s World Wide Web Instructional Committee (WWWIC). Students use the
Geology Explorer software to explore a mythical planet to learn geologic concepts like
rock and mineral identification and landform creation.

Until recently, cooperation between online explorers was limited to informal groups of
students in close physical proximity. Advances in the software have provided a
framework for group participation from remote virtual explorers. A recent pilot study
provides some initial thoughts and reactions for further research. Further experimentation
has shown positive results for use of the software in classroom settings.

This paper will describe the recent developments to the Geology Explorer software, both
pedagogically and organizationally, the difference between group and individual goals
and how educational theories contributed to their creation, results of the previous
experiments and research directions indicated by those results.

MICS 2008 532

Introduction

The Geology Explorer (http://oit.ndsu.edu) is a role-based virtual environment designed
to teach students about geology. Immersed in the environment, students learn to think and
act as professional geologists, studying rocks, minerals, interesting geologic areas, and
landforms. Students begin playing on a mythical planet called Oit, which according to the
fictional 'back story' has an orbit directly opposite the sun from Earth.

Players are asked to follow a series of goals that slowly become more and more difficult
via a process of scaffolding. Students begin the game by answering a series of questions
assessing pre-treatment attitudes towards science and computers, and determining initial
geological understanding. Each individual student is then free to explore the planet,
purchase instruments, and engage in the first task, rock and mineral identification.

Figure 1: A Waterfall on Planet Oit, with Rocks below. Navigation is achieved by clicking
on the compass points in the scene. To the right are buttons for navigating backwards

and reloading the scene, accessing a map of the planet, accessing a 'bookshelf' of
reference materials, selecting an instrument or tool, storing samples, and magnifying an

object. In this scene a player (upper left) is just floating into view from elsewhere on
Planet Oit.

The first geologic exploration module of the game continues the scaffolding philosophy.

MICS 2008 533

Students are assigned a specific mineral to locate and identify. They are given hints as to
the location of the mineral, but these prompts are progressively taken away as the student
proceeds through the module. Typically, they are asked to gain 500 points in this module.
They receive 100 points for finding a “primary” goal or the specific rock or mineral
suggested by the game. They also receive 25 points for identifying any other outcrop on
the planet.

To perform these rock and mineral identifications, students travel to virtual landscapes
that represent real-life geologic features, some examples include an arroyo, a desert, a
cutbank, and a glacier. A waterfall is pictured in Figure 1. Rocks and minerals are
highlighted by a white border while the mouse cursor is on them. This interface allows
students to perform experiments using tools and instruments "purchased" previously and
to eventually identify the outcrops using the scientific method.

Figure 2. A Cooperative Map. Players 'paint' the regions of the map using colors to
represent rocks and minerals. Note a region of Basalt has been painted into the center of
the region. Players in distant locations can share the map, and add their own coloring

using the "Get" button in the lower right-hand corner of the controls.

After completing this module, students are directed to a larger area where they are asked
to create a geologic map. A geologic map shows the location and distribution of rocks and
minerals within a particular geographical area (Skinner, 2004). A sample map is shown in
Figure 2. By completing this map, students are able to perform even more geologically
interesting tasks later, which currently includes a “true thickness” module, where students
are directed to find the shortest path through a particular rock unit in order to run a power
cable through a particularly unstable portion of rock.

MICS 2008 534

The game is completed after students finish a battery of post-assessment activities to
determine content knowledge acquisition and attitude changes that may have occurred
during the experience.

Background

The World Wide Web Instructional Committee (WWWIC) at North Dakota State
University is dedicated to the development of multi-user immersive virtual environments
for educational purposes. These environments drive students to learn through role-based,
inquiry driven simulation. Topics of interest include geology, biology, computer science,
anthropology, and economics through the Geology Explorer (Slator, et al., 2006), Virtual
Cell (McClean, et al., 2001), Programming Land MOOseum (Slator, et al., 2004), On-A-
Slant Virtual Village (Hokanson, et al., In Press), and Dollar Bay Economic Simulation
(Regan and Slator, 2002), respectively.

This paper focuses on the development and dissemination of formal cooperative activities
in the Geology Explorer. A number of educational theories were utilized to develop these
activities, and experiments performed to determine the effectiveness of the simulations.
These experiments have shown that motivation among group members increased
significantly as compared to individuals working alone.

Advantages of Collaborative Learning

A number of advantages for collaborative learning are enumerated in the literature and
include the following positive attributes for groups: they increase academic skills, make it
easier to root out misconceptions, teach collaborative work skills, show that the sum of
individual knowledge is greater than the parts, allow their members to develop social
skills, strengthen inter-group relations, as well as many other positive benefits.

Of utmost importance to this research is the ability of collaborative groups to increase
academic skills. This is cited throughout the literature (Kagan, 1994, Slavin, 1995,
Sharan and Sharan, 1978). By harnessing social constructivism, students are able to work
together doing hands-on tasks to gain a better understanding of the subject material. Our
research has shown significant increases in learning after using the Geology Explorer on
an individual basis (McClean, et. al., 2001). By incorporating group work into previously
individualized tasks, it is hoped that this improvement can be maximized.

Collaborative groups also excel at rooting out misconceptions (Brown, Collins, Duguid,
1989). For example, in a collaborative group, each student may get an opportunity to
explain how a particular concept works. If one of the students has a response markedly
different from others, the effective group can come to a consensus about which opinion is
correct. Note, however, that the group must be effective. If groupthink or the polling
problem are present, misconceptions can take hold (Koschmann et al., 1996; Janis,

MICS 2008 535

1972)).

The National Association of Colleges and Employers sponsors a survey every year called
Job Outlook that polls employers for the traits, skills, and qualities they look for in future
employees. Interpersonal skills, communication skills and teamwork skills rate first,
third, and sixth respectively in the 2004 survey (NACE, 2004). By giving students the
opportunity to work in groups and providing training on how to work effectively in those
groups, group members are able to build skills that will be useful throughout their
personal and occupational lives. As Brown, Collins, and Diguid (1989) state: “If people
are going to learn and work in conjunction with others, they must be given the situated
opportunity to develop those skills”.

Feltovich, et al. (1996) focus on how the sum of individual knowledge is greater than the
composite parts. When individual students become experts at a particular field, new
points of view that are present when working in a group can create a synergy of
intellectual endeavors. Each individual provides a different piece of the puzzle by having
his own unique point of view, but by working together they can create a masterpiece of
greater combined understanding.

Goldman (1996) provides an alternative analysis of how often learning moments
occurred within a high school physics class by using a software package designed to help
students learn about light and its properties. Despite teacher interaction, students tended
to talk quite a bit about non-class related activities. They still completed the work, but in
the process of learning about light and reflection, they learned important social skills
which are equally necessary later on in life.

One of the advantages of cooperative work is the strengthening of inter-group relations.
People in groups tend to relate better to each other. As noted in Slavin (1995), this is quite
evident in racially diverse school populations. Well created situations can strengthen
relations between students with different racial backgrounds. This is also true for students
who are academically challenged. In a competitive environment, students who aren't
performing to normal standards are easy targets for emotional abuse and verbal taunting.
In a cooperative environment, students depend on each other to do well, and as such, will
provide support to those group members who are struggling to understand the material.
Cooperative work also increases self esteem, time on task, and altruism. It decreases
disruptive activity, creates a more internal locus of control for students and creates an
environment where academic endeavors are considered positive, where students enjoy
class, school, and other classmates (Slavin, 1995).

Brown, Collins, and Diguid in their seminal paper on Situated Cognition also listed a
number of features that pervade collaborative learning. They claim that collaborative
learning groups provide for collective problem solving, allow students to perform
multiple roles, create opportunities to confront misconceptions and ineffective strategies,
and provide collaborative work skills (Brown, Collins, Duguid, 1989).

MICS 2008 536

Disadvantages of Collaborative Learning

Koschmann, et al. (1996) describes one of the primary problems of cooperative work,
called the “polling problem”. The polling problem occurs when dominant members of a
group suppress the opinions of submissive members, resulting in a decrease in the
diversity of ideas. The polling problem also occurs when answers are gathered in a public
fashion with more submissive members. If a vast majority of group members agree to
begin with, a more submissive member may simply agree with the group, rather than
express doubts about the issue. If one group member is more insistent and others are not
willing to challenge inconsistencies or incorrect assumptions, the polling problem
becomes quite acute.

Janis (1972) defines “groupthink” as a decrease in critical thinking and contrary
viewpoints in a highly cohesive group. A group that is cohesive interacts well, has been
together for a long time, and the individuals in the group have similar views and values.
Highly cohesive groups tend to want to remain together with as little conflict as possible.
Groupthink occurs when individuals reinforce the cohesiveness of the group by singling
out people with dissenting opinions or views that run against group norms. In this
manner, students run the risk of not hearing a correct solution, because it runs against the
common beliefs of the group. More recent research by Baron (2005) indicates that there
are three main conditions for groupthink to occur. First, one must identify with the group;
they must feel they belong to a group having a common purpose. Second, the group must
have a common viewpoint or norms guiding its direction. Third, the group must feel that
they are unable to complete the task given to them, either because of its complexity or
because of the inexperience of the group members.

Slackers in groups result in decreased effectiveness because of a lack of cohesiveness.
Slackers can occur in any group for a variety of reasons including: lack of motivation,
esteem, and/or understanding. The antithesis of the slacker also causes difficulties. This
individual does not feel comfortable allowing other people to have control of his personal
goals, and so attempts to do vast majorities of the collaborative effort, resulting in a net
group loss (Middlecamp, 1997).

Group Composition

Kagan (1994) describes 4 different methods of assigning students into groups: in random
groups, by interest groups, in heterogeneous groups, and in homogeneous language
teams. Each of these methods have their advantages and disadvantages.

Placing students into random groups is the easiest to implement, but one of the least
effective forms of group composition. An instructor merely has to count students off into
groups of the desired size. The primary drawback to this method is the potential lack of
diversity within groups. A group with all low performing students would have no one to
turn to if they had problems, other than the instructor. A group of only high achieving
students would quickly outpace other groups, potentially causing boredom and classroom

MICS 2008 537

disruption.

Students can also be asked to form groups themselves. This will be the option preferred
by most students in the class, as they are able to be with friends. However, the
disadvantages in the random groups become more pronounced in this situation, as friends
are more likely to have similar interests and educational levels resulting in low levels of
diversity.

The most effective group composition method is to group students heterogeneously. This
is mainly accomplished by giving students a content quiz covering the material to be
presented before the lesson. These scores can then be coupled with gender, age, ethnicity,
and other demographic data to create groups that are diverse. These groups, when
working effectively, have the highest potential for learning, as high achieving students
teach the lower, and people with different background are able to share personal
perspectives of the topic at hand.

Homogeneity in groups is primarily effective when dealing with classes that are being
taught in a student's non-native language. Groups can then be created in which students
with similar native language ability are together. The group is still heterogeneous in
reference to other traits, but if a language translation issue comes up, they are able to
communicate in their native language to learn about the concept being presented.

Educational Theories on Collaborative Learning

There are a number of activities in educational research that have been studied and shown
to be quite effective in teaching students in group settings. This paper will focus on the
Jigsaw method, Student Teams - Achievement Divisions (STAD), and Group
Investigations (GI).

The Jigsaw method, originally developed by Aronson (1978) is used to study a vast body
of knowledge by groups of students. The instructor begins by introducing the subject
matter to be studied to the class as a whole, engaging student interest and brainstorming
how to divide the knowledge into pieces. Each group is assigned a piece of this
knowledge to study in-depth. Within the group, each individual student is tasked with
gathering information about a portion of the group's task. After gathering this
information, the group meets to combine the information into a cognizant, demonstrable
whole. Finally, each group presents their knowledge to the class as a whole, so that
students learn from each other and with each other.

Student Teams – Achievement Divisions is a method of teaching students that harnesses
both collaborative and competitive learning strategies. Students are placed
heterogeneously into groups of four individuals each. Each group is then given a lesson
to learn, the group members work together to learn the material. After they feel prepared,
the students take a quiz, where they are not allowed to help each other. Based on the quiz
scores, the group is given a number of points. As students spend more time in their group,

MICS 2008 538

they gain more points. After achieving certain milestones, the group is recognized and
rewarded for the work they have been doing (Sharan, 1994).

Group Investigation was created by Sharan and Sharan (1994). In this collaborative
technique, students follow the methodology of scientists developing research
presentations. First, the class as a whole discusses what topic they want to investigate.
They then break up into teams to research portions of the topic that are of interest to
them. They plan an investigation, perform research, and give a presentation of their
findings to their colleagues in the class. Although similar to the Jigsaw method, students
in a GI project get to choose the topics they will study themselves. They also require
knowledge and experience with group work beforehand, so that they can work effectively
as a research team.

Computer Supported Collaborative Learning

The field of Computer Supported Collaborative Learning provides a rich set of
implemented examples of software used to instruct students in groups. Three of the most
highly referenced projects are the Computer Supported Intentional Learning Environment
(CSILE), the Fifth Dimension Project (5thD), and the Electronic Network for Interaction.

CSILE was created by Scardmalia and Bereiter (1994) to allow students to grow a body
of knowledge in a hyperlinked environment. Students in a classroom research a particular
body of knowledge and create a class project showing notes, discussions, gathered facts,
and experiments performed. This body of knowledge can then be shared with other
classes or used by students around the world.

The Fifth Dimension project was originally developed to allow children to learn in a
collaborative, community based after school environment. The project has become a
template for a number of different locations, each implementing their own version of the
Fifth Dimension.

When starting a Fifth Dimension project, a college or university works with a local
school to build a community of integral members. At the base of the structure are the
children doing the learning via virtual and real-world based activities. The children are
taught by graduate and undergraduate students in education, psychology, and other
interested disciplines. These students learn about research in their field through
experience in the classrooms. At the top of the Fifth Dimension are the college professors
that provide initial instruction and guidance for the project and are a source of volunteers
for the project. The entire structure is built with the support of the surrounding
community which provides space and sustainability (Brown and Cole, 2000).

ENFI was produced at Gallaudet University as a method of teaching hearing-impaired
students to write English in a computer-based collaborative environment. The first ENFI
network consisted of what would be recognized today as an instant messaging program.
The teacher and students each had their own computer running the main ENFI client

MICS 2008 539

program. This program consisted of a window which displayed what was written by class
members and a region where individuals were able to type in their own message. This
initial ENFI network spread across the country to many different colleges and universities
(Bruce, Peyton, Batson, 1993).

Group Goals

When creating group goals, effort must be exerted to minimize the disadvantages of
collaborative groups. Kagan (1994) discusses a set of principles for collaborative group
learning he calls PIES, which stands for Positive Interdependence, Individual
Accountability, Equal Participation and Simultaneous Interaction. These four principles,
when followed while creating group goals decreases freeloading and one person doing all
the work (described above).

Positive Interdependence refers to the fact that all group members need all other members
to succeed to complete the goal. All group members are needed and they each contribute
to the overall goal. Each member depends on the others to complete the task at hand.

Individual Accountability means that each group member must complete their part of the
task for the group to succeed. On the surface, this seems obvious, however, not only does
each person need to complete their portion, but all group members must be able to see the
portions completed. Each person needs to feel that they have contributed to the group
effort, and they see that by looking at each person's contribution.

Not only do group members have to see that others have completed a portion of the tasks,
they need to see that equal portions have been completed by each member. Equal
Participation refers to this concept. By seeing that all group members have had an equal
share of the work, students feel that the exercise has been fair.

Finally, Simultaneous Interaction refers to the fact that all group members must be able to
work on the problem together. Individuals need an opportunity to learn from one another
as they progress through the task. By working on a task simultaneously, students are able
to work together, teaching and learning the material as presented.

Geology Explorer Group Interface

The Geology Explorer is built on a client-server architecture, with a Java-based client and
LambdaMOO (Curtis 1997) based server. Both the client and the server required
extensive changes to implement the group functionality. This paper will focus on the
client-side, user experience portion of the group interface.

Students can be placed into groups into methods similar to those listed in “Group
Composition” above and include: random teams, interest groups, and heterogeneous
groups.

MICS 2008 540

Students are placed into random teams via a web-based instructor-only interface.
Instructors are able to control all aspects of group formation, permissions, and logging
via this interface. Teachers can form a random number of groups or assemble them as
they see fit. They are also able to view what the group has done, what they have said, and
how many points they have scored. This interface is shown in Figure 3.

Figure 3: Instructor WWW Interface

Students are able to form groups themselves as well. This provides for the “interest
groups” method of group composition. Students create a new group, then search for
friends by login name or by a series of options, which include whether they are in the
same room, in the same class, or have the same goal.

Finally, students can be placed into groups heterogeneously. After completing the pre-
assessment portion of the game, students are asked to wait a predetermined amount of
time for everyone to finish the pre-assessment. At this deadline, students are placed into
groups based on demographic data and pre-assessment scores, with a high achieving
student, matched with a lower achieving student.

MICS 2008 541

Cooperative Goals

The modules in the Geology Explorer have also been re-written to conform to Kagan's
PIES principles. In the rock and mineral identification goal, students are asked to score
800 points, with each student needing to contribute at least 300 points to the group effort.
The point structure remains the same; Students get 100 points for correctly identifying a
primary goal and 25 points for identifying other outcrops.

In the geologic mapping exercise, students work together to identify one outcrop of each
type, then work on the geologic map cooperatively. Students take turns drawing on the
map using a token interface. While one student has the token, the other is able to view the
map being drawn and can chat with other player, working together to complete the map.

Figure 4: The Main Group Interface

Experiment

There have been two major experiments testing the efficacy of the Geology Explorer
group interface. Both were performed at North Dakota State University as a required
(graded) assignment in a freshman level geology course. The first was performed in the
Fall of 2004 (Brandt, et al., 2006). This pilot study had two main functions: 1) to act as a
testbed for the newly developed interface, so that any errors could be corrected for the
full experiment and 2) to determine initial completion rates which were used to measure
motivation and 3) examine inter-student conversations, which were measured in words
typed. A total of 309 students played the individualized version of the Geology Explorer,
while 19 groups of two volunteered to test the group interface.

No formal statistics was performed on the fall 2004 data, but results appeared promising,
and the pilot study revealed a number of issues that were present in the technology. In
Brandt et al. (2006), it was shown that all of the cooperative players finished the game,

MICS 2008 542

while only 90% finished in the individualized group. Some initial data also pointed to
added virtual collaboration between group members,.

Students are able interact by double clicking on their avatar to make an announcement to
the whole room, or by double clicking on another person's avatar to talk to just that
person. This results in a “text balloon” message being sent. Also, group students are able
to chat with each other in a chat room dedicated to group interactions. These interactions
are listed as “Group Interactions”.

In fall 2006, another experiment was completed to test the efficacy of the learning goals
to teach geological concepts (Borchert, 2008). In this experiment, 224 students worked as
individuals while 177 worked in teams of two.

There were three extra modules added between 2004 and 2006 which explain the added
rows in 1: embedded assessments, the Intro Goal, and the true thickness module. In 2004,
assessments were given via a web page interface, while in 2006, these assessments were
embedded within the game itself. The Intro Goal gave students an opportunity to learn
how to use the interface. Finally, the True Thickness module added some trigonometry
and rock orientation exercises to the Geology Explorer. These three exercises were done
individually even when players worked as a team.

Solo Group Team Group
Actual Exp Chi2 Actual Exp Chi2

Never Logged In 4 (1.8%) 3.35 0.125 2 (1.1%) 2.65 0.159
Preassessment 3 (1.3%) 2.79 0.015 2 (1.1%) 2.21 0.019
Intro Goal 17 (7.6%) 11.73 2.367 4 (2.3%) 9.27 2.995
Identification Goal 27 (12.1%) 17.32 5.415 4 (2.3%) 13.68 6.853
Interpretive Module Goal 14 (6.2%) 13.41 0.026 10 (5.6%) 10.59 0.033
True Thickness Goal 15 (6.7%) 13.97 0.077 10 (5.6%) 11.03 0.097
Finished the Game 144 (64.3%) 161.44 1.883 145 (81.9%) 127.56 2.383

Total Students 224 177
Table 1: Experimental Completion Rates – Fall 2006

In the Fall 2006 experiment, a chi-squared test for homogeneity was performed on the
completion rates to determine if there was a statistical difference between the control and
experimental groups. These results are shown in 1. With DF = 6, the chi-square value was
22.449, p = .001. These results show that the experimental group completion rates were
statistically different from the solo completion rates, with a majority of the difference
coming from students that stopped at the intro and identification goals and those that
finished the game completely.

The more people completing the game should correlate to better understanding of
geology, as those students would have been immersed in the game world longer. As
expected, more team students completed the exercise than solo players. Team players are
more likely to push each other into completing the task, resulting in higher motivation.

MICS 2008 543

Question Df Chi2 p-Value Team Improve Pre Post N

3.1 2 2.13 0.344 Y 7.41 92.59 95.37 108
N 3.64 96.36 96.36 165

3.2 3 4.54 0.209 Y 5.56 91.67 93.52 108
N 7.27 88.48 86.06 165

3.3 3 3.16 0.368 Y 12.96 68.52 75.00 108
N 18.18 68.48 76.97 165

3.4 3 1.07 0.783 Y 10.19 82.41 87.96 108
N 8.48 86.67 90.30 165

3.5 3 0.90 0.825 Y 14.81 84.26 97.22 108
N 13.33 84.24 95.76 165

3.6 3 0.23 0.972 Y 1.85 97.22 95.37 108
N 1.21 97.58 95.15 165

3.7 3 5.03 0.170 Y 8.33 6.48 10.19 108
N 3.64 4.85 6.67 165

3.8 3 5.60 0.133 Y 29.63 38.89 50.00 108
N 18.18 46.06 46.06 165

3.9 3 1.20 0.754 Y 8.33 86.11 81.48 108
N 10.30 85.45 86.06 165

3.10 3 4.93 0.177 Y 9.26 87.96 89.81 108
N 3.64 95.15 92.12 165

Table 2: Homogeneity Results for Content Improvement by Team Effect – Fall 2006

Content knowledge acquisition was also studied in the 2006 experiment with the results
being shown in 2. Improve(ment) is the percentage of students that improved from the
pre-treatment to the post-treatment. A chi-square test was performed to determine if this
improvement was statistically significant between the individual and team groups. Both
groups did better on the questions overall, but there was no statistical difference between
the groups. This means that whether students played individually or as a group, they were
helped by the Geology Explorer interface. Since students were self-selecting in the
experiment, future research needs to be done to determine if certain learning styles or
behavior patterns emerge as more effective for group learning.

Acknowledgements

This research was supported by National Science Foundation grants ESI-0454767 and
GEO-0608082. Human subject testing was conducted under NDSU IRB Protocol
SM-07070 (replacing SM-98026)..

References

Aronson, E., Stephan, C., Sikes, J., Blaney, N., & Snapp, M. (1978). The Jigsaw

MICS 2008 544

Classroom. Beverly Hills, CA: Sage.

Baron, R. S. (2005). So Right It's Wrong: Groupthink and the Ubiquitous Nature of
Polarized Group Decision Making, In M. P. Zanna (Ed.), Advances in Experimental
Social Psychology, San Diego, CA: Elsevier Academic Press, 219-253.

Borchert, O. (2008, in press). Computer Supported Collaborative Learning in a Geologic
Simulation. Master's Thesis. North Dakota State University.

Brandt, L., Borchert, O., Addicott, K., Cosmano, B., Hawley, J., Hokanson, G., Reetz, D.,
Saini-Eidukat, B., Schwert, D., Slator, B. Tomac, S. (2006). Roles, Culture, and
Computer Supported Collaborative Work on Planet Oit, Journal of Advanced Technology
for Learning, 3(2), 89-98.

Brown, K., & Cole, M. (2000). Socially-shared cognition: System design and the
organization of collaborative research, In D. Jonassen and S. Land (Eds.), Theoretical
foundations of learning environments, Mahwah, NJ: Lawrence Erlbaum, 197-214.

Brown, J. S., Collins, A., & Duguid, P. (1989). Situated Cognition and the Culture of
Learning, Educational Researcher, Washington, DC: AERA, 18 (1), 32-42.

Bruce, B., Peyton, J., & Batson, T. (1993). Introduction, In P. Bruce and T. Batson (Eds.),
Network-Based Classrooms: Promises and Realities, Cambridge, UK: CUP, 1-6.

Curtis, P. (1997). High Wired: On the Design, Use and Theory of Educational MOOs.
University of Michigan.

Feltovich, P., Spiro, R. J., Coulson, R. L., & Feltovich, J. (1996). Collaboration within
and among minds: Mastering Complexity, Individually and in Groups, In T. Koschmann
(Ed.), CSCL: Theory and Practice: An Emerging Paradigm, Mahwah, NJ: Lawrence
Erlbaum Associates, Inc., 38.

Goldman, S. V. (1996). Mediating Microworlds, In T. Koschmann (Ed.), CSCL: Theory
and Practice: An Emerging Paradigm, Mahwah, NJ: Erlbaum Associates, Inc., 57.

Hokanson, G., Borchert, O., Slator, B. M., Terpstra, J., Clark, J. T., Daniels, L. M., Ander-
son, H. R., Bergstrom, A., Hanson, T. A., Reber, J., Reetz, D., Weis, K. L., White, R., &
Williams, L. (In Press, 2008). Studying Native American Culture in an Immersive Virtual
Environment. Proceedings of the IEEE International Conference on Advanced Learning
Technology (ICALT-2008). IEEE Computer Society Press. Santander, Spain. July 1-5.

Janis, I. L. (1972). Victims of Groupthink. Boston, MA: Houghton Mifflin Company,
8-9.

Koschmann, T., Kelson, A. C., Feltovich, P. J., & Barrows, H. S. (1996). Computer
Supported PBL, In T. Koschmann (Ed.), CSCL: Theory and Practice: An Emerging
Paradigm, Mahwah, NJ: Lawrence Erlbaum Associates, Inc., 100.

MICS 2008 545

McClean, P., Saini-Eidukat, B., Schwert, D., Slator, B., & White, A. (2001). Virtual
Worlds in Large Enrollment Science Classes Significantly Improve Authentic Learning,
In J.A. Chambers (Ed.), Selected Papers from the 12th International Conference on
College Teaching and Learning, Jacksonville, FL: Center for the Advancement of
Teaching and Learning, 111-118.

Middlecamp, C. (1997). Students Speak out on Collaborative Learning, retrieved August
31, 2007, from http://www.wcer.wisc.edu/archive/CL1/cl/story/middlecc/TSCMD.htm.

National Association of Colleges and Employers. (2003). Job Outlook 2004: Student
Version, retrieved March 11, 2005, from http://www.jobweb.com/ joboutlook/
2004outlook/JO04student.pdf.

Kagan, S. (1994). Cooperative Learning, San Juan Capistrano, CA: Kagan Cooperative.

Regan, P. & Slator, B. Case-based Tutoring in Virtual Education Environments, In W.
Broll, C. Greenhalgh, & E. F. Churchill (Eds.), Proceedings of the 4th International
Conference on Collaborative Virtual Environments, Bonn, Germany: ACM, 2-9.

Scardamalia, M., Bereiter, C., & Lamon, M. (1994). The CSILE Project: Trying to Bring
the Classroom into World 3, In K. McGilly (Ed.), Classroom Lessons: Integrating
Cognitive Theory and Classroom Practice, Cambridge, MA: MIT Press, 201-228.

Sharan, S. and Sharan, Y. (1978). Small Group Teaching, Englewood Cliffs, NJ:
Educational Technology Publications, 10-19.

Sharan, Y., & Sharan, S. (1994). Group Investigation in the Cooperative Classroom, In S.
Sharan (Ed.), Handbook of Cooperative Learning Methods, Westport, CT: Greenwood
Press, 115-136.

Skinner, B., Porter, S., & Park, J. (2004). Dynamic Earth: An Introduction to Physical
Geology: 5th Edition, Hoboken, NJ: John Wiley and Sons, Inc., 232-233.

Slator, B. M., Hill, C., & Del Val, D. (2004). Teaching Computer Science with Virtual
Worlds, IEEE Transactions on Education, 47(2), 269-275.

Slator, B. M., Beckwith, R., Brandt, L., Chaput, H., Clark, J. T., Daniels, L. M., Hill, C.,
McClean, P., Opgrade, J., Saini-Eidukat, B., Schwert, D. P., Vender, B., & White, A. R.
(2006). Electric Worlds in the Classroom: Teaching and Learning with Role-Based
Computer Games, New York, NY: Teachers College Press, 86-93.

Slavin, R. E. (1995). Cooperative Learning: 2nd Ed, Boston, MA: Allyn and Bacon,
50-69.

MICS 2008 546

The Role of Writing Efficient Programs in a Data
Structures Course

Chenglie Hu
Department of Computer Science

Carroll College
100 N East Avenue, Waukesha, WI 53186

chu@cc.edu

Abstract

How can writing efficient code play an effective role in improving student programming skills and
developing professional consciousness of code efficiency in a data structures course? This article attempts
to answer this question. First, some basic strategies of code efficiency are overviewed. Some guidelines of
improving code efficiency in implementing data structures are then presented with examples. These
guidelines are categorized in two levels: method level and data representation level. The article is
concluded with a summary and some comments.

MICS 2008 547

1. Introduction

In the real world, a programmer has two concerns: code correctness and code efficiency.
Anyone would agree that a piece of code must be, first of all, correctly does what it is
supposed to do. Yet, the author has observed over the years in his data structures course
(or CS2) that students often stop right there once the code has worked, even though
writing efficient code is one of the evaluation criteria of their assignments. How is the
efficiency of a computer program measured? Probably, the most common measurement
is the consumption of CPU time and internal memory. However, the advancement of
computer hardware has made the consumption level of a program on hardware resources
much less of a concern than it was, say, 20 years ago. As a result, writing efficient
programs might have been pushed farther back in programming classes so that learning
algorithm analysis with big oh in a data structures class may be more of a thing that the
instructor must cover, with often standard or even trivial examples, than something
students actually use in their later programming activities.

Although network transport delays, large volume data access, and slow remote
component execution can all contribute negatively to the efficiency of a program
execution, writing efficient code can make such an impact minimized. In the real-world,
people in fact are concerned more about inefficient ways of writing programs today than
ever before as the size and complexity increase rapidly in developing modern software
while facing high demand for compact devices with very constrained memory capacity
and data transmission bandwidth. The author has seen little recent published material
that has the same theme intended by this article.

Over the years, the author has faced two problems in his data structures classes. First, by
the time students are in a data structures class, most likely, they have already known well
the array-based list implementations as object-oriented programming examples such as a
list of DVDs or bank accounts are now common in CS1 classes. As a result, the
treatment on array-based lists (and, in fact, array-based queues and stacks as well)
normally seen in textbooks may simply not provide materials that are challenging and
refreshing to the students. Second, students are, most of time, learning how various data
structures are implemented rather than how implementations can be done or how students
would do if asked to implement a data structure on their own. According to [1], a data
structure should be addressed from logical, application, and implementation standpoints.
The author believes that students have a better chance to gain programming skills by
letting them focus more on the implementation level than on the application level of a
data structure, as the former tends to address more programming-in-the-small. Other than
iteration verses recursion, textbooks don’t usually seriously talk about algorithm
comparison until students learn sorting methods. The author has tried to fill this gap by
incorporating writing efficient algorithms early on so that students are not only exposed
to various programming techniques while learning how to write efficient code, but they
also have their own examples to practice on with big oh analysis. This learning process,
indeed, is not an easy one for every student. But most students felt, expressed on the
course evaluations, that it is a rewarding learning experience.

MICS 2008 548

2. Basic Code Efficiency Concerns
Arguably or not, learning how to write efficient code effectively improves one’s
programming skills. The primary concern of a typical novice programmer is,
understandably, whether the code he or she comes up with works. Thus, novices tend to
write programs that can often be improved on inefficiency. As summarized in [3] and [4]
and extended by the author, the following problems can all cause inefficient programs.

Redundant operations in a loop This happens when certain constants (or constant
expressions) are repeatedly computed as demonstrated in the following loop:

for(int i = 0; i < result.length; i++) results[i] = (a*a*a + b)*i + (a*a + c)*(i + 1);

Obviously, the coefficients of i and (i+1) should have been computed once for all before
the loop is entered.

Unnecessary referencing The problem can be demonstrated in the following
example of selecting the maximum element in an array:

int p = 0;
for(int i = 1; i < arr.length; i++) if (arr[i] > arr[p]) p = i;
max = arr[p];

where the referencing to a[p] could have been saved as in the standard approach that max
holds arr[0] initially and gets updated once arr[i] > max.

Using expensive operations when less expensive ones are available For example,
the following two loops are equivalent. Yet, the second version is a bit more efficient
when addition, instead of multiplication, is used to update x.

for(int i = 0; i <= N; i = i + 2){ x = 5*i; y = a*x + b; …. }
x = 0; for(int i = 0; i <= N/2; i ++){ y = a*x + b; x = x + 10; …. }

Using too many weakly guarded statements Introducing unnecessary guards or
conditional statements often makes correctness checks easier. For example, in selecting a
maximum amongst three numbers (num1, num2, and num3), novices often write:

if(num1 >= num2 && num1 >= num3) max = num1;
else if(num2 >= num1 && num2 >= num3) max = num2;
else if(num3 >= num1 && num3 >= num2) max = num3;

 when the following statement, in fact, suffices:

if(num1 >= num2 && num1 >= num3) max = num1;
else if(num2 >= num3) max = num2;

 else max = num3;

MICS 2008 549

 which is, however, less obvious as far as correctness is concerned.

Inefficiency due to late termination An example of this is when linear search is
applied to a sorted array as in the following code fragment (assuming array intArr is in an
ascending order):

int i = 0; boolean found = false;
while(!found && i < intArr.length){ if(x = = intArr[i]){ found = true; break; } else i++; }

The code can be written more efficiently as follows to eliminate unnecessary
comparisons for an unsuccessful search.

int i = 0; boolean found = false;
while(!found && i < intArr.length){ if(x > intArr[i]){ i++; continue; }
found = (x = = intArr[i]); break; }

Inefficiency due to extra layers of code To implement an iterator for a binary
tree, as in [1], one may pre-load elements into a queue using one of the tree traversal
methods, and then process the node data one element at a time using the methods getNext
and next. Thus, invoking an iterator with getNext and next adds an additional layer to the
code. A more efficient way is to skip the intermediate storage and process the data while
traversing.

Some of the basic strategies of writing efficient code, as summarized above, are
presented to students very early on in the course, and more are added as the course
progresses. Being able to implement efficient data structures, however, requires more
than the basic strategies. Further guidelines, whenever deemed appropriate for
improving code efficiency, are also introduced early in the course when students are
learning basic data structures such as lists, stacks, and queues. These guidelines are
presented in section 3.

3. Some Guidelines for Developing Efficient Data Structures

For implementing efficient data structures, students need more data handling and
processing guidelines beyond the ones mentioned in section 2. Although their
applicability goes beyond what is presented, the following guidelines, stated in the
subtitles, are presented in conjunction with list data structure implementations. These
guidelines are elaborated with or without examples as appropriate. It is also shown that
when consciously writing code with efficiency in mind, students are learning big oh
analysis in a meaningful way.

3.1 Reusing existing methods may not be a good idea

MICS 2008 550

One of the software design principles is to improve the reusability of software
components. Yet, reusing existing methods may introduce operations overhead,
especially when reused modules involve costly operations such as loops. Here is an
example (see also Chapter 5 Exercises in [1]): Write a method for the sorted linked list
class to delete all occurrences of a given item and return the number of copies deleted
(assuming that the list allows duplicated items). The method can be conveniently
implemented as follows using existing methods isThere (searching for a given item) and
delete (deleting an item from the list):

public int deleteCopies(Comparable item){
 int numCopies = 0;
 while(isThere(item)){
 delete(item);
 numCopies++;

 } return numCopies;
}

On average, the method delete requires O(N) comparisons and so does the method
isThere (as binary search is not normally applicable to linked lists). If there are K copies
of the item to be deleted, the total cost is then roughly O(KN). The cost would be O(N2)
if K were in the same order of magnitude as N. However, if instead, one first identifies
the immediate predecessor of the first occurrence and the last occurrence of item to be
deleted, and then do the “rewiring” by skipping all the nodes in between (i.e., all copies
of item), the average cost for comparison would be reduced to O(N) (with a single pass of
the list) as the following computation shows: [1 + 2 + … + (N-K)]/(N-K) + K = (N +
K+1)/2 = O(N).

public int deleteCopies(Comparable item){
ListNode start, end, cursor = list; //list is the list-head reference
int numCopies = 0;
while(item.compareTo(cursor.info) != 0 && cursor.next != null){
 start = cursor;
 cursor = cursor.next;
}
while(item.compareTo(cursor.info) = = 0 && cursor.next != null){
 end = cursor; cursor = cursor.next;
 numItems--; numCopies++;
}
if(start = = null) list = cursor;
else start.next = end.next;
return numCopies;

}

It’s worth mentioning that students did come up with other strategies, such as saving the
items (not to be deleted) in a new list using insert method, or saving the items with a new
list by “manually” linking the copies of the nodes rather than using the method insert.
The pros and cons of those variations are then discussed and evaluated in class.

MICS 2008 551

3.2 Looking for inexpensive ways to reduce or delete non-determinism

Non-determinism often causes one to apply multiple conditions (or guards) in an if-else
statement as demonstrated in the following partial implementation of a method (see also
Chapter 3 Exercises in [1]) that trims the list given lower and upper bounds. The actual
positions of the lower and upper bounding items are unknown. If these positions remain
unknown during the processing of the array, the following loop may seem a reasonable
attempt by most students:

 for(int i = 0; i < numItems; i++){
 if(list[i].compareTo(lower) < 0 || list[i].compareTo(upper) > 0)
 { delete(list[i]); }
 }

This would result in O(N2) count for the number of comparisons due to overhead
operations from delete. Alternatively, if the opposite of “if” condition holds, one may
save list[i] to a local array and assign the reference to list at the end, which could reduce
the number of comparisons to O(N) with an introduction of additional storage.

However, if instead, one searches for the lower and upper bounding items first so that
their positions become known (i.e., the elimination of non-determinism), one may have a
better chance to devise a more efficient method. The following code fragment articulates
the idea (note that when method isThere finds the item, it stores its index in an instance
variable currentPos):

 if(isThere(lower)) lowerPos = currentPos;
 if(isThere(upper)) upperPos = currentPos;
 for(int i = lowerPos; i <= upperPos; i++) list[i-lowerPos] = list[i];
 numItems -= upperPos – lowerPos + 1;

By taking advantage of binary search, the cost for comparison now is further reduced to
O(logN) with no local array needed.

This example (and, in fact, the implementation of the method deleteCopies in subsection
2.1 falls in this category as well) shows the benefit of reducing or eliminating non-
deterministic information related to the given parameters, if it can be done inexpensively.
As a more general remark, it is often the case that when a data processing involves
multiple criteria such as items being duplicated in some form, all within a given range, or
all in relation to a given reference, etc., determining the exact range of the data pieces
may often be a starting point of more efficient algorithms if the data is sorted in one way
or another.

3.3 The way how data is stored can make a difference

MICS 2008 552

This guideline is explained, again, with implementations of a sorted list. It is well known
that for an array-based implementation, insertion or deletion requires possibly heavy data
shifting for leaving or filling a gap. Shifting becomes costly when a large amount of data
needs to be frequently inserted and deleted. While the loops of such implementations can
hardly be improved, the efficiency can, nonetheless, by altering the way data is stored.
The author has attempted in his data structures course three different strategies in doing
so with an array-based sorted list: letting the list head float, introducing gaps, and using a
2-dimensional array. The three strategies vary significantly in implementation difficulty,
and so does the efficiency impact on list processing. They are outlined as follows.

Floating list head If the head of the list is the first element of the array,
inserting or deleting items near the head is more costly due to the resulting shifts of
almost the entire list. A simple idea to alleviate the situation is to make the head of the
list float (and so does the tail of the list). In other words, the list would start at index
head, grow clockwise and wrapped around, and end at index tail (which may or may not
be greater than head). Since the head index can now move in both directions, the most
expensive shifts with a fixed head now become among the least expensive ones. In
exchange, the implementation becomes a bit trickier (although a good exercise for
students) especially for binary search when the range between head and tail must be
mapped to a range between 0 and list.length-1, required for the binary search.

Introducing gap elements [4] “Gaps” are defined to be place holders between
items of the list. One possible configuration of the list-holding array might be (gap, item,
gap, item,…, gap, item). Consecutive gaps can be filled with the duplicates of the last
item before them so that binary search is not affected. To identify the gaps correctly,
another array (of the same size) is generally needed, whose elements would indicate
whether a corresponding location in the list-holding array is a list item or a gap (either a
Boolean or bit value should suffice for such identification). An insertion can be done
without shifting if the new item fills an existing gap or with a few shifts if there is a near-
by gap. When shifting becomes problematic (using a tolerability threshold or a measure
suggested in [4]), one can re-configure the array by either restoring the original
configuration or simply introducing more scattered gaps as appropriate. The
implementation of such a variation, however, is considerably more challenging than that
of floating head approach outlined earlier, yet still manageable by most students.

Using a 2-dimensional (2D) array The idea of using a 2D-array container for
linear data structures comes from the fact that 2D arrays are represented using row
objects. In other words, a 2D array is an array of arrays in most object-oriented
languages such as Java and C#. Such a representation is especially beneficial when it
comes to array resizing. More specifically, an array can be resized either by introducing
additional rows or additional columns in a specific row. For the former, only the row
references of the old array need to be copied over to the new row reference variables,
whereas for the latter, only elements in that particular row being resized need to be
copied over after a new row is instantiated. In either case, only a subset (small usually)
of the elements is affected when resizing – an operation often associated with insertion.

MICS 2008 553

How may the amount of shifting be reduced using a 2D array? Figure 1 gives an
example of a (row-wise) sorted list in a 2D array configuration. If an integer, say 6, were
to be inserted, one would either place it at the end of the second row without shifts or the
beginning of the third row with a few shifts (and resizing the row if necessary).
Similarly, if integer 25 were to be inserted, one would either simply attach it at the end of
last row or introduce a new row (i.e., the sixth row) and place it at the beginning.

 0

 2 3 5
 7 8
 10
 12 15 19

Figure 1: A sorted list of integers stored in a 2D array

How would a sorted list grow in the first place? Different strategies exist. In particular,
one may initially fill up the first column with a fixed number of rows. The list then
grows horizontally as individual rows are resized as needed. Binary search still works
but in a different fashion. For instance, if integer item 8 in Figure 1 is searched for, one
may simply perform a binary search in the first column (to find item 7) followed by
another binary search in the row that starts at 7. The big oh analysis suggested that such
a binary search could be even quicker than its 1D counterpart. In fact, suppose a 2D
array has Nr rows and the average number of elements of a row is Nc. The size of the list
is then N = Nr*Nc. It can be shown (see [5] by the same author for details) that the
average number of comparisons is asymptotically less than log2Nr + log2 Nc = log2
(Nr*Nc) = log2 N. However, the actual performance showed the opposite – 1D binary
search performed slightly better (about 1.7 times faster) in most of the testing cases due
possibly to the additional cost of reference arithmetic in the 2D case.

Because of the increased complexity of storage dimension, such an implementation is
even more challenging than introducing gaps, yet still within the reach of most CS2
students. Some implementation details are given in [5]. For a particular implementation,
as it turned out, insertion or deletion using a 2D array takes only about 20%-25% of the
time spent on the same operation using a 1D array in all of the testing cases. The other
two approaches performed not as competitively, although both are improvements from
the standard implementations.

4. Conclusions

It is demonstrated above how emphasizing on writing efficient code can play an effective
role in improving student programming skills and consciousness about writing code that
performs better. The benefits can be summarized as follows.

The approach raises student’s consciousness about writing efficient code significantly.
Since the code efficiency is addressed right from the beginning of the course, by the
second half of the semester, students are usually able to show significant improvement on

MICS 2008 554

code efficiency when working on their assignments. Many indicated that the one handed
in seemed to be the best he or she came up with (although it might not be the case).
When the implementation of a new data structure or an algorithm is presented to them,
there are always students questioning about whether there are other implementation
options that may result in a better performance. For instance, when the standard insertion
sort is presented to them, some questioned why we don’t take advantage of binary search
for the sorted portion of the list. They were then asked to do so and show the result both
in theory (with big oh analysis) and practice (by comparing it with standard insertion sort
algorithm and some of the O(NlogN) sorting methods). It turned out that the insertion
sort incorporated with binary search has, in fact, a comparable performance with the best
O(NlogN) sorting method (covered in [1]) in practice and is also O(NlogN) in theory.
Students are also asked to compare the performances between the list structures they had
implemented and the ones in Java Collections. Greater motivation comes along naturally
when students are seeing that their implementations are beating ArrayList and, by far,
LinkedList in performance.

The approach creates a “real-world” environment for learning big oh algorithm analysis.
Big oh is learned beyond the level of dealing with standard examples or using purely
imaginary “polynomial” times. Big oh becomes a necessary tool for students to address
the efficiency of the algorithms they have attempted, although much of the analysis is
more or less heuristic rather than relying on solving recurrence equations with
mathematical rigor, given the level of CS2.

The approach addresses the importance of the way data is stored and retrieved, which, in
turn, reinforces the objectives of a data structures course. Even with the superior support
of a class library, writing your own data structures is not a rare event for various reasons
in contemporary software development. Using a data structure is relatively easy, but
writing one on your own is generally not, and being able to write an efficient one is even
harder, which, however, is what a data structures course is all about.

It should be pointed out that there are other areas of program efficiency that could be
included in a data structures course. For example, to implement doubly linked list,
reference [6] presented a memory efficient approach – defining the node structure using
only one pointer (ptrdiff) that captures the difference between the pointer to the next node
(next) and the pointer to the previous node (previous) using exclusive OR operator
instead of using two pointers as in the conventional implementations. It is interesting to
observe that pointer next (or previous) can then be recovered by XORing previous (or
next) with ptrdiff. The saving may seem insignificant, but may be critical for developing
software to be installed on compact devices that often have very constrained memory
capacity. Such examples may also constitute good discussion topics for highly motivated
students.

There is no doubt that the techniques and methodologies mentioned in this article expose
students to some of the programming skills that they need to develop, yet may be poorly
prepared for in CS1 classes. Because instructors, nowadays, are overwhelmed by the
materials they need to cover in CS1 classes so that basic algorithms are increasingly not

MICS 2008 555

sufficiently covered. Although group projects in CS2 can alleviate some of the problems,
something essential needs to be addressed in CS1 to improve student code-writing skills.

In closing, as the author believes, the competency of writing efficient codes should in fact
be an important quality indicator of our computer science graduates as “the fundamental
question underlying all of computing is ‘what can be (efficiently) automated’? ” [2].

References

[1] Dale,N. Joyce,D. & Weems, C. Object-Oriented Data Structures Using Java. Jones and
 Bartlett Publishers, 2002
[2] Denning, P. Great Principles of Computing. Comm. ACM 32, 1, 9-23, 1989
[3] Dromey, R.G. How to Solve it by Computer. Prentice-Hall, Englewood Cliffs, N.J. 1982
[4] Gries, D. The Science of Programming. Springer-Verlag, New York 1981
[5] Hu, C. 2D Array Implementation of Sorted Lists, SIGCSE Bulletin (Inroads), Vol. 37, Issue
 2, 2005
[6] Sinha, P. A Memory-Efficient Doubly Linked List. Linux Journal 2005(129): 10. 2005

MICS 2008 556

Effectively Apply Boundary Value Analysis Method
in Students’ Programs Testing

Syed (Shawon) M. Rahman, Ph. D.
 Assistant Professor, Dept. of Computer Science & Software Engineering

University of Wisconsin - Platteville
1 University Plaza, Platteville, WI 53818, USA
Phone: (608) 342-1625, Fax: (608) 342-1965

Email: Rahmans@uwplatt.edu

Abstract

Boundary Value Analysis (BVA) is a very effective test case design technique and
generally, a popular black-box testing method in software testing. The purpose of
BVA is to focus the testing effort on error-prone areas by accurately pinpointing the
boundary. At those points when input values change from valid to invalid or vice-
versa errors are most likely to occur. Unfortunately, most of the textbooks end up
presenting BVA by providing a numeric value range; however, in the real world, the
computer programs are not restricted to the numeric data ranges. Our experience
shows that students encounter difficulty while finding and applying BVA beside a
numeric value range. In this paper, we have presented examples how to define test
cases and apply BVA effectively for much wider areas and can reveal critical faults
and failure in the program.

MICS 2008 557

Boundary Value Analysis Testing Technique

Boundary value analysis is a test case design technique and it is a very effective
method for revealing bugs in computer programs. Boundary Value Analysis is well
known as off–by–one errors technique testing, which is nearly all those boundaries
where the defects are [1]. In general, there are two types of boundary values:
boundary value for continuous range of inputs and boundary value for discontinuous
range of inputs. However, a continuous range of inputs considers more suitable kind
of input for Boundary Value Analysis. BVA testing method especially are very
suitable for function black-box testing and unit testing technique.

Guidelines for BVA are close to those for equivalence partitioning [2]:

1. If an input condition specifies a range bounded by values “a” and “b”, test
cases should be produced with values “a” and “b”, just above and just below
“a” and “b”, respectively.

2. If an input condition specifies various values, test cases should be produced
to exercise the minimum and maximum numbers.

3. Apply guidelines above to output conditions.
4. If internal program data structures have prescribed boundaries, produce test

cases to exercise that data structure at its boundary.

Example of BVA

Boundary values are of special interest in software testing; especially the boundaries
of input ranges to a software component are likely to defects. Testing experience
shows that test cases that explore boundary conditions have a higher payoff than test
cases that do not. Boundary value analysis requires one or more boundary values
selected as representative test cases [3].

As an example, a programmer implement the range 1 to 12 at an input, which stands
for the month January to December in a date, has in his code a line checking for this
range [4]. We can write this condition as follows:

if (month > 0 && month < 13)

However, a common programming error may check a wrong range e.g. starting the
range at 0 by writing or ending at 11,

if (month >= 0 && month < 13) or, if (month > 0 && month < 12)

Normally, for more complex range checks in a program this may be a problem which
is not so easily spotted as in the above simple example. To set up boundary value
analysis test cases we need to determine first which boundaries we have at the
interface of a software component. This has to be done by applying the equivalence
partitioning technique. As we know BVA and equivalence partitioning (EP) are

MICS 2008 558

inevitably linked together. For the example of the month in a date we have the
following partitions [3]:

if (month > 0 && month < 13)

 Figure 1: Showing how to determine equivalence class [3].

Determine Equivalence Classes

Equivalence class is a group of value, which is every value in the group cuts down a
number of test cases while it still covers all test cases. Besides reducing the number
of test cases, in each test case is expected to cover and uncover the same defect. As
we mentioned before, if an input condition specifies a range bounded by values “a”
and “b”, test cases should be produced with values “a” and “b”, just above and just
below “a” and “b”, respectively. According to figure1, this example presents a set of
months in a year, so one set of valid input (valid partition) is
{1,2,3,4,5,6,7,8,9,10,11,12} while two sets of invalid inputs (invalid partition) are
{…,-2,-1,0} and {13,14,15,…} [3].

 Figure 2: Showing how to determine boundaries [3]

Determine Boundaries

After identifying the equivalence classes the next step we identify the lower
boundary and the upper boundary. According to Figure2 above, the lower boundary
would be 0 and 1 and the upper boundary would be 12 and 13.

We would like to mention here that there are two types of boundary values, which
are Boundary Values for continuous range (as in Figure 2 and 3) and Boundary
Values for discontinuous range (Figure4). According to Figure 4, it is possible that a
set of value in boundary values are not continuous as a result, in Figure 4 shows that

MICS 2008 559

1 and 5 are boundary values whereas a set of {0, 2, 3, 4, and 6} considers invalid
partition.

Figure 4: Boundary values for a
discontinuous range of input [6]

Figure 3: Boundary values for a continuous
range of input

In summary, the general guidelines for creating test cases in the BVA technique are
as follows:

Test Cases = (n - 1, n, n+1 of lower boundary) + (n - 1, n, n+1 of upper
boundary)

Where, n is the value of the boundary

Types of Errors BVA Method Can Reveal

Students apply BVA method primarily for functional black-box testing specially for
a range of values purposes. Generally, BVA can reveal different kinds of bugs or
errors in the program such as [2],

1. incorrect or missing functions,
2. interface errors,
3. errors in data structures or external database access,
4. performance errors, and
5. initialization and termination errors, etc.

In our research, we have studied how we can effectively apply BVA testing
methodology for testing students’ programs. Not only applying for the numeric data
ranges but also many other possible situations where we can apply BVA method
successfully and can reveal computer programming bugs that we have discussed
later in this paper.

MICS 2008 560

Define Test Cases by Applying BVA Method

How to define test cases

We can start writing test cases as early as requirements gathering and requirements
analyzing phase. We can create test cases from functional requirements, non-
functional requirements, domain requirements, and from user requirements. We can
also start writing test cases from customer-accepted requirements documents and
later it can be used for customer acceptance testing. Borysowich [5] describes the
following steps how to define test cases by applying BVA testing techniques.

1. To determine the tests for the BVA method, first identify valid and invalid
input and output conditions for a given function.

2. Identify the tests for situations at each boundary. For example, we can
consider the following cases:

o One value in the > range
o One value that is equal to the boundary, and
o One value in the < range.

3. Boundary conditions do not need to focus only on values or ranges, but can
be identified for many other boundary situations as well, such as end of page,
i.e., identify tests for production of output that is one line less than the end of
page, exactly to the end of page, and one line over the end of page.

4. The tester needs to identify as many situations as possible. The boundary
value analysis testing should not be limited to a range of values. We can
apply BVA techniques in several other cases that we have discussed later in
this paper.

In this section, we have defined sample test cases for a billing specification of a
phone company.

Function to be tested

For a billing function of a phone company, the following specifications are defined
[5]:

1. Requirement1: Generate a bill for accounts with a balance owed > 0
2. Requirement2: Generate a statement for accounts with a balance owed < 0

(credit).
3. Requirement3: Generate a bill for accounts with a balance owed > 0:

o Requirement4: Place amounts for which the run date is < 30 days
from the date of service in the current total.

o Requiremen5: Place amounts for which the run date is = or > 30 days,
but < or = 60 days, from the date of service, in the 30 to 60 days total.

o Requirement6: Place amounts for which the run date is > 60 days, but
< or = 90 days, from the date of service, in the 61 to 90 days total.

MICS 2008 561

http://www.ittoolbox.com/profiles/craigwb

o Requirement7: Place amounts for which the run date is > 90 days,
from the date of service, in the 91 days and over total.

4. Requirement8: For accounts with a balance owed > or = $10.00, for which
the run date is = or > 30 days from the date of service, calculate a $3.00 or
1% late fee, whichever is greater.

Input and output conditions

Identify the input, (i.e., information is supplied to the function) and output, (i.e.,
information is produced by the function) conditions for the function.

The input conditions are identified as:

1. balance owed,
2. balance owed for late fee.

The output conditions are identified as:

1. age of amounts,
2. age of amounts for late fee,
3. calculation for late fee.

Defining tests

We define test cases by applying boundary value analysis testing techniques for each
of the input and output conditions. For example:

Balance owed: We can calculate balance owed bill for three input conditions,

1. balance owed > 0,
2. balance owed = 0,
3. balance owed < 0.

Age of amounts: We can calculate input conditions for the balance owed > 0 and

4. run date - date of service = 0,
5. run date - date of service = 29,
6. run date - date of service = 30,
7. run date - date of service = 31,
8. run date - date of service = 59,
9. run date - date of service = 60,
10. run date - date of service = 61,
11. run date - date of service = 89,
12. run date - date of service = 90,
13. run date - date of service = 91.

MICS 2008 562

Balance owed for late fee: We can calculate input conditions for balance owed for
late fees.
the run date - date of service > 30 and

14. balance owed = $9.99,
15. balance owed = $10.00,
16. balance owed = $10.01.

Age of amount for late fee: We can calculate output conditions for the balance
owed > $10.00 and,

17. run date - date of service = 29,
18. run date - date of service = 30,
19. run date - date of service = 31,

Calculation for late fee: We can calculate output conditions for the balance owed >
$10.00, run date - date of service > 30 and,

20. 1% late fee < $3.00,
21. 1% late fee = $3.00,
22. 1% late fee > $3.00.

Apply BVA Techniques in Various Scenarios

Boundary value analysis generates test cases that highlight errors better than
Equivalence Partitioning (EP). BVA testing techniques is a very effective test case
design techniques for students programs testing as well as it is very popular within
the professional programmers in software industries. Unfortunately, most of cases,
students and other professionals apply BVA method while there is a range of values.
This range of values can be either continuous or discontinuous values.

We believe boundary conditions do not need to focus only on a range of values, but
can be identified for many other boundary situations as well, such as end of page.
We name this kind of boundaries as “invisible boundaries.” The testers or students
need to identify as many situations as possible; the following list of common extreme
test conditions [5] may help with finding invisible boundaries and applying BVA
techniques effectively:

1. zero or negative values,
2. zero or one transaction,
3. empty files,
4. missing files (file name not resolved or access denied),
5. multiple updates of one file,
6. full, empty, or missing tables,

MICS 2008 563

7. widow headings (i.e., headings printed on pages with no details or totals),
8. table entries missing,
9. subscripts out of bounds,
10. sequencing errors,
11. missing or incorrect parameters or message formats,
12. concurrent access of a file,
13. file space overflow.

Finally, we recommend to use equivalence set testing (and error guessing) augment
equivalence set testing with boundary value testing. Programmers do not only
consider the boundaries caused by the state of the item under test or attributes based
on simple data types [8].

Steps in BVA Testing Techniques

The following steps are followed, during boundary value analysis testing, typically
perform the following steps (in the following decreasing order of importance) [8]:

1. Identify all objects and data types involved in an interaction.
2. Identify all that have state models.
3. Using the state models and any assertions involving the interaction, identify

all relevant boundary values.
4. To identify common failures caused by individual boundaries:

a. Create a test case for each boundary value.
b. Create two test cases near each boundary value, one on each side of

the boundary.
5. Create one test case near the middle of each "volume" bounded by the

boundary values.
6. Create a test case simultaneously using as many of the boundary values as is

practical to cause rare failures caused by the interaction of multiple
boundaries.

Limitations of BVA

BVA testing technique is very simple and straight-forward; however, boundary
value testing is typically subject to the following limitations [4, 8]:

1. In order to minimize the number of test cases, BVA testing technique
assumes that the boundary values identified from the specification and
design are the only boundary values. However, this assumption is based on
the understanding that the implementation of the class conforms to its
specification and design. If the implementation does not match the design as
specified (which it often does not if a defect exists), then additional
boundaries will exist due to the defects.

MICS 2008 564

2. Instantiating an object that is either on or near a boundary between regions is
often nontrivial.

3. BVA works well when the Program Under Test (PUT) is a “function of
several independent variables that represent bounded physical quantities”
[9]. When these conditions are met BVA works well but when they are not
we can find deficiencies in the results. The reason for this poor performance
is that BVA cannot compensate or take into consideration the nature of a
function or the dependencies between its variables [9].

4. Not all of values or inputs would be under testing process.
5. BVA does not test values which considers same group separately.
6. BVA does not test all possible inputs and does not test dependencies between

combinations of inputs either.

Conclusions

Boundary value analysis testing technique is a very effective method because testing
experience shows that the systems are more likely to fail while data or object values
moves from a valid to invalid or vice-versa. BVA can provide a relatively simple and
formal testing technique that can be very powerful when used correctly. This method can
be applied successfully in the students’ programs testing as well as professionals
programs testing. Myers [6] has mentioned in his book about Boundary Value Analysis
that if it is practiced correctly, it is one of the most useful test-case-design methods. He
has also mentioned that it is often used unsuccessfully as the testers usually see it as so
simple they misuse it, or do not use it to its full potential.

In this paper, we have discussed how we can apply BVA method effectively in different
situation and provided examples. We have discussed how to determine boundary; how to
define test cases; and what are the different steps for BVA testing. We have also
discussed how we can apply BVA technique in several other scenarios besides a range of
numeric values. We believe that BVA test case design technique is a simple but very
effective method for revealing notorious bugs in the program. We can create BVA test
cases as many as possible by applying different scenarios and we can reveal bugs in the
early stage of the software and ultimately produce higher-quality software in lower cost.

References

1. Copeland Lee , “Boundary Value Testing, “Practitioner’s Guide to Software
Test Design, Norwood, MA: Artech House Publishers, 2004, pp. 39-46.

2. Mark Elshaw, “Software testing techniques”, School of Computing and
Technology,
University of Sunderland,

MICS 2008 565

http://www.his.sunderland.ac.uk/~cs0mel/comm83wk5.doc, web retrieve on
March 6, 2008.

3. Myers, Glenford J., The art of software testing, Publication info: New York :
Wiley, c1979. ISBN: 0471043281 Physical description: xi, 177 p. : ill. ; 24
cm.

4. Wikipedia, “Boundary Value Analysis,”
http://en.wikipedia.org/wiki/Boundary_value_analysis, web retrieve on
March 6, 2008.

5. Borysowich, Craig; “Testing via Boundary Value Analysis”, Observations
from a Tech Architect: Enterprise Implementation Issues & Solutions,
6/23/2007, http://blogs.ittoolbox.com/eai/implementation/archives/testing-
via-boundary-value-analysis-17126, web retrieve on March 6, 2008.

6. Glenford J. Myers, The Art of Software Testing, John Wiley and Sons, Inc.
2004

7. Blake Neate, Boundary Value Analysis
http://www.cs.swan.ac.uk/~csmarkus/CS339/dissertations/NeateB.pdf, web
retrieve on March 6, 2008.

8. Boundary Value Analysis Testing,
http://www.opfro.org/Components/WorkUnits/Techniques/Testing/Boundary
ValueTesting.html, web retrieve on March 6, 2008.

9. P. Jorgenson, Software Testing- A Craftsman’s Approach, CRC Press, New
York, 1995

MICS 2008 566

http://en.wikipedia.org/wiki/Boundary_value_analysis
http://www.ittoolbox.com/profiles/craigwb
http://blogs.ittoolbox.com/eai/implementation/archives/testing-via-boundary-value-analysis-17126
http://blogs.ittoolbox.com/eai/implementation/archives/testing-via-boundary-value-analysis-17126
http://www.cs.swan.ac.uk/%7Ecsmarkus/CS339/dissertations/NeateB.pdf
http://www.opfro.org/Components/WorkUnits/Techniques/Testing/BoundaryValueTesting.html
http://www.opfro.org/Components/WorkUnits/Techniques/Testing/BoundaryValueTesting.html

	Interdisciplinary Undergraduate Research in the CS Curriculum
	Creating Vision for Computing Research
	Using Clickers to Enhance Computer Science Classes
	Grafting Tehcnology onto Disciplinary Courses
	The Root Causes of the Students' Programs Quality Improvement in the TBC Method
	Randomly Generating Well-Formed Postfix Expressions
	Automated Process for Classifying Text Documents using K-Means and kNN
	Sectioning Points into Fixed-Size Sections
	Enhancing the Price/Performance for a Clustered Multiprocessor System
	Performance Evaluation of Java RMI in Parallel and Distributed Discrete Event Simulation
	Securing the Border Gateway Protocol
	Content-Aware Image Resizing
	Tracking a Rat in Three Dimensional Space using Stero Cameras
	Introduction
	Calibration
	Capturing Video Data
	Camera Settings
	Scanline Issues

	Segmentation
	Finding LEDs
	Picking out faces
	Identifying Color
	Finding centroids

	Triangulation
	Results and Error Analysis
	Conclusion and Future Direction

	Scientific Visualization of Magnetic Dipoles in a Lattice
	Statistical Process Control of Software Processes for Obtaining CMMI Level 5
	1 Introduction
	2 SEI CMMI Overview
	3 Statistical Process Control (SPC) Overview
	3.1 Control Charts
	3.1.1 Target Value
	3.1.3 Specification Limits
	3.1.4 Zones
	3.1.5 Run Rules

	3.2 More on control charts

	4 SPC at AVISTA
	4.1.1 Background
	4.1.2 Initial Planning
	4.1.3 Implementation of SPC

	5 Future Plans
	6 Conclusions
	7 References

	Introducing a Certificate in Software Testing for Non-Majors
	Introduction
	Motivation
	Testing in the Curriculum

	New Approach
	Courses in the Certificate
	Industrial Support

	Conclusion
	References

	The Characterization and Identification of Object-Oriented Model Defects
	1 Introduction
	2 Related Work
	3 Use Case Model Defects
	3.1 Use Case Titles That Are Not Verb Phrases
	3.2 Misuse of Extends and Includes
	3.3 Insignificant Use Cases

	4 Class Model Defects
	4.1 Non-noun Class Names
	4.2 Reversed Multiplicities
	4.3 Only Public Operations and Attributes in Implementation-level Models
	4.4 Classes, Operations, and Attributes without Documentation
	4.5 Associations without Navigation Attributes
	4.6 Attributes and Operations that are not Typed
	4.7 Illegal Identifiers for Target Language
	4.8 Inheritance Arrows in the Wrong Direction
	4.9 Duplicate Operations in Multiple Classes
	/

	4.10 Classes without Attributes and/or Operations
	4.11 Classes that are not Associated with Other Classes
	4.12 Very High Class Coupling

	5 Interaction and State Model Defects
	5.1 Message Arcs and Class/Objects that do not Correspond to the Class Model

	6 Conclusion

	Exploring the Web Programming Jungle
	Transversal Homomorphism and Orthogonal within OR/MS/DS Tools into VB.NET 2005
	PID Control in a Real-Time Embedded Systems Programming Course
	1. Background
	1.1 Real-Time Embedded Systems Programming Course
	1.2 Platforms
	1.3 Topics Covered
	1.4 Software Engineering Principles

	2. Control Theory
	2.1 Control Theory Coverage
	2.2 Proportional-Integral-Derivative Control Theory
	2.2.1 Proportional
	2.2.2 Integral
	2.2.3 Derivative

	2.3 Proportional-Integral-Derivative Control Algorithm

	3. Project Description
	As stated in Section 2.1, PID control was incorporated into the project that uses the 8051-based microcontroller and a small RTOS. The author chose to use a simulated analog device to control. This gave a cheap and easy way to introduce PID control. What follows is part of the description of the project given in the spring of 2007.
	4. Conclusion
	References

	Simulation and Development of a Range Control Information Display System for UAS Operations in North Dakota
	An ANNTI (Artificial Neural Network Text Image) Spam Filter
	Reflections on a Classic Trio of Graph Problems
	Generative Programming Consideratinos for the Matrix-Chain Problem
	Simulation of Nitrogen Flow using the St. Olaf Beowulf Cluster
	The Player is Always Right
	Chess AI
	Course Scheduling with Genetic Algorithms
	A Learning Natural Language Parser
	Application of BLAST-based Techniques for Musical Information Retrieval
	Mapping Application Attributes to Object/Relational Mapping Solutions
	Toward Musical Analysis Tools
	A Policy-Based Scheduling Tool for Networking Labs
	A Dynamic Algorithm for Computing Periodicities of Misere Impartial Games
	Dispersing Search and Rescue Robots
	An Exploration of Implementing the A* Algorithm Under Limited Resources
	Customizing MediaWiki for Project-based Courses
	Integration of CodeLab into Programming Courses
	The Capstone Experience: Learning to Manage Uncertainty and Ambiguity in a Project Management Environment
	An Algorithm to Restore Data Base Content to Past Dates in Real Time
	A Methodology for the Design, Development, and Implementation of a Data Warehouse Project
	An Experience in Teaching a Short Summer Robotics Course for High School Students
	Lightweight Software Cost Estimation Model
	ISOMER: Enhancing Test Coverage Using Constrained Random Tests
	Detecting Source Code Plagiarism
	Parallelizing the Computation of the SPT Statistic
	Applications of Beowulf Cluster Computing to Problems in Biology
	Contemporary Technologies and Platforms for Electronic and Mobile Commerce Systems
	A Live View of the World
	Computer Supported Collaborative Learning in the Geology Explorer
	The Role of Writing Efficient Programs in a Data Structures Course
	Effectively Apply Boundary Value Analysis Method in Student's Program Testing

