
 

 
Rule-Based Algorithms for Music Generation 

 
 

Carla Llewellyn 
Music and Computer Science 

Simpson College 
701 North C Street Indianola, Iowa 50125 

riherd@simpson.edu 
 
 

Abstract 
 

The paper presents work done under a project assignment in a “Fundamentals of 
Computing III” class.  It discusses a rule-based approach for music generation.  In this 
approach, a melody is viewed as a sentence generated by some grammar.  The grammar 
rules describe the internal structure of the melody to be generated.  It is the task of the 
composer/programmer to choose how the constituents of a melody will be related and to 
describe this in the grammar rules.  In the presented work, a melody is generated as a 
string of notes each with its duration by a program that acts as a language generator.  
These strings can be plugged into a web based program that plays the melody.  The paper 
describes experiments with different grammar rules and presents an analysis of how 
music theory is used to create music that fits well together. 
 
 

 

 

 

 

 

 

 

 

 



Introduction 
 
This paper presents work done for a “Fundamentals of Computing III” class.  For this 
assignment, the professor let the students decide what project they would like to do.  As a 
music major and computer science minor, I decided to put my two areas of education 
together.  With my professor’s guidance, I picked the topic: Algorithms for Music 
Generation.  I found that there are two broad approaches to algorithms: rule-based 
algorithms and artificial intelligence (AI) algorithms.  Rule-based algorithms use a series 
of steps to come to a logical conclusion while AI algorithms use logic by “learning” 
which solutions are attainable by comparing previously stated data.  Both of these can be 
used when generating music.  If the program is made from a rule-based algorithm, it 
would use rules and basic melody writing regulations to compose the music.  AI 
programs would “learn” what worked and what didn’t by using what sounds good. 
 
I was impressed by the work done at the Music Research Laboratory, University of 
Helsinki where a rule-based approach was used to generate music similar to the music of 
a well-known composer.  So I decided to design and make experiments with a grammar 
that generates music using my own compositions. 
 
I found two programs online that generated music from a series of input by the user.  One 
used fractals and the other used mathematical algorithms like the Fibonacci sequence, 
powers, and constants to generate music.  When I used the fractal program I found that 
the music was more polyphonic than the music made with the Fibonacci sequence, for 
example.  The fractal program was more complex in nature; it allowed more input by the 
user, so the music generated was more my own work, while the music generated with the 
Fibonacci sequence could have been made by anyone because there weren’t any choices 
to be made.  In the latter program, however, there is a place where one can input their 
own series of numbers.  This is where the generated string will be placed to listen to the 
ending result. 
 
 
Music Theory 
 
For this project, I composed several little, simple melodies in the key of C and in 
common time as the time signature.  They do not exceed two octaves.  The melodies as a 
whole consist of eighth notes, quarter notes, half notes, dotted half notes, and whole 
notes.  
  
First I will explain what it means to be in the key of C.  A melody in the key of C uses 
seven notes labeled A, B, C, D, E, F, and G.  If you start on C and go up to B and repeat 
C again on the top, that is a scale in the key of C and it is also called an octave in the key 
of C.  It will look like this: C, D, E, F, G, A, B, C.  If you do this twice in a row, it creates 
two octaves: C, D, E, F, G, A, B, C, D, E, F, G, A, B, C and so on.  These notes are the 
building blocks to the melodies. 
   

1 



Next I will explain common time or 4/4 time (read as “four four time”).  The top number 
means how many beats per measure and the bottom number means what kind of note gets 
one beat.  In 4/4 time, there are 4 beats per measure and the quarter note gets one beat. 

 
The difference between eighth notes, quarter notes, half notes, dotted half notes, and 
whole notes will be explained here.  An eighth note gets a half of a beat.  A quarter note 
gets one beat.  A half note gets two beats.  A dot on any note means you add half the 
value of the note to the note itself, so a dotted half note gets three beats.  A whole note 
gets four beats. 

 
As a rule of traditional music theory, each melody should end on the note C, whether it is 
the top C in the scale, or the bottom one, it does not matter.  Also as a rule, a melody 
should either start on C or the fifth note in the scale, in this case G.  To make a melody, 
the notes are strategically placed in order to form a line that is pleasing to the ear.  If the 
notes are just randomly placed, there would be no coherence to the music and wouldn’t 
sound “good” according to classical music theory.   
 
 
Grammars  
 
The program that outputs the final generated string is a language generator.  It was given 
to me by my professor.  It uses a context-free grammar.  A context-free grammar is a 
formal system that uses recursive, rewriting rules to define languages and generate 
patterns of strings.  It consists of terminal and nonterminal symbols, production rules, and 
a starting symbol.  The formal definition describes a context-free grammar as an alphabet 
with a set of terminal symbols in which these terminal symbols are a subset of the 
alphabet.  When a string is being generated, nonterminal symbols are replaced with 
strings of terminal and nonterminal symbols according to the grammar rules.  Thus, each 
grammar rule can be viewed as describing the structure of the nonterminal symbol on its 
left side. 
 
I use context-free grammar rules to describe the internal structure of the melody to be 
generated.  In my particular grammar, there are 48 production rules and also a starting 
symbol.  The starting symbol is defined as, S → Beg Mid End.  Because of this, the rest 
of the production rules are split up into three categories, Beg (beginning), Mid (middle), 
and End.  They are split into these categories because of how they would best fit into a 
melody.  If a particular terminal symbol would be a good choice to start a melody, then it 
is placed in the Beg category.  If it is a good connector piece or not fit to begin or end a 
melody, then it is placed in the Mid category.  If it would end a melody well, then it is 
placed in the End category.  Here is a sample list of the production rules: 
 

S → Beg Mid End 
Beg → 47'1 49'1 51'1 52'1 
Beg → 52'2 56'2 59'2 57'2 
Beg → Beg 52'2 54'2 56'2 54'2 Mid 
Beg → 47'1 49'1 51'1 52'1 54'3 End 

2 



Mid → Beg 52'2 56'2 End 
Mid → 54'2 56'1 54'1 52'2 47'2 
Mid → Mid 47'2 52'2 56'1 57'1 56'1 52'1 Beg 
Mid → 56'2 52'1 54'1 56'2 
End → Mid Beg 54'2 51'2 52'3 
End → 52'2 52'2 51'2 52'3 
End → Beg 52'2 54'2 52'3 End 
End → 52'4 
End → 42'2 40'3 
End → 49'1 47'1 49'1 51'1 52'3 End 

 
I broke my melodies up into parts that I thought should stay together.  Their size ranges 
between a half of a measure to a full measure.  Each piece of the melodies I composed is 
defined in the grammar as a sequence of notes represented as pairs of numbers.  The first 
number in a pair corresponds to a pitch on a piano keyboard (0-87).  The second number 
corresponds to a duration.  A 1 represents an eighth note, a 2 represents a quarter note 
and so on.  The pitch and duration are separated by a single quotation mark.   
 
Once the melody is generated as a string of  these pairs of numbers, the program outputs 
the left sides of the pairs and the right sides of the pairs as two separate sequences.  The 
first sequence is the string that is to be copied and pasted into the online program shown 
below.  When I made my first experiment with this, I found that I could not enter the 
second string of durations into the program.  The durations are not allowed as input by 
the user, but are randomly assigned by the program. 
 
 
Experiments with an Online Music Algorithm Program 
 
After the string is generated, it is then put into an online music algorithm program that 
will play the melody (http://musicalgorithms.ewu.edu/algorithms/import.html).  Figure 1 
shows a snapshot of what the program looks like. 
 
To test the grammar program, initially I used a small set of production rules without 
specific nonterminal symbols for the beginning, middle, or end part of the string of notes.  
Once I found that the program worked, I added the rest of the rules and split them up 
according to whether they should begin, be in the middle, or end as described earlier.  
Then came the stage in which I just kept running the program, copied and pasted the 
numbers into the above online program, and listened to the results.  They weren’t bad; 
my rules didn’t need much change.  But sometimes I came across a couple of notes that 
didn’t sound good played one right after the other.  I had to find the first terminal symbol 
in the production rules and either change it, or add something after it that I knew would 
sound fine with it. 
 
To add another element to the program, I tried, with the help of my professor, to add 
probability to the rules so that the terminal symbols that I liked best would be played 
more often.  In the majority of experiments, however, the music generated by the 

3 



probabilistic grammar sounded monotonous with my favorite passages, while the non-
probabilistic grammar gave better results.  
 

 

  

  
  

 

 

Import numbers 

Here, you may enter any arbitrary 
numeric input. It will be 
transformed into a uniformly-
formatted list of numbers, used 
for the output values of this 
"algorithm." 
learn more

 A.   Type or paste numeric input in the space provided below: 

      

B.   Only use column number 1  

C.   Commas are used for placeholders  

D.   Interpret as decimals using 0 digits of precision 

Formatted input:      

  

 

 

Next, normalize the algorithm's 
output by selecting from the 
options on the right. The values 
you derive will represent the 
pitch of each note. Move to Step 
3 after making your choices. 
learn more  
keyboard

 Scaling: 

Use values from 0 to 88  

perform division operation 

perform modulo operation  
learn more 
 
 
Modification: 

Convert each to a  

Reverse 

Invert 
learn more 

 

 
ALGORITHM OUTPUT VALUES 

 
 

DERIVED PITCH VALUES 

 

 
  

Figure 1: Online Music Algorithm Program 
 

4 

http://musicalgorithms.ewu.edu/index.html
http://www.nwacc.org/
http://musicalgorithms.ewu.edu/about.html
http://musicalgorithms.ewu.edu/algorithms.html
http://musicalgorithms.ewu.edu/algorithms/Roughness.html
http://musicalgorithms.ewu.edu/history.html
http://musicalgorithms.ewu.edu/resources.html
http://musicalgorithms.ewu.edu/contact.html
http://musicalgorithms.ewu.edu/learnmore/import.html
http://musicalgorithms.ewu.edu/learnmore/norm_pitch.html
http://musicalgorithms.ewu.edu/learnmore/keyboard.html
http://musicalgorithms.ewu.edu/learnmore/norm_pitch_scale.html
http://musicalgorithms.ewu.edu/learnmore/norm_pitch_modify.html


Conclusion 
 
This program that generates a variety of different melodies from a set of production rules 
can be very useful to a composer who needs to add variety to a piece and is experiencing 
a sort of “writer’s block”.  While listening to the generated music, I found many 
combinations of tunes that were pleasing and that I had not thought of.  I intend to do 
many more experiments to fine-tune the grammar rules so that “good” melodies are 
always the result. 
 
 
References 
 
Music Research Laboratory at the University of Helsinki 
(http://www.music.helsinki.fi/studio.html) 
 
Context-Free Grammars, Lecture Notes on Theory of Computation as prepared by Dr. 
Lydia Sinapova 
(http://faculty.simpson.edu/lydia.sinapova/www/cmsc365/LN365_Lewis/L06-CFGs.htm) 
 
 

5 


