

Web Parts at Work: Healthcare Provider’s Dashboard

Doug Forst
Computing and Information

Systems
University of Wisconsin Stevens

Point
Stevens Point, WI 54481

Douglas.J.Forst@uwsp.edu

Josh Eide
Computing and Information

Systems
University of Wisconsin Stevens

Point
Stevens Point, WI 54481
joshua.t.eide@uwsp.edu

Robert Dollinger

Computing and Information Systems
University of Wisconsin Stevens Point

Stevens Point, WI 54481
rdolling@uwsp.edu

Abstract

Two technological breakthroughs seem to get an edge in providing a completely new
type of user experience for Web applications: the first one is the family of Web Parts
controls, and the second one consists of the set of technologies generally known as AJAX
(Asynchronous JavaScript And XML). This paper elaborates on the development
experience related to the creation of a customizable and dynamic Healthcare Provider’s
Dashboard. This is a custom application used to display and manage important
information and tasks associated with a healthcare provider. The main objective of the
project was to fit as much information as possible into the interface, while making the
pages customizable and dynamic such that each user would be able to customize the
interface to his/her own liking. Web Parts, available in ASP.NET 2.0 within Visual
Studio 2005, have been identified as the right tool to achieve this kind of functionality.

mailto:joshua.t.eide@uwsp.edu
mailto:rdolling@uwsp.edu

1 Introduction

Web application developers face new challenges in providing innovative features that
insure an improved user experience. Customizable, dynamic, flexible and responsive
Web pages become the norm for the modern applications. Two technological
breakthroughs seem to get an edge in providing such features: the first one is the family
of Web Parts controls, introduced by Microsoft with ASP.NET 2.0, and the second one
consists of the set of technologies generally known as AJAX (Asynchronous JavaScript
And XML). This paper elaborates on the development experience related to the creation
of a customizable and dynamic Healthcare Provider’s Dashboard. This is a custom
application used to display and manage important information and tasks associated with a
healthcare provider. The main objective of the project was to fit as much information as
possible into the interface, while making the pages customizable and dynamic such that
each user would be able to customize the interface to his/her own liking. This means the
user can move around and reconfigure items on the interface, dynamically add/remove
items, and save these personal settings to be retrieved the next time the user logged in
again. Web Parts, available in ASP.NET 2.0 within Visual Studio 2005, have been
identified as the right tool to achieve this kind of functionality. In a second paper, we
describe how the use of AJAX provides flexibility and responsiveness to our application.

ASP.NET Web Parts enable you to build Web pages with modular layouts in which users
can modify the appearance and content to suit their preferences. A key Web Parts feature,
known as personalization, lets you save user-specific settings for each page and reuse
those settings in future browser sessions. Other features include drag-and-drop,
connections between Web Parts, custom verbs (verbs are represented in the UI as buttons,
links, or menu items), themes, and add/remove capabilities. The Web Parts are all
managed by a WebPartManager, and implement many different controls and classes.
Each Web Part contains a Web User Control that can be personalized through an
associated EditorZone, which has been specifically created and customized for that
control. Four custom Web User Controls have been created, each of which allows the
user to customize what they view on the page. Our first User Control, Table Viewer,
allows the user to view information from a database in an ASP.NET GridView control.
This Table Viewer Web Part allows editing in the following ways: displayed table, items
displayed, width, columns viewed, and popup style, which displays more details. Three
other Web User Controls that we have created include a RSS Feed, a Search Engine, and
a Calendar. In addition to the ability to customize each Web Part, the user can also add
new and previously closed Web Parts onto the page. More than one instance of each Web
Part can be added to the Web page and each Web Part instance can be individually
customized. Themes and skin files are also used to change the color scheme of the page.

1.1 What is a Provider Dashboard?

A Provider Dashboard is an application that condenses a provider’s most important
information into one single application. The application features an interface from which
providers can quickly and easily have access to a large variety of information like:

appointments they may have, patient history, drugs that they are able to prescribe,
hospital rounds list, “to do list”, list of documents to sign and many other. The dashboard
also includes a calendar and RSS feeds displaying the day’s top healthcare headlines.
The screen is sectioned off into parts, which contain the different pieces of information.
Each part can be customized or drilled into for even more information. Given that in the
healthcare industry, efficiency and timing is critical, the main purpose of a provider
dashboard is to quickly and easily visualize information important to a healthcare
provider; as opposed to using multiple applications to get the same information, in an
inefficient and time consuming manner. In addition, all this information needs to fit into a
small interface, since the providers use a tablet PC with a15 inches screen to retrieve all
of their information.

The objective of this project was to develop a user interface to display this much needed
information in a compact and user efficient way that is also dynamically customizable
for/by each and every user. User customization means that users are able to reconfigure
the interface to their own liking and have the configuration settings saved for the next
time they login.

The current Patient Dashboard in production is very standardized and it’s not
configurable or customizable. It does not optimize space and is dominated by user
controls, not the information. The current application lacks efficiency and cannot
assemble provider tasks and responsibilities. A new dashboard named Provider
Dashboard needed to be designed as a prototype that will solve the majority of the
problems related to the Patient Dashboard.

The Marshfield Clinic IS department Marshfield Wisconsin identified the need to give
their providers a strong and effective way of viewing information needed for patients as
well as their own tasks. Basically, design a new user friendly and customizable version
of the Provider Dashboard (GUI).

The proposed tool for this task was to use ASP.NET 2.0 within Visual Studio 2005.
ASP.NET 2.0 has many new features, like the new Web Parts controls, that all allow for
personalization and customization. Web Parts are very dynamic and can compact a lot of
information into a limited screen. The components used to create this application are
described in greater detail throughout this document.

A sample view of the final prototype developed in this project is given in figure 1.

Figure 1: Final Prototype Sample View

1.2 What is a Web Part?

ASP.NET Web Parts controls are an integrated set of controls for creating Web sites that
enable end users to modify the content, appearance, and behavior of Web pages directly
in a browser. A Web Part can be a web user control or a simple user control. There are
two or three columns that can contain controls. These columns in Web Parts terminology
are called zones, i.e. regions on a page that contain Web Parts controls. Zones exist to lay
out Web Parts controls on a page, and to provide a common UI for the controls. There
can be one or many zones on a page, each zone can contain one or many Web Parts
controls, and each zone can have a vertical or horizontal orientation for page layout [1].
Once a web user control or an ASP.NET user control is placed within a Web Part Zone it
becomes a Web Part.

2 Requirements

Before starting to build a provider dashboard, using Web Parts, a couple of components
need to be set up and configured.

For the application to be customizable per user, Personalization (new feature in ASP.NET
2.0) needed to be implemented. Once Personalization is setup, the Web Site
Administration Tool can be used to configure it. This includes allowing or denying
specific user(s) or group(s) access to a Web page or Web site.

ASP.NET Web Parts enable you to build Web pages with modular layouts in which users
can modify the appearance and content to suit their preferences. A key Web Parts feature
known as personalization lets you save user-specific settings for each page and reuse
those settings in future browser sessions [2]. ASP.NET typically saves these user-specific
settings into a MSSQL database. There are a couple of steps to follow in order to create a
database where to store the user-specific information related to personalization. By
default ASP.NET tries to create a SQLExpress database on the local machine when a
Web page is ran for the first time with the WebPartManager. However, most machines
will not have SQLExpress installed, in which case the alternative solution at hand is to
create a dedicated database on any SQL server at hand. .NET Framework 2.0 provides a
configuration tool, aspnet_regsql.exe, which allows a personalization database to be setup
on a remote SQL server. This tool is located in a special windows directory at:
C:\WINDOWS\Microsoft.NET\Framework\v2.0.50727\.

Web site configuration settings are stored in an XML file named Web.config, which is
located in the root folder of the Web site. The Web Site Administration Tool lets you
change your site configuration without having to manually edit the Web.config file. The
first time that you use the Web Site Administration Tool to administer a specific Web site,
if no Web.config file exists, the Web Site Administration Tool creates one. By default,
the Web Site Administration Tool also creates a database in the App_Data folder of the
Web site to store application services data, such as membership and roles information.
For most settings, changes that are made in the Web Site Administration Tool take effect
immediately and are reflected in the Web.config file [3].

Use the Security tab of the Web Site Administration Tool to manage rules for securing
specific resources in the Web application. ASP.NET uses a security system that lets you
restrict access to specific user accounts or the roles to which the user accounts belong.
With the Security tab, you manage user accounts, roles, and access rules for the Web site.
Before using the Security tab for the first time, use the Security Setup Wizard to
configure basic security settings for the Web site [4].

3 Web Part Manager

ASP.NET provides a control called the WebPartManager, which managers all of the
components related to Web Parts on the page. These components include Web Part Zones,
Editor Zone, Catalog Zone, and Connection Zone.

The WebPartManager control acts as the hub or control center of a Web Parts application,
which is responsible for managing and coordinating all controls inside WebZones. There
must be one and only one WebPartManager control instance on every page that uses Web
Parts controls. As with most aspects of Web Parts applications, the WebPartManager
control works only with authenticated users. Furthermore, its functionality works almost
entirely with server controls that reside within Web Parts zones that inherit from the
WebZone class. Server controls that reside on a page outside of these zones can have
very little Web Parts functionality or interaction with the WebPartManager control [5].
We have placed the WebPartManager on the master page of the Healthcare Provider’s
Dashboard application. This WebPartManager will control the Web Parts for all of the
pages, so it is not necessary to add one to each Web page of the application.

The WebPartManager is used to set the Display Mode for the page. Display modes
enable end users to perform certain tasks to modify or personalize a page, such as editing
Web Parts controls, changing the layout of a page, or adding new controls from a catalog
of available controls[6]. Within the page load method of the master page the
WebPartManager display mode is set to EditDisplayMode. This enables the user to
always have the option to edit each Web Part and also have the option to drag-and-drop
each. Table 1 lists each display mode that the WebPartManager can use.

Value Description
BrowserDisplayMode "Normal" display mode; no editing (default)
DesignDisplayMode Permits drag-and-drop layout editing.
EditDisplayMode Permits editing of Web Parts' appearance and behavior.
CatalogDisplayMode Permits Web Parts to be added to the page
ConnectDisplayMode Permits connections to be established between Web parts

Table 1: WebPartManager Display Modes

Generic Zones
At run time, the Web Part Zone(s) wraps both controls (server controls or web user
controls) with a GenericWebPart control. When a GenericWebPart control wraps a server
control, the generic part control is the parent control, and you can access the server
control through the parent controls ChildControl property. This use of generic part
controls enable standard web server controls to have the same basic behavior and
attribute as Web Parts controls that derive from the WebPart class.

EditorZone
The EditorZone control is one of the fundamental controls in the Web Parts control set. A
key feature of Web Parts is the ability of end users to modify (or personalize) Web pages

according to their preferences, and save their personalized settings for future browser
sessions. One aspect of modifying Web Parts pages includes editing. Within the Web
Page users can edit the appearance, layout, behavior, and other properties of the visible
WebPart controls. Several controls in the Web Parts control set provide the editing
features, including the EditorZone control. An EditorZone control becomes visible when
a Web Parts page enters edit mode, and it makes available various EditorPart controls
that can be used to personalize WebPart controls [7].

There are four Editor Parts that can be added to the EditorZone. Table 2 lists each one of
these parts. In the Provider Dashboard none of these default editor zones are used, instead
we have created our own Editor Part for each Web Part. The Editor Part that pertains to
each Web Part is specified within each Web Part’s user control. The Editor Part is
specified in the IWebEditable region of each user control.

Value Description
AppearanceEditorPart Provides UI for editing titles and other UI-related properties
BehaviorEditorPart Provides UI for editing behavioral properties (e.g., can

the Web Part be closed?)
LayoutEditorPart Provides UI for editing Web Part's display state (minimized

or restored), zone, and zone index
PropertyGridEditorPart Provides property grid for editing custom properties

Table 2: EditorZone EditorParts

CatalogZone
The CatalogZoneserves as the primary control in the Web Parts control set for hosting
ASP.NET server controls of type CatalogPart on a Web page. A CatalogZone control
becomes visible only when a user switches a Web page to catalog display mode
(CatalogDisplayMode). A catalog can contain several types of CatalogPart controls [8].
The CatalogZone can be drag-and-dropped on to the Web page from the Web Parts server
controls. There are three Catalog Parts that can be added to the CatalogZone then. These
parts are listed in Table 3. These server controls provide their own user interface but we
have created our own CatalogZone interface for the Provide Dashboard.

Value Description
PageCatalogPart Lists Web parts that have been removed from the page
DeclarativeCatalogPart Lists Web parts declared in a <WebPartsTemplate>
ImportCatalogPart Permits Web parts to be imported from .WebPart files

Table 3: Catalog Zone Catalog Parts

Within the Provider Dashboard the PageCatalogPart and the DeclarativeCatalogPart are
implemented. The PageCatalogPart is a list of the Web Parts that have been closed on the
Web page. When a Web Part is closed it populates the Closed Web Parts drop down list
within the options panel. The DeclarativeCatalogPart is a list of the available Web Parts
that can be added to the page. They are declared within the <WebPartsTemplate> tag in

the source code of the site.Master page. A listing of these Web Parts is listed in the Add
New Web Parts drop down list, located in the options panel on the site’s Master page.

Web Part Connections
The WebPart connection is used to allow two WebParts to communicate with each other.
Using Web Part connections, you can make it easier for your users to visualize the
relationships that exist between items of data. For example, Web Part connections can
model a master-detail scenario where one Web Part displaying a customer list is
connected to another Web Part that displays the details of the currently selected customer.
Web Part connections can also be used to model one-to-many relationships. As an
example, one Web Part that displays a customer list can be connected to another Web
Part that displays all the orders for the currently selected customer [9].

4 User Controls as Web Parts

Web user controls are derived from the System.Web.UI.UserControl namespace. These
controls once created, can be
added to the aspx page either at
design time or programmatically
during run time. But they lack
the design time support of
setting the properties created
along with the control. They
cannot run on their own and
they need to stand on another
platform like an aspx page [10].

Figure 2: Table Viewer

Table Viewer
Our first web user control is the Table
Viewer, which uses the ASP.NET tool
GridView in order to display the user
requested information from tables. The
GridView automatically generates a
column for every field and allows for
paging and selection. The Table
Viewer user control was created to
allow for flexibility in what
information was displayed, the amount
displayed, items displayed, and the
width. This again was derived from
our focus on personalizing the
information. We have also
implemented a custom editor zone
within the Table Viewer. This allows
the user to view any given query of Figure 3: Table Viewer Editing

information from the DB, which is displayed in a table. Next we then allow the user to
change how many rows are displayed (1-10) by using the editor zone. The verbs
contained at the top of the user control can also change the number of rows to be
displayed. Another option allows the user to choose which columns to display. The last
customizable attribute of this user control is the type of popup they will view. The user
will choose either a panel or a popup to display the selected information.

Figure 2 shows the table viewer, while figure 3 gives a sample view of the table viewer
editing process.

RSS Feed
The RSS Feed web user control displays information from any RSS Feed. Within this
user control we allow the user to change the displayed number, title, RSS feed choices,
and the ability to remove feeds. We found a RSS Toolkit created by a programmer
named Dmitry on the
ASP.NET Team blog. Using
this toolkit we access the RSS
Feed, and then bind it to a
GridView. We store the RSS
Feed list in an ArrayList and
the current RSS Feed for the
Web Part is stored in a separate
string. Each user’s list of RSS
feeds are user specific. Within
the editor zone the user is able
to add, remove, and rename
any RSS Feed. Also, as in the Table
Viewer the user is also able to change
the type of popup style that they view.

Figure 4: RSS Feed

Figure 4 shows an RSS feed, while

Calendar Web Part
r control is used to

figure 5 gives a sample view of the RSS
feed editing process.

The Calendar web use
select the date that the user wants to see.
The selected date can then be used in
other Web Parts on the Web page. For
example, it can be used to see the
appointments on a specific day. The
selected date is a session variable that is
initially set to today’s date in the
Global.asax file. Then the
“sessionDate” is set to the selected date
when the Calendar’s selected date Figure 5: RSS Feed Editor

changed.

The selected date can also be passed through an
Interface IMessage which can be used to connect
Web Parts. However, using a session variable was
much more convenient and it can be used
anywhere in the application without creating an
IMessage first. The Calendar Web Part does not
implement a custom EditorZone. Therefore,
clicking edit on the Web Part will not list any
options to change (figure 6).

Search Engine Web Part
The Search Engine Web Part allows the user do a
Web search at four of most popular search engines
on the Web. In the Search Engine
editor zone the user can choose
whether to search at Google, Ask.com,
Yahoo, or Live (MSN). The search
results are then displayed in a new
window. Figure 7 shows the Search
Engine Web Part and the Search
Engine Editor.

Figure 6: Web Part Calendar

Verbs
A custom Web Part control allows you
to customize verbs, which provides
user interface actions that users can
perform on a Web Part control.
Usually verbs are represented as buttons, links, or menu items. By default, common Web
Part verbs appear on a drop-down list in each Web Part control's title bar. The
IWebActionable method is responsible for showing verbs for a Web Part. You can
customize the verbs by overriding and returning the WebPartVerbCollection. The two far
left verbs allow the user to add or subtract rows to be
displayed. The middle two verbs allow the Web Part to be
minimized or closed respectively. The next verb allows
the user to permanently delete the Web Part. The far right
verb opens the editor zone to edit/customize the Web Part.
Figure 7 shows a sample Verbs panel.

Figure 7: The Search Engine Web Part and
Its Associated Editor Zone

Figure 7: Verbs

Popup and Panel
We use the popup and panel control to display information from the RSS Feed or Table
Viewer when a row is selected. We found a popup toolkit at CodeProject.com by Tomas
Petricek [10]. When using a popup we use JavaScript to set two session variables to the x
and y coordinates of the mouse click which is then used to display the popup.
Information can be set to popup in a popup window or a panel as shown in figure 8.

Figure 8: Popup and Panel

5 Classes

BaseUserControl Class
This class inherits the System.Web.UI.UserControl and IWebPart. All changes made to
an EditorZone are stored within the declared variables in the BaseUserControl class.
Therefore, this class will have all the properties/variables which we would like to edit and
save for each user control. Every Web user control inherits the BaseUserControl.

DataAccessClass
This class is used to connect to a SQL database and run a query. The
“ConnectToSQLDatabase” method within the class connects to an SQL database
specified in the connection string. It is passed the SQL select command and returns a
dataset with the results. The connection strings are located in the web.config file. All of
the information used in the Provider Dashboard comes from one database. Each user’s
personalized settings are saved in a separate database.

Web.config
The web.config file is where all of the connection strings are located. The
“LocalSQLServer” connection is for Personalization database. Code Example 1 in figure
9 shows how the user’s “Theme” and “Orientation” are declared and saved for each user.
The “Theme” stores a string for the user’s selected color theme. For example: “Blue”,
“Red”, “Grey”, or “Green”. The Theme and Orientation are set in the site.Master page
load method. The Orientation also stores a string variable, which is either “Landscape”
(shows 3 columns/zones) or “Portrait” (shows 2 columns/zones).

 <profile>
 <properties>
 <add name="Theme" type="System.String" />
 <add name="Orientation" type="System.String"/>
 </properties>
 </profile>

Figure 9: Code Example 1: Profile properties (Theme and Orientation)

The web.config file is also where the authorization settings are stored. They can also be
set through the Web Site Administration Tool. Code Example 2 (figure 10) is an
example of the application’s permissions. In the Provider Dashboard each user must have
a user account with the application in order to login.

 <authorization>
 <deny users="?"/>
 <allow users="?"/>
 </authorization>
 <authentication mode="Forms"/>

Figure 10: Code Example 2: web.config Authentication

6 Other Features

Three other features that we used to create more functionality and also simplicity to our
application are Themes, Orientation, and also the Master Page. Themes are used to
change the color scheme of the Web Page, while Orientation is meant to help in assisting
the user with changing from landscape to portrait, and finally the Master Page is used for
simplicity and functionality.

Themes
Themes, a new feature of Microsoft ASP.NET 2.0, enable you to define the appearance
of a set of controls once and apply the appearance to your entire Web application. For
example, by taking advantage of themes, you can define a common appearance for all of
the GridView controls in your application, such as the background and foreground color,
in one central location. Themes enable you to easily create and maintain a consistent look
throughout your Web site.

Themes are not the same thing as cascading style sheets. Cascading style sheets enable
you to control the appearance of HTML tags on the browser. Themes, on the other hand,
are applied on the server and they apply to the properties of ASP.NET controls. For
example, you can use a theme, but not a cascading style sheet, to specify whether or not a
GridView control displays a header or footer [11].

Within the Provider Dashboard themes are used to set the properties of the
WebPartZones and GridView controls. When the theme color is changed in the Options
panel, located on the site.Master page, a different skin can be applied, which changes
WebPartZones and GridView controls. A theme or skin can be applied to an individual
control or to all similar controls, such as a textbox. In the skin file (located in
App_Themes folder) a control’s html source code can be placed to specify the properties
of that control. The controls within the skin file can not have an “id” associated with
them. If you want a skin to be applied only to an individual control a “skinid” must be
specified in the skin file. Then the control on the page must specify the “skinid” that it is
to associated with in the skin file.

Orientation
The Provider Dashboard provides an option to set the Web page to “Landscape” or
“Portrait” mode. Landscape mode displays three zones or columns to have Web Parts.
Portrait mode displays two zones or columns. If the page is in landscape mode and then
switched to portrait mode the Web Parts that were in the far right zone are moved to the
bottom of the left most zone. This was an important feature because this application is
going to be run on a tablet PC. When providers are carrying the tablet PC will most
likely want to use the portrait mode so they can fit all of the Web Parts vertically on the
screen without having to scroll horizontally. However if the provider has the tablet
docked they will most likely want to switch to landscape mode to view more Web Parts
horizontally.

Master Page
ASP.NET 2.0 introduces a new concept known as Master Pages, in which you create a
common base master file that provides a consistent layout for multiple pages in your
application. To create a Master Page, you identify common appearance and behavior
factors for the pages in your application, and move those to a master page. In the master
page, you add placeholders called ContentPlaceHolders where the content (child) pages
will insert their custom content. When users request the content pages, ASP.NET merges
the output of the content pages with the output of the master page, resulting in a page that
combines the master page layout with the output of the content page. As mentioned
before the site.master contains the EditorZone and CatalogZone. It also contains the
Options panel. This allows us to greatly reduce redundancy of code between these three
controls. The EditorZone is placed above the current selected Web Part. This is done
through JavaScript (MoveEditorPart) in the source code of the site.master. An example
of moving Editor Part can be found at the following web site:
http://www.codeproject.com/aspnet/UserControlWebparts.asp

7 Conclusions

Web Parts have been identified as a solution to build a flexible and customizable
Healthcare Provider Dashboard. ASP.NET’s Web Parts enabled us to build Web pages
with layouts in which users can modify the appearance and content to suit their
preferences. A key Web Parts feature is personalization, which lets users to save their
“user-specific” settings for each page and reuse those settings in future browser sessions.
Web Parts can be customized through a custom EditorZone. Along with many other
capabilities, Web Parts allow for drag-and-drop, minimize, close, theme setting (color
change), and the ability to add multiple instances of a single Web Part.

On Healthcare Provider Dashboard four Web Parts have been created representing
possible areas that will be used by a healthcare provider. One of these Web Parts is a
flexible Table Viewer, which allows editing in order to be reconfigured in several ways
allowing changes of the displayed table, items displayed, width, columns viewed, and
popup style that facilitates displaying more details. Three other Web User Controls that
we have created include a RSS Feed, a Search Engine, and a Calendar. With these Web

Parts a Provider can easily perform every day tasks like: checking what appointments
he/she has today or tomorrow; previous patients visited, hospital rounds list, and the
drugs they are able to prescribe and so on. They can also quickly see the latest healthcare
news headlines through the RSS Web Part. Also, new Web Parts can easily be created
and added to the list of available parts to expand the Provider’s Dashboard extensibility.

In conclusion, using ASP.NET’s new Web Parts features allowed for the development of
a flexible and user friendly Healthcare Provider Dashboard, where the interface becomes
dominated by the useful information and not the user controls.

References

[1] “ASP.NET Web Parts Overview” MSDN. 2007. Microsoft Corporation. 12 Jan

2007 <http://msdn2.microsoft.com/en-us/library/hhy9ewf1(VS.80).aspx>.
[2] “Walkthrough: Implementing Web Parts Personalization with a User Control”

MSDN. 2007. Microsoft Corporation. 6 Dec 2006, <http://msdn2.microsoft.com
 /en-us/library/784d8z92.aspx>.
[3] “Web Site Administration Tool Overview” MSDN. 2007. Microsoft Corporation.

6 Dec 2006 <http://msdn2.microsoft.com/en-us/library/yy40ytx0.aspx>.
[4] “Web Site Administration Tool Security Tab” MSDN. 2007. Microsoft

Corporation. 6 Dec 2006, <http://msdn2.microsoft.com/en-us/library/
 ssa0wsyf.aspx>.
[5] “WebPartManager Class” MSDN. 2007. Microsoft Corporation. 6 Dec 2006

<http://msdn2.microsoft.com/en-us/library/system.web.ui.webcontrols.webparts.
 webpart manager.aspx>.
[6] “Web Parts Page Display Modes” MSDN. 2007. Microsoft Corporation.

<http://msdn2.microsoft.com/en-us/library/f887s4cy.aspx>.
[7] “EditorZone” ASP.NET Quickstart Tutorials. 2005. Microsoft Corporation. 13

Dec 2006, <http://quickstarts.asp.net/QuickStartv20/aspnet/doc/ctrlref/webparts
 /editorzone.aspx>.
[8] “CatalogZone” ASP.NET Quickstart Tutorials. 2005. Microsoft Corporation. 13

Dec 2006, <http://quickstarts.asp.net/QuickStartv20/aspnet/doc/ctrlref/webparts
 /editorzone.aspx>.
[9] Pattison, Ted. “Introducing ASP.NET Web Part Connections” MSDN. Feb 2006.

Basic Instincts. 13 Dec 2006, <http://msdn.microsoft.com/msdnmag/issues
 /06/02/BasicInstincts/>.
[10] “Creating a Web User Control in C#”. 3 Jan 2005. CoderSource.NET 12 Jan

2007 <http://www.codersource.net/asp_net_web_user_controls.html>.
[10] Petricek, Tomas. “ASP.NET Popup Control” 22 April 2004. The Code Project. 12

Jan 2007 <http://www.codeproject.com/aspnet/asppopup.asp>.
[11] Walther, Stephen. “Creating Web Application Themes in ASP.NET 2.0” March

2005. Microsoft Corporation. 10 Dec 2006 <http://msdn2.microsoft.com/en-
us/library/ms379601(VS.8 0).aspx>.

	Web Parts at Work: Healthcare Provider’s Dashboard
	1 Introduction
	1.1 What is a Provider Dashboard?

	
	Figure 1: Final Prototype Sample View
	1.2 What is a Web Part?
	2 Requirements
	3 Web Part Manager
	Generic Zones
	EditorZone
	CatalogZone
	Web Part Connections

	4 User Controls as Web Parts
	Web user controls are derived from the System.Web.UI.UserControl namespace. These controls once created, can be added to the aspx page either at design time or programmatically during run time. But they lack the design time support of setting the properties created along with the control. They cannot run on their own and they need to stand on another platform like an aspx page [10].
	Table Viewer
	RSS Feed
	Calendar Web Part
	Search Engine Web Part
	Verbs
	Popup and Panel
	BaseUserControl Class
	DataAccessClass
	Web.config

	6 Other Features
	Themes
	Orientation
	Master Page

