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Abstract
Steganography  is  a  field  of  research  involving  hiding  information  in  a  seemingly
innocuous cover message.  This concept is applicable to digital images, audio, and video
which have pixels and streams in which secret data can be embedded in ways that make
no perceivable difference, even when using statistical analysis.  An implementation of
steganography is presented for embedding a digital signature in an image to prove its
ownership.

Zero knowledge proofs (ZKP) are techniques for proving identity or ownership. Their
fascinating  property  is  that  possession  of  some  information  can  be  proved  without
revealing  that  information.   This  is  done  in  an interactive  process  whereby a  prover
convinces a verifier of a certain assertion.

In this paper, we combine the concepts of steganography and ZKP in order to create a
digital  signature  scheme  in  which  no  one  gains  enough information  to  falsely claim
ownership.



1. Steganography

1.1 History and Definition

In the fifth century B.C. the Spartans fell  to the invading Persian army in the famous
battle of Thermopylae.  The exiled king Demaratus sought to warn the Spartans who
remained at home that the Persian army was ready to march against them.  In order to
send a message unknown to the Persians he took a wax tablet in common use for writing
at  the time, removed the wax,  wrote  his  message in the wood underneath,  and again
covered the tablet with wax.  The message passed the Persian guards unhindered and was
discovered by King Leonidas’s wife once it reached Greece [1].

If true, this story as given by the Greek historian Herodotus is one of the earliest known
uses of steganography.  Steganography is the practice of hiding a message so that it can
pass undetected.  Generally this is accomplished by placing the message within a larger
innocuous message.  The actual message is called the “payload” and the larger message
hiding it is called the “cover message”.  It is a concept related to cryptology but different
from simple encryption which is concerned with making a message undecipherable.  A
well-encrypted message is not readable but anyone obtaining the message will realize that
sensitive information is being passed.  On the other hand, with steganography, it is likely
no one will even realize the valuable information is being exchanged.

There are many examples in history where steganography was used because of this vital
property.  It was vital for 1st Lieutenant Jonelis during his time in a Japanese P.O.W.
camp during World War II.  He addressed a postcard to Mr. F. B. Iers in Los Angeles
with the following message:

Dear Iers:
After surrender, health improved
Fifty percent. Better food, etc.
Americans lost confidence
In Philippines. Am comfortable
In Nippon. Mother: invest
30%, salary, in business. Love
Frank G. Jonelis

Figure 1: A postcard sent from a Japanese POW camp to the FBI.

The message passed the Japanese censor without difficulty and eventually reached the
FBI’s office in Los Angeles.  It appears to be a completely harmless description of the
Lieutenant’s health and some investment advice.  Read only the first two words of each
line, however, and it is discovered to in fact be intelligence about American war losses,
“After surrender fifty percent Americans lost in Philippines in Nippon 30%” [2].
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1.2 Applications in the Digital Age

From a layer of wax to selective words and invisible ink, steganography has progressed
much since the time of the ancient Greeks.  The most exciting developments, however,
have occurred only in the past several decades through the pervasiveness of the computer.
In the analog world, there are many places in which a message can be hidden; certain
letters might be written more boldly than others or the type set slightly lower for example.
In the digital world, there is only one place to hide data: a bitstream of zeros and ones.
This is not to say that the applications of steganography to digital data are limited; in fact
the opposite is true.  While message hiding was generally limited to some form of text,
today a message can be hidden in anything that can be saved digitally.  Any digital file,
whether it  be text,  a photograph, audio,  or video, is  a potential  cover message.   The
boundaries of what the payload can be are extended in the same way.  Instead of simple
text, one could embed, for example, a digital signature into a file.

One important consideration when choosing an appropriate cover message for a file is the
resulting “encoding density”.  Encoding density is a number between 0 and 1 calculated
by dividing the number of bits in the payload by the number of bits in the cover message.
An encoding density near 1 results in the smallest possible resulting message, but usually
the smallest possible encoding density is most desirable.  A low encoding density means
fewer changes to the cover message are needed.  This in turn makes the hidden file less
obvious both to the human eye/ear and to statistical  analysis which,  when applied to
stego-files, is called steganalysis.

Digital images provide ideal cover messages.  For one, they are large.  An image will
commonly use 8 bits to represent each of the three color components red, green, and blue
per pixel resulting in a total of 24 bits per pixel.  This, multiplied by the millions of pixels
taken by modern digital  cameras,  results  in  a  file  size  of many megabytes.  Another
reason digital images work so well as cover messages is the amount of noise present.
Text, executables, and many other types of files are full of patterns that, if tampered with
even slightly can be very noticeable.  On the other hand, changes to images are difficult to
notice among noise created by film grain, unclean lenses and lossy compression among
other things.

For the sake of illustration, consider the uncompressed 200 by 200 pixel image of a tree
shown in figure 2.  Hiding data in the 2 lowest order bits of each color component results
in an encoding density of .25 and 30 kilobytes of possible hidden data.  Through changes
unlikely to be visible to the human eye, this small image of a tree has the ability to hide a
long  text  message.   In  this  case,  it  is  in  fact  hiding  a  second  image  of  the  same
dimensions!  Setting the 6 high order bits to 0 will result in an image that looks almost
black, but making this resulting image 85 times brighter reveals the hidden photo of a cat
[3].
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Figure 2: An image of a tree and the photograph extracted from it.
Used under the terms of the GNU Free Documentation License.

In practice, however, an encoding density smaller than .04 will generally be used.  This
allows for  use  of  less  than  one  bit  per  pixel  for  encoding  and  greatly increases  the
difficulty of detecting the payload while still allowing for a reasonable payload size.

2. Zero Knowledge Proofs
Encryption  frequently  plays  an  important  role  in  digital  steganography.   Some
implementations  will  encrypt  payloads  before  embedding  them within  a  file  for  two
reasons.  The first  is that  encrypted messages are harder to extract.   If an unintended
recipient somehow manages to extract the payload from the cover message, he or she
must still contend with the imposing task of decryption.  The second reason is to make
the  payload seem more like  randomly distributed  noise.   In most  modern encryption
schemes, a cipher text  has a seemingly random distribution of characters.  Patterns in
payloads such as ASCII text  are therefore eliminated by encryption,  making the data
much more difficult to detect.

In this section we describe an alternative scheme to embed a digital signature in an image
that does not require encryption but has the powerful property of not revealing crucial
information about the ownership of that image.

2.1 Description and Illustration

A zero knowledge proof (ZKP) allows one to convince someone of the validity of a
statement without revealing anything else, even why the statement is true!  To one who
has  never  heard  of  a  zero  knowledge  proof,  this  concept  can  seem  unintuitive  but
mathematics makes it possible.

There is, in fact, an often-used story [4] to help one visualize how a zero knowledge proof
works.  For our discussion we are concerned with two parties, a prover and a verifier.
The prover tries to convince the verifier of some assertion.  In this story we will call the
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prover Peggy and the verifier Victor.  It takes place at  the entrance to a cave with a
circular passageway.  One could pick a direction, walk into the cave, and end up back at
the entrance if it weren’t for the existence of a closed magic door on the far side.  Peggy
says she knows a magic word that will open this door and is willing to sell this secret to
Victor.  Victor won’t pay until he knows Peggy is telling the truth and Peggy won’t tell
Victor her secret until she gets paid.

They seem to be at an impasse but a strategy is devised in which Peggy can convince
Victor that she knows the magic word.  Victor looks away as Peggy chooses one of the
paths into the cave.  He then tells Peggy which side he wants her to come out on.  If she
really knows the magic word, she can always come out on the correct path.  If Peggy does
not know the magic word, she could play the game anyway hoping to swindle Victor.
She would not  know which path Victor will  pick beforehand,  however,  so there is  a
probability of 1/2 that she will be revealed as a cheater.  Since after one round there is
still a reasonable probability that Peggy is cheating, they repeat the process enough times
to convince Victor that Peggy truly knows the magic word.  After several rounds, the
chances that Peggy is cheating become vanishingly small.  If ten rounds of the cave game
were played, the chances Peggy is cheating are 1/1,024 or less than 0.1% (and less than
1/1,000,000 after twenty rounds).

Figure 3: Peggy and Victor complete a zero knowledge proof.
Used under the terms of the Creative Commons Attribution 2.5 License.

2.2 Definition

Now that  the basic functioning of a ZKP is  understood,  it  is  time to define them in
mathematical  terms.   It  can  be  seen  from  the  cave  example  that  the  proof  works
differently from a standard, static proof.  The verifier does not stand idly by while the
prover  works  through a  set  of  predetermined  computations.   Instead,  the  proof  is  an
interactive process in which the prover must take certain courses of action depending on
the verifier’s input.  This is called an interactive proof.

The functioning of an interactive proof is often described as an interaction between two
Turing machines.  The machines share a common input tape and can send messages to
one another through a communication tape.  The machines can see these two tapes as well
as their own.  This means that a machine can communicate with the second machine but
cannot monitor its current state, program, or any other of its internal workings [5].
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A precise definition of an interactive proof is given by Goldwasser et al. [6] as follows:

An interactive proof system for a set S is a two-party game, between a  verifier
executing  a  probabilistic  polynomial-time  strategy  (denoted  V)  and  a  prover
which executes a computationally unbounded strategy (denoted P), satisfying
• Completeness: For every Sx ∈  the verifier V always accepts after interacting

with the prover P on common input x .
• Soundness:  For some polynomial p, it  holds that  for every  Sx ∉  and every

potential strategy P*, the verifier V rejects with probability at least  )(/ xp1 ,
after interacting with P* on common input x .

The class of problems having interactive proof systems is denoted IP.

Loosely speaking, completeness means that an honest verifier will always be convinced
of true statements by an honest prover.  Soundness means that, with a high probability,
the verifier will always reject a cheating prover.  In a coin-flip, for example, a cheating
prover will be rejected with probability 1/2 in each round.  In most strategies, the chance
of rejecting a cheating prover is even higher.  All Zero Knowledge Proofs of interest are
interactive and therefore must satisfy these conditions of completeness and soundness.

There is a third condition that a ZKP must satisfy called, appropriately enough, zero-
knowledge.  It is a property of the interactive process defined by considering what can be
computed by an arbitrary feasible verifier interacting with the prover on a common input
taken from the set of valid assertions.  This “is compared against what can be computed
by an arbitrary feasible algorithm that is only given the input itself” [7].  An interactive
proof  is  zero-knowledge  if  what  can  be  computed  in  both  cases  is  computationally
indistinguishable.  The verifier can try any strategy it likes to learn the prover’s secret but,
after any possible interaction, it learns nothing more than it could have learned from the
common input  taken by itself.   The term zero-knowledge can be somewhat deceptive
because a ZKP reveals one bit of information to the verifier: that the prover’s assertion is
valid.

2.3 An Example of a Zero Knowledge Proof

In order to implement a ZKP in software, the descriptions of physical people and a cave
need to be translated to abstract mathematical structures.  Instead of Peggy and Victor we
now will be concerned with the interaction of two computers.  The word computer is
meant  as  any device  that  can  run  algorithms  in  polynomial  time  including  personal
computers, ATMs, smart cards, and embedded devices among others.  Let their common
input be two undirected, isomorphic graphs.  The secret is no longer how to pass from
one side of the cave to the other but how to transform one graph into the other.  This is
called a zero-knowledge proof for graph isomorphism [5].

It is in fact easy to transform one graph into a given isomorphism if the correct mapping
is known.  To do this, a program would simply iterate through all vertices, replacing each
with the equivalent vertex given in the mapping.  Without this mapping, however, it is
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difficult to discover how to transform one graph into another or to determine whether the
transformation is possible at all.  Using small graphs, it would be reasonable to find the
isomorphism  in  a  brute  force  manner  but,  as  the  number  of  vertices  increases,  the
problem quickly becomes difficult.

Figure 4: Two small isomorphic graphs, their mapping, and their matrix representation.

Let the two isomorphic graphs be labeled G1 and G2.  In this ZKP, the prover’s goal is to
convince the verifier that she knows the isomorphism between G1 and G2 without ever
revealing the isomorphism.  The prover starts by generating a third graph H as a random
isomorphic copy of G1 and sending H to the verifier.  The verifier then tosses a coin and
randomly asks the prover for one of two things; the isomorphism between graphs G1 and
H or the isomorphism between graphs G2 and H.  The prover can easily provide the
isomorphism between  G1 and H since  it  generated  H from G1.   It  can  also  quickly
calculate and send the isomorphism between G2 and H by taking the composition of the
G1:H  and  G1:G2  isomorphisms.   The  verifier  checks  to  ensure  the  isomorphism  it
requested is valid and the process is repeated n times, where n can be chosen to satisfy
any confidence level required.

It is easy to verify that the above proof is indeed zero-knowledge.  In each round the
verifier can receive only one of two things: an isomorphism between a random graph and
G1 or an isomorphism between a random graph and G2.  Receiving only one of these is
useless in helping the verifier solve the secret isomorphism between G1 and G2.  Its only
application  is  to  further  convince  the  verifier  that  the  prover  knows  the  secret.   By
verifying a G1:H isomorphism, the verifier is further convinced that the prover is not
creating bogus H’s.  By verifying a G2:H isomorphism, the verifier is further convinced
that the prover knows the G1:G2 isomorphism.

This is an example of a non-deterministic polynomial (NP) problem.  Given a problem
and its solution, it is easy to verify that the solution is valid.  The graph isomorphism
problem is one of many examples of NP problems for which the solution is difficult to
find.  It has been shown [7] that every problem in NP has a zero-knowledge interactive
proof.
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3. A New Digital Signature Scheme
The basic concepts of steganography and zero knowledge proofs have been described as
well as how their use applies to computers.  Now the two ideas will  be combined to
create a powerful digital signature scheme.

3.1 How Digital Signatures Prove Ownership

A digital signature in a digital file is analogous to a handwritten signature on paper.  Like
a handwritten signature, it uniquely identifies an individual. Good signatures allow no
one to impersonate another.  A file given a digital signature allows the owner and only the
owner of that file to claim ownership.

The common input to a zero knowledge proof makes a good digital signature because this
property is guaranteed.  Only the true owner will be able to claim ownership of a file
including the common input because she is the only one who can prove the statement
given.  Ownership can be proved as many times as needed to any number of users and,
because it is zero-knowledge, no one gains the ability to later impersonate the owner.

The graph isomorphism problem described earlier  can easily be represented in a way
suitable for a signature.  G1 and G2 can be stored as an “adjacency matrix” [8].  The
matrix  is  filled  with  1s  and  0s  with  the  row and column  numbers  indicating  vertex
numbers.  A 1 indicates that an edge exists between the two corresponding vertices while
a 0 indicates that no edge exists.  Note that the cells along the diagonal will always be 0
because we are not considering vertices that connect to themselves.  Also, there is some
redundant data which can be thrown out.  Data are mirrored across the diagonal because
G1 and G2 are undirected.

Figure 5: A process for signing a digital photograph.

There remains the  problem of where this  digital  signature should be placed.   For an
image,  steganography provides  an  ideal  answer:  hide  the  digital  signature  within  the
pixels  of the image itself.   Figure 5 shows how the graph isomorphism problem and
steganography can be combined to digitally sign an image.
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4. Conclusion and Future Work
Steganography, the practice of hiding a message within a message, and zero-knowledge
proofs, a way to prove an assertion without revealing why it is true, combine to form a
powerful approach to digitally signing an image.  In particular, the graph isomorphism
problem can have  its  common input  graphs  represented  as  adjacency matrices  to  be
embedded into an image thus proving ownership.  As all problems in NP have ZKP’s,
however, there are a great deal of possible variations on this approach.

Future work will involve analyzing these other approaches to determine which one is best
suited for a digital signature scheme.  It is very likely that the graph isomorphism problem
does  not  provide  the  highest  possible  level  of  security.   When  the  vertex  degree  is
bounded by a constant, there is a polynomial time algorithm in which the isomorphism
can be found.  While still being a difficult problem for a large number of vertices and
edges, problems that can be solved in polynomial time are not among the most difficult in
computing.

NP-complete problems are good candidates as they are the most difficult problems in NP
to solve.  Two examples are the Hamiltonian cycle and graph three-coloring problems,
both of which have known ZKP’s.  The choice of a proof is complicated by the fact that
even NP-complete problems such as these have been shown to be easily computable for
structures that are not carefully constructed [9,10].

There is also further research to be made into the subject of steganography.  Under most
digital image steganography schemes, tampering with the image will damage or destroy
the embedded text. In the case of a JPEG image, for example, something as simple as
opening then saving the file could erase any embedded date because the image will be
recompressed.   It  would  be  interesting  to  research  methods  to  make  a  stego-image
resistant to tampering as well as to restore damaged data.
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The following license notice applies to the images used in figure 2:

Permission is granted to copy, distribute and/or modify this document under the
terms of the GNU Free Documentation License, Version 1.2 or any later version
published by the Free Software Foundation; with no Invariant Sections, no Front-
Cover Texts, and no Back-Cover Texts.
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