
Recent Developments in High Performance FFT

Algorithms and Architectures: A Learning Module for

Undergraduate Algorithms and Architecture Courses

Gauri Sabane

Department of Computer Science

St. Cloud State University

720 Fourth Avenue South

 St. Cloud, Minnesota 56301-4498

Abstract
The Discrete Fourier Transform (DFT) has a large number of signal processing
applications such as computational medicine, communications, instrumentation,
biomedical engineering, sonics and acoustics, numerical methods, applied mechanics and
engineering. DFTs are not computed directly, but instead depend on Fast Fourier
Transform (FFT). FFT algorithms efficiently compute the Fourier Transform by speeding
up the number of computations as compared to DFT. Many of these algorithms generally
adopt parallel approaches of FFT computation to improve performance.

Introducing FFT algorithms to Computer Science and Engineering students is not an easy
task. Therefore, we attempted to develop an active learning module to help students
understand recent developments in FFT algorithms and architectures. This paper will
focus on both sequential and parallel FFT algorithms and recent advances in hardware
architectures.

2

1. Introduction

The Fourier Transform is one of the most important algorithms widely used in scientific
and engineering applications. It is often being used in digital applications such as voice
recognition, image processing, ECG and EEG signal processing. The Discrete Fourier
Transform, DFT, provides a means to transform a time domain signal into an inverse time
or frequency domain signal. In the case of digital applications it is necessary that the
signal be represented in sampled form in both time and frequency domains. Thus, the
DFT is of primary interest for obtaining the Fourier Transform when both time and
frequency variables are in discrete form. The improved form of DFT is called Fast
Fourier Transform, FFT, which is a class of efficient algorithms for computing the DFT
that gives considerable savings in the number of computations.

The term “fast Fourier transform” was originally used to describe the fast DFT algorithm
popularized by Cooley and Tukey (1965) [13]. Their paper cited Danielson and Lanczos
(1942) [14] describing a FFT algorithm. Danielson and Lanczos referred to two papers
written by Runge and K¨onig in 1924 [15]. Those papers described methods to reduce the
number of operations required to calculate a DFT and achieve much greater gains in
efficiency, such that complexity can be brought below O(N2). Almost fifteen years after
Cooley and Tukey’s paper, Heideman et al. (1984) [16], published a paper providing even
more insight into the history of the FFT.

Nearly every computing platform has a library of highly optimized FFT routines for a
wide range of application such as:

• Medical Signal Analysis:
Examples: Electrocardiogram (ECG), Electromyogram (EMG),
Electroencephalogram (EEG). Analyzing ECG signals is an effective method for
diagnosing heart abnormalities. The ECG signal collected from a patient is
analyzed by a comparison of the amplitudes and period of the P-Q-R-S-T wave to
normal waves, using Fourier Transform.

• Solving linear partial differential equations:
Examples: Laplace equation, Biharmonic equation, Heat Conduction Diffusion
and the wave equation.

• Designing and using antennas:
Examples: Seismic arrays and streamers, Multibeam echo sounder and side scan
sonar Interferometers, Synthetic Aperture Radar.

• Image Processing and filters:
Examples: Transformation, representation, and encoding, Smoothing and
sharpening Restoration, blur removal, and the Wiener filter.

• Data Processing and Analysis:
Examples: Signal and noise estimation, high-pass, low-pass, and band-pass filters,
Cross correlation, transfer functions.

This paper describes the content of a learning module prepared to help students
understand recent developments in FFT algorithms and architectures. The module
includes examples, sequence diagrams, sequential programs, parallel MPI programs and

3

architectures. Section 2 provides an overview of Fourier analysis. Section 3 describes
recent high performance FFT algorithms and their implementations. Sequence diagrams
are used to help students understand the computations involved. Section 4 analyzes
performance measurements. Section 5 provides a summary of the paper.

2. Overview of Fourier analysis, DFT and FFT

Fourier Analysis:
Fourier analysis is based on the concept that periodic signals can be approximated in the
frequency spectrum by summing up these periodic signals at different frequencies.
Plotting magnitudes on the y-axis and the frequency on the x-axis generates a frequency
spectrum.

 Figure 2.1: Fourier Analysis

Several techniques have been developed that enable a computer to calculate the frequency
spectrum of a signal. The first step in all cases is to convert the continuous signal to a set
of digitized samples. This is done by sampling the signal at regular intervals. Techniques
such as DFT and FFT make use of this sampled signal to map the frequency spectrum.

Discrete Fourier Transform
The Discrete Fourier Transform can be viewed as a function that maps a sequence, which
represents a sampling of a signal’s distribution as a function of time (between 0 to 2*π)
to another sequence, which represents the distribution of Fourier coefficients as a
function of frequency (the number of complete cycles between time 0 to 2*π).

For N points, DFT can be represented using the equation:

 ∑
−

=

−=
1

0

/2 x(n))(
N

n

NnkiekX π …………..EQ-2.1

Where x(n) is digitized samples in the time domain and X(k) is a sequence in the
frequency domain. Here N is the number of input samples and k = 0,1, …….N-1.

DFT is a straight forward implementation with time complexity Θ(n2).

Example 2.1:

Let x(n) = {3,5} (Discrete samples in time domain) where n=0,1

To compute 2-point DFT, use equation 2.1:
4

With k = 0, 1 Fourier Coefficients can be represented as:

X(0) = x(0) e-i2π (0*0)/2 + x(1) e-i2π (1*0)/2 => 3* 1+5*1 =8

X(1) = x(0) e-i2π (1*0)/2 + x(1) e-i2π (1*1)/2 => 3*1 + 5* (-1) =-2

Figure 2.2 shows diagrammatic representation of above results.

Figure 2.2: DFT - Transformation of Sampled Signal in Time Domain to Frequency
domain

The DFT equation can always be represented as Matrix-Vector product: Fx.

Here, fi,j = e-i2π kn/N = cos(2π *kn/N) – i sin(2π *kn/N) = kn
Nω

Where ωN is called the Twiddle Factor which is an “Nth root of unity” since N
Nω = N/N2ie π−

= 1. And, x is the input vector (sampled signal).

Thus the Matrix-Vector product for 2-Point DFT can be represented as:









=
















ωω
ωω

=















π−π−

π−π−

1

0

1

0
1*1

2
0*1

2

1*0
2

0*0
2

1

0
2/)1*1(2i2/)0*1(2i

2/)0*1(2i2/)0*0(2i

X
X

x
x

x
x

ee
ee

Example 2.1 can also be solved using the above Matrix-Vector product representation:









−

=















−

=















ωω
ωω

2
8

5
3

11
11

x
x

1

0
1*1

2
0*1

2

1*0
2

0*0
2 







=
1

0

X
X

5

Hence, the DFT can be computed using N * (N-1) additions and N2 multiplications.
Therefore, roughly 2 N2 operations are required to calculate the DFT of a length-N
sequence.

Fast Fourier Transform

The Fast Fourier Transform provides an efficient algorithm to compute DFT by reducing
the number of computations from O(N2) to O(N log N). It basically makes use of two
important strategies to obtain an optimized algorithm: one is the divide and conquer
strategy while the other one is applying the Halving Lemma[10] which describes the
special quality of ωN, which is periodicity. By making use of these basic strategies, FFT is
generally computed using sequential, parallel and pipeline approaches:

• The Sequential Approach makes use of iterative or recursive computations as
shown in Figure 2.3.

Figure 2.3: Recursive approach Iterative Approach

• The Parallel Approach, shown in Figure 2.4, causes further reduction in the
computation time as compared to the sequential approach using Foster’s design
methodology [10].

6

 Figure 2.4: Foster’s Parallel FFT Algorithm Design Methodology

• The Pipeline Approach, shown in Figure 2.5, is useful for FFTs that require high
data throughput. The commutator (denoted C in the Figure 2.5), located between
two butterfly stages, reorders the output data from one stage and to the following.

 Figure 2.5: Basic Structure of Pipeline FFT, from [2]

3. Recent High Performance Algorithms and Architectures

This section presents several parallel and pipeline FFT algorithms which can speed up
computations and reduce the communication overhead.

3. 1 Parallel Tree Algorithm:
The name, “Tree” is given to the algorithm because of the way communication is taking
place among the processors. The algorithm starts with the step of computing transforms
[3].

7

Algorithm:

Single dimensional data of size N is saved in a two dimensional Array with dimensions
N * N . Data is scattered to all processors as shown in Figure 3.1, so each processor

will have pN rows and N columns of data.

Figure 3.1: Parallel Tree Algorithm

Each processor performs a bit reversal to reorder the input data in the assigned rows. The
array is transposed in p steps. All to all communication adds communication overhead as
each processor communicates with other active processors. While transposing, each
processor sends a square block with size pN * pN to all other processors. Then,
each processor performs a bit reversal rearranging the data for the second time for each
assigned row.
Figure 3.2 shows the tree algorithm for 4 processors. . Each processor performs a N/P
-point transform. Assume a counter with value 1. Odd-numbered processors whose IDs
do not divided by counter *2 send their data to the even-numbered processors whose IDs
divided by counter *2 and then terminate the algorithm. After that, the even numbered
processors do the next point transform ((counter *2* N)/p –point transform). At this point
the counter value gets set to counter *2. Then, the above process is repeated log (p) times
until all the data reaches the master processor P0. The communications between the
processor follow the tree structure.

8

 Figure 3.2: Tree algorithm (4 processors), from [3]

The Architecture:
The Parallel Tree Algorithm [3] is implemented on a Symmetric Multiprocessor
Architecture, SMP. This is a tightly-coupled Multiple CPU with a shared memory. Each
CPU in SMP has full access to the shared memory through a common bus.
Communication between nodes occurs via shared memory.

The SMP system used for this Parallel Tree algorithm consists of:
• 8 SUN 250 MHz Ultra SPARC processors
• 2 GB of RAM and 45.5 GB of hard drive space
• Gigaplane bus (crossbar interconnection) where each processor can communicate

with any processor directly.

Programming:
The programming model for Parallel Tree Algorithm is based on the standard and widely
used Message Passing Interface for programming concurrent activities in parallel
computers [4]. This standard library consists of over 125 routines, which is used to
develop message passing programs either in C or Fortran.

3.2 Parallel Transpose Algorithm:
The Tree Algorithm suffers from imbalance load. As shown in Figure 3.2, some
processors idle while other processors work. P0 finishes the last stage of the algorithm.
This causes heavy load imbalance. The Transpose Algorithm provides a solution to this
problem [3]. This algorithm distributes the load among the processors while computing
Fourier Transform.

Algorithm Description:

This algorithm is similar to the tree algorithm until each processor performs N -point
transform as data size associated with each processor is N . After this the algorithm
follows different set of steps than Tree algorithm. The array is transposed (all-to all
communication) as before. Each processor does N -point transform and finally the

9

array is transposed to get the final result. Thus the communication overhead in the case of
the Transpose algorithm is 2 times more as compared to the Tree algorithm.

Architecture:
Transpose algorithm is also implemented on the SMP using standard MPI library to carry
out certain standard routines such as sending messages from one processor to another,
performing all-to-all communication among the processors, computing time required for
executing the code etc.

3.3 Radix-4 Modular Pipeline FFT [5]

This algorithm is used to compute long Discrete Fourier Transform (DFT). Radix-4
indicates that the size of data is always power of 4 i.e. N = 4v. The name, modular
pipeline FFT, suggests that the architecture used for implementing this algorithm is
composed of 2 modules of pipeline FFTs joined together to give the required result.

Algorithm Description:

 Figure 3.3: Modular Pipeline FFT

As shown in Figure 3.3, the algorithm is divided into following stages [5]:
• First stage: FFT module 1 performs M-point transform on each of M sets of total

N points to get intermediate result.
• Second stage: Pre-rotates intermediate results using a correction factor
• Third stage: FFT module 2 performs M-point transform on each of M sets of pre-

rotated results to get the final result.

The reason for pre-rotation is that the first stage performs M-point FFT on M sets of total

N points. So the twiddle factor used in all M-point transforms is
k

MN /ω and not
k
Nω .

But we want to compute FFT of N-points. So before passing the result of the first stage to
the second stage, we need to adjust the values obtained in the first stage using the

correction factor (
k
Nω) to get the correct results.

10

Architecture:
The architecture for implementing this algorithm is shown in Figure 3.4. It consists of
two FFT modules, two data exchangers and a pre-rotator. FFT0 is the first stage of
pipeline. FFT1 is the second state of pipeline.

Figure 3.4: Architecture of Modular Pipeline FFT

The Data Exchanger switches four times per second stage transform. Each second stage
input vector requires a single transformed output of M transforms from each of M sets of
first stage. The Address Generator is used to write the outputs from the first stage pipeline
into the same memory locations as the points leaving the memory for the second stage
pipeline. The Pre-rotator stores the pre-rotation coefficients required for the first stage
output in ROM to eliminate on the fly computations that would otherwise be required.

This architecture processes four discrete points per clock cycle. Once N points have been
output from the FFT0 to the memory, the system can send the data to the FFT1.
Simultaneously, a new set of N points can begin processing in the FFT0 [5].

3.4 Array Processing Mapping Algorithm

This algorithm, based on the Singleton Algorithm, [1], makes every two by two
computation using a uniform structure. The algorithm makes use of array processing
architecture. Efficient mapping reduces data transfers between the processes.

Algorithm:
Figure 3.5 illustrates the Array processing mapping algorithm [1]. In Singleton algorithm
each two-by-two transform has a uniform structure and are independent of each other.
They can be processed in parallel.

11

Figure 3.5: Singleton Algorithm Array Processing Mapping Algorithm, from [1]

Thus, this mapping algorithm basically follows same set of equations used in the
Singleton algorithm as shown below:

 yj = x2j + x2j+1

1kks 2/)2j(2ie
−−÷π−

 EQ..3.18

 yj+n/2 = x2j - x2j+1

1kks 2/)2j(2ie
−−÷π−

 EQ..3.19
 where, k = 1,2…..s (here s indicates the umber of stages)
 j= 0 ,1, ….. n/2-1 (n is the number of input samples)

The sequence diagram of the algorithm is given in Figure 3.7. The array structure with
n/2 buffer units BU0… BUn/2-1 is presented in one column. 2n storage elements are
shown in two columns. n is the total number of input samples. Storage units in this
structure are represented as Sqr where r ranges from 0 to n-1 while q has the value of either
0 (for left column) or 1(for right column). So in the first stage, BUs access the input data
from left column and store the result in the right column. In the first stage, the left column
is used as the source and right column is used as the destination, and so on. In the first
stage, ith Buffer Unit (i ranging from 0 to n/2) fetches data from S0(2i) th and S0(2i+1) th
storage units from the left column and stores the result to S1(i) th and S1(i+n/2) th storage
units of the right column. While in the second stage, ith Buffer Unit (BU) fetches data
from S1(2i) th and S1(2i+1) th storage units of right column and stores the result to S0(i) th and
S0(i+n/2) th storage units of left column. Thus the process continues for all log n stages.

12

Architecture:

The Array processing mapping algorithm makes use of an array architecture which
typically comprises a number of independent processing elements with local buffers,
interconnected through a network.

4. Performance Measurements

This section describes several performance metrics used to compare the algorithms.

Comparison of Parallel Tree and Transpose Algorithms

The Complexity is analyzed as follows [3]:

 (Tp) =Computation cost +Communication cost
 Tp = W/P + O(P*P)/P =Θ(2NlogN/P + P)
Where W is computation time for sequential algorithm and P is the number of processes

The Speedup and Efficiency are analyzed as follows [3]:

Speedup (S) = W/Tp =W/(W/P+O(P*P)/P
Efficiency (E)= S/P =(W/Tp)/P=W/((W/P + O(P*P)/P)*P= W/(W+O(P*P))

For 2 processors the Tree algorithm provides better efficiency than the Transpose
algorithm since the load imbalance does not have any effect. As the number of processors
is increased, the Transpose algorithm provides better efficiency as compared with the
Tree algorithm.

Isoeffciency [3] determines whether an algorithm maintains constant efficiency. To have
a constant efficiency the rate of increase in the number of computations should be directly
proportional to the rate of increase in communication overhead.

Re-writing the efficiency equation:
W = E/E-1 *O(P*P)
 = k *O(P*P) => equation of Isoeffciency

Scalability [3] of these algorithms is computed by determining the changes in speedup or
efficiency as we increase the number of processors. The Transpose algorithm is more
scalable than the Tree, as it avoids imbalance load.

Comparison of Modular Pipeline and Regular Pipeline Algorithms:
The analysis of the Modular Pipeline Algorithm is done based on Latency, Complexity
and Efficiency [5]. Latency of the pipeline algorithm is determined by the amount of
time required to perform N-point FFT. The Modular pipeline requires an additional

13

amount of time, compared to the conventional pipeline. So the equation of Latency for
modular pipeline can be written as:
TModular = Tconventional + TDelay = 2 *(N/r) + 2(N /r - 1)

The Complexity of the pipeline algorithm is computed in terms of coefficient memory i.e.
ROM. The Modular pipeline requires less amount of ROM as compared with the
conventional pipeline. Efficiency of the pipeline is measured as the percentage of utilized
memory which is quite high in the case of the modular pipeline compared with the
conventional pipeline.

Analysis of Array Processing Mapping Algorithm:
Analysis of this algorithm is done based on criteria such as Latency and Throughput [1].

The Latency of the array processing algorithm is given by:
(s×2s-k + pipelinelength)×tclk
and the throughput of the array processing algorithm is given by:
n/(s×2s-k × tclk)
Where, 2s represents input size (n) of FFT where s indicates the number of stages
required to compute FFT.2k represents the number of buffer units required for
computation of FFT where k ranges from 0 to s-1 and tclk denotes the clock period of the
system.

5. Conclusion

This paper presented recent advances in parallel and pipeline FFT algorithms and their
mapping architectures. Out of these algorithms, the Parallel Tree and Transpose, follows
the parallel architecture while modular pipeline algorithm follows Parallel pipelined
architecture and Array processing mapping follows array architecture. A learning module
that can be used in the classroom based on the algorithms and architectures presented in
this paper is at [12].

The FFTW [11], Fastest Fourier Transform in the West, consists of MPI routines that
adapt to the hardware and are competitive with hand tuned libraries. FFTW is searching
for flexible and adaptive software architecture.

Acknowledgments

I sincerely thank Dr. Don Hamnes, Dr. S. Herath and Dr. J. Herath for their help in this
research.

14

References
[1] Zhenyu Liu, Yang Song, Takeshi Ikenaga, Satoshi Goto, “A VLSI Array Processing

Oriented Fast Fourier Transform Algorithm and Hardware Implementation”, ACM Great

Lake Symposium on VLSI, 2005

[2] K. Scott and Hemmert Keith D. Underwood “An Analysis of the Double-Precision

Floating-Point FFT on FPGAs”, IEEE Symposium on FPGAs for Custom Computing

Machines, 2005

[3] Rami A. AL Na'mneh, W. David Pan, B. Earl Wells “Two Parallel Implementations

for One Dimension FFT on Symmetric Multiprocessors”, ACM Southeast 2004.

[4] A. Grama, A. Gupta, V. Kumar and G. Karypis,” Introduction to Parallel Computing”,

Pearson Education 2003.

[5] Ayman M. El-Khashab, Earl E. Swartzlander, “Jr. An Architecture for a Radix-4

Modular Pipeline Fast Fourier Transform”, IEEE Symposium on Application-specific

Systems, Architectures and Processors, 2003.

[6] Jonas Claeson, “Design and implementation of an asynchronous pipelined FFT “,

2003

[7] Ayman M. El-Khashab Earl E. Swartzlander “A Modular Pipelined Implementation

 of Large Fast Fourier Transforms”, IEEE Proceedings of the Thirty-Sixth Asilomar

Conference on Signals, Systems, and Computers, 2002

[8] D. Takahashi, “High-Performance Parallel FFT Algorithms for the HITACHI

SR8000”, The Fourth International Conference/Exhibition on High Performance

Computing in the Asia-Pacific Region, Vol. 1, pp. 192–199, May 2000.

[9] D. Takahashi, Y. Kanada, “High-Performance Radix-2, 3 and 5 Parallel 1-D Complex

FFT Algorithms for Distributed-Memory Parallel Computers”, Journal of

Supercomputing, Vol. 15, No. 2, pp. 207-228, February 2000.

 [10] M .J. Quinn, Designing Efficient Algorithm for Parallel Computers, New York:

McGraw Hill, 2004.

[11] Matteo Frigo, Steven G. Johnson, “The Design and Implementation of FFTW3”,

Proceedings of the IEEE 93 (2), 216–231 (2005).

[12] http://web.stcloudstate.edu/jherath/csci697/FFTAcLearn.htm

15

[13] Cooley, J. W. and J. W. Tukey, “An Algorithm for the Machine Calculation of
Complex Fourier Series.”, Math. of Comput., volume 19, pp. 297–301, April 1965.

[14] Danielson, G. C. and C. Lanczos. “Some Improvements in Practical Fourier Analysis
and Their Application to X-ray Scattering From Liquids.”, J. Franklin Inst., volume 233,
pp. 365–380,435–452, April 1942.

[15] Runge, C. and H. K¨onig, “Die Grundlehren der Mathematischen Wissenschafter.”,
Vorlesungen ¨uber Numerisches Rechnen, volume 11, Berlin, 1924. Julius Springer.

[16] Heideman, M. T., D. H. Johnson, and C. S. Burrus, “Gauss and the History of the
Fast Fourier Transform.”, IEEE ASSP Magazine, pp. 14–21, October 1984.

16

