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Abstract
The  Discrete  Fourier  Transform  (DFT)  has  a  large  number  of  signal  processing
applications  such  as  computational  medicine,  communications,  instrumentation,
biomedical engineering, sonics and acoustics, numerical methods, applied mechanics and
engineering.  DFTs  are  not  computed  directly,  but  instead  depend  on  Fast  Fourier
Transform (FFT). FFT algorithms efficiently compute the Fourier Transform by speeding
up the number of computations as compared to DFT. Many of these algorithms generally
adopt parallel approaches of FFT computation to improve performance.

Introducing FFT algorithms to Computer Science and Engineering students is not an easy
task.  Therefore,  we attempted to  develop  an  active learning module  to  help  students
understand  recent  developments  in  FFT algorithms and architectures.  This  paper  will
focus on both sequential and parallel FFT algorithms and recent advances in hardware
architectures. 
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1. Introduction

The Fourier Transform is one of the most important algorithms widely used in scientific
and engineering applications. It is often being used in digital applications such as voice
recognition, image processing, ECG and EEG signal processing.  The  Discrete Fourier
Transform, DFT, provides a means to transform a time domain signal into an inverse time
or frequency domain signal.  In the case of digital applications it  is necessary that the
signal be represented in sampled form in both time and frequency domains. Thus, the
DFT is  of  primary interest  for  obtaining  the  Fourier  Transform when both time  and
frequency variables  are  in  discrete  form.  The improved form of  DFT is  called  Fast
Fourier Transform, FFT, which is a class of efficient algorithms for computing the DFT
that gives considerable savings in the number of computations. 

The term “fast Fourier transform” was originally used to describe the fast DFT algorithm
popularized by Cooley and Tukey (1965) [13]. Their paper cited Danielson and Lanczos
(1942) [14] describing a FFT algorithm.  Danielson and Lanczos referred to two papers
written by Runge and K¨onig in 1924 [15]. Those papers described methods to reduce the
number of operations required to  calculate  a  DFT and achieve much greater gains in
efficiency, such that complexity can be brought below O(N2). Almost fifteen years after
Cooley and Tukey’s paper, Heideman et al. (1984) [16], published a paper providing even
more insight into the history of the FFT. 

Nearly every computing platform has a library of highly optimized FFT routines for a
wide range of application such as:

• Medical Signal Analysis:
Examples:  Electrocardiogram  (ECG),  Electromyogram  (EMG),
Electroencephalogram (EEG).  Analyzing ECG signals is an effective method for
diagnosing  heart  abnormalities.   The  ECG  signal  collected  from  a  patient  is
analyzed by a comparison of the amplitudes and period of the P-Q-R-S-T wave to
normal waves, using Fourier Transform.

• Solving linear partial differential equations:
Examples: Laplace equation, Biharmonic equation, Heat Conduction Diffusion    
and the wave equation.   

• Designing and using antennas:
Examples: Seismic arrays and streamers, Multibeam echo sounder and side scan
sonar Interferometers, Synthetic Aperture Radar.

• Image Processing and filters:
Examples:  Transformation,  representation,  and  encoding,  Smoothing  and
sharpening Restoration, blur removal, and the Wiener filter.

• Data Processing and Analysis:
Examples: Signal and noise estimation, high-pass, low-pass, and band-pass filters,
Cross correlation, transfer functions.

This  paper  describes  the  content  of  a  learning  module  prepared  to  help  students
understand  recent  developments  in  FFT  algorithms  and  architectures.  The  module
includes examples, sequence diagrams, sequential programs, parallel MPI programs and
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architectures. Section 2 provides an overview of Fourier analysis. Section 3 describes
recent high performance FFT algorithms and their implementations. Sequence diagrams
are  used  to  help  students  understand  the  computations  involved.  Section  4  analyzes
performance measurements. Section 5 provides a summary of the paper.

2. Overview of Fourier analysis, DFT and FFT 

Fourier Analysis:
Fourier analysis is based on the concept that periodic signals can be approximated in the
frequency  spectrum  by  summing  up  these  periodic  signals  at  different  frequencies.
Plotting magnitudes on the y-axis and the frequency on the x-axis generates a frequency
spectrum. 

        
         Figure 2.1: Fourier Analysis

Several techniques have been developed that enable a computer to calculate the frequency
spectrum of a signal. The first step in all cases is to convert the continuous signal to a set
of digitized samples. This is done by sampling the signal at regular intervals. Techniques
such as DFT and FFT make use of this sampled signal to map the  frequency spectrum.

Discrete Fourier Transform
The Discrete Fourier Transform can be viewed as a function that maps a sequence, which
represents a sampling of a signal’s distribution as a function of time (between 0 to 2*π )
to  another  sequence,  which  represents  the  distribution  of  Fourier  coefficients  as  a
function of frequency (the number of complete cycles between time 0 to 2*π ). 

For N points, DFT can be represented using the equation:
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Where  x(n)  is  digitized  samples  in  the  time  domain  and  X(k)  is  a  sequence  in  the
frequency domain. Here N is the number of  input samples and  k = 0,1, …….N-1. 

DFT is a straight forward implementation with time complexity Θ(n2).

Example 2.1: 
 
Let x(n) = {3,5} (Discrete samples in time domain) where n=0,1

To compute 2-point DFT, use equation 2.1:
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With k = 0, 1 Fourier Coefficients can be represented as:

X(0) =  x(0)  e-i2π (0*0)/2   + x(1) e-i2π (1*0)/2    => 3* 1+5*1 =8

X(1) =  x(0)  e-i2π (1*0)/2   + x(1) e-i2π (1*1)/2    => 3*1 + 5* (-1) =-2

Figure 2.2 shows diagrammatic representation of above results.

Figure 2.2: DFT - Transformation of Sampled Signal in Time Domain to Frequency
domain

The DFT equation can always be represented as Matrix-Vector product: Fx. 

Here,   fi,j = e-i2π kn/N  = cos(2π *kn/N) – i sin(2π *kn/N) = kn
Nω   

Where ωN is called the Twiddle Factor which is an “Nth root of unity” since N
Nω = N/N2ie π−

= 1. And, x is the input vector (sampled signal).

Thus the Matrix-Vector product for 2-Point DFT can be represented as:
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Example 2.1 can also be solved using the above Matrix-Vector product representation: 
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Hence,  the DFT can  be computed using N *  (N-1)  additions  and N2  multiplications.
Therefore,  roughly 2  N2 operations  are  required  to  calculate  the  DFT of  a  length-N
sequence.

Fast Fourier Transform                               

The Fast Fourier Transform provides an efficient algorithm to compute DFT by reducing
the number of computations from O(N2)  to  O(N log N).  It basically makes use of two
important  strategies  to  obtain an optimized  algorithm:  one is  the  divide and conquer
strategy while the other one is  applying the  Halving Lemma[10]  which describes the
special quality of ωN, which is periodicity. By making use of these basic strategies, FFT is
generally computed using sequential, parallel and pipeline approaches:

• The Sequential  Approach  makes  use  of  iterative  or  recursive  computations  as
shown in Figure 2.3.

Figure 2.3: Recursive approach                                     Iterative Approach

• The Parallel  Approach, shown  in  Figure  2.4, causes  further  reduction  in  the
computation time as compared to the sequential approach using Foster’s design
methodology [10].
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                    Figure 2.4: Foster’s Parallel FFT Algorithm Design Methodology

• The Pipeline Approach, shown in Figure 2.5, is useful for FFTs that require high
data throughput. The commutator (denoted C in the Figure 2.5), located between
two butterfly stages, reorders the output data from one stage and to the following.

                         Figure 2.5: Basic Structure of Pipeline FFT, from [2]

3. Recent High Performance Algorithms and Architectures 
 
This section presents several  parallel and pipeline FFT algorithms which can speed up
computations and reduce the communication overhead. 

3. 1 Parallel Tree Algorithm:
The name, “Tree” is given to the algorithm because of the way communication is taking
place among the processors. The algorithm starts with the step of computing transforms
[3]. 
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Algorithm:

Single dimensional data of size N is saved in a two dimensional Array with dimensions
N * N . Data is scattered to all processors as shown in Figure 3.1, so each processor

will have pN  rows and N  columns of data.

Figure 3.1: Parallel Tree Algorithm

Each processor performs a bit reversal to reorder the input data in the assigned rows. The
array is transposed in p steps. All to all communication adds communication overhead as
each  processor  communicates  with  other  active  processors.  While  transposing,  each
processor sends a square block with size  pN *  pN to all other processors. Then,
each processor performs a bit reversal rearranging the data for the second time for each
assigned row.
Figure 3.2 shows the tree algorithm for 4 processors. . Each processor performs a  N/P
-point transform. Assume a counter with value 1. Odd-numbered processors whose IDs
do not divided by counter *2 send their data to the even-numbered processors whose IDs
divided by counter *2 and then terminate the algorithm. After that, the even numbered
processors do the next point transform ((counter *2* N)/p –point transform). At this point
the counter value gets set to counter *2. Then, the above process is repeated log (p) times
until  all  the  data  reaches  the  master  processor  P0.  The  communications  between the
processor follow the tree structure.
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       Figure 3.2: Tree algorithm (4 processors), from [3]

The Architecture:
The  Parallel  Tree  Algorithm  [3]  is  implemented  on  a  Symmetric  Multiprocessor
Architecture, SMP. This is a tightly-coupled Multiple CPU with a shared memory. Each
CPU  in  SMP  has  full  access  to  the  shared  memory  through  a  common  bus.
Communication between nodes occurs via shared memory.

The SMP system used for this Parallel Tree algorithm consists of:
• 8 SUN 250 MHz Ultra SPARC processors
• 2 GB of RAM and 45.5 GB of hard drive space
• Gigaplane bus (crossbar interconnection) where each processor can communicate

with any processor directly.

Programming:
The programming model for Parallel Tree Algorithm is based on the standard and widely
used  Message  Passing  Interface  for  programming  concurrent  activities  in  parallel
computers  [4].  This  standard  library consists  of  over  125 routines,  which  is  used  to
develop message passing programs either in C or Fortran.

3.2 Parallel Transpose Algorithm:
The  Tree  Algorithm  suffers  from  imbalance  load.  As  shown  in  Figure  3.2,  some
processors idle while other processors work. P0 finishes the last stage of the algorithm.
This causes heavy load imbalance. The Transpose Algorithm provides a solution to this
problem [3]. This algorithm distributes the load among the processors while computing
Fourier Transform. 

Algorithm Description:

This algorithm is similar to the tree algorithm until each processor performs N -point
transform as data size associated with each processor is N . After this  the algorithm
follows different  set  of  steps  than  Tree  algorithm.  The array is  transposed  (all-to  all
communication) as before.  Each processor  does  N  -point  transform and finally the
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array is transposed to get the final result. Thus the communication overhead in the case of
the Transpose algorithm is 2 times more as compared to the Tree algorithm. 

Architecture:
Transpose algorithm is also implemented on the SMP using standard MPI library to carry
out certain standard routines such as sending messages from one processor to another,
performing all-to-all communication among the processors, computing time required for
executing the code etc.

3.3 Radix-4 Modular Pipeline FFT [5]

This  algorithm  is  used  to  compute  long  Discrete  Fourier  Transform (DFT).  Radix-4
indicates  that  the size of  data  is  always power of  4  i.e.  N = 4v.  The name,  modular
pipeline  FFT,  suggests  that  the  architecture  used  for  implementing  this  algorithm  is
composed of 2 modules of pipeline FFTs joined together to give the required result. 

Algorithm Description:

             Figure 3.3: Modular Pipeline FFT

As shown in Figure 3.3, the algorithm is divided into following stages [5]:
• First stage: FFT module 1 performs M-point transform on each of M sets of total

N points to get intermediate result.
• Second stage: Pre-rotates intermediate results using a correction factor 
• Third stage: FFT module 2 performs M-point transform on each of M sets of pre-

rotated results to get the final result.

The reason for pre-rotation is that the first stage performs M-point FFT on M sets of total

N points. So the twiddle factor used in all M-point transforms is  
k

MN /ω  and not  
k
Nω .

But we want to compute FFT of N-points. So before passing the result of the first stage to
the  second  stage,  we  need  to  adjust  the  values  obtained  in  the  first  stage  using  the

correction factor (
k
Nω ) to get the correct results.
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Architecture:
The architecture for implementing this algorithm is shown in Figure 3.4. It consists of
two  FFT modules,  two data  exchangers  and  a  pre-rotator.  FFT0 is  the  first  stage of
pipeline. FFT1 is the second state of pipeline. 

Figure 3.4: Architecture of Modular Pipeline FFT

The Data Exchanger switches four times per second stage transform. Each second stage
input vector requires a single transformed output of M transforms from each of M sets of
first stage. The Address Generator is used to write the outputs from the first stage pipeline
into the same memory locations as the points leaving the memory for the second stage
pipeline. The Pre-rotator stores the pre-rotation coefficients required for the first stage
output in ROM to eliminate on the fly computations that would otherwise be required.

This architecture processes four discrete points per clock cycle. Once N points have been
output  from  the  FFT0  to  the  memory,  the  system  can  send  the  data  to  the  FFT1.
Simultaneously, a new set of N points can begin processing in the FFT0  [5].

3.4 Array Processing Mapping Algorithm

This  algorithm,  based  on  the  Singleton  Algorithm,  [1],  makes  every  two  by  two
computation using a  uniform structure.  The algorithm makes use  of  array processing
architecture. Efficient mapping reduces data transfers between the processes. 

Algorithm:
Figure 3.5 illustrates the Array processing mapping algorithm [1]. In Singleton algorithm
each two-by-two transform has a uniform structure and are independent of each other.
They can be processed in parallel.
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Figure 3.5: Singleton Algorithm     Array Processing Mapping Algorithm, from [1]

Thus,  this  mapping  algorithm  basically  follows  same  set  of  equations  used  in  the
Singleton algorithm as shown below: 

     yj = x2j +  x2j+1 

1kks 2/)2j(2ie
−−÷π−

                                                                                                       EQ..3.18

     yj+n/2 = x2j -  x2j+1 

1kks 2/)2j(2ie
−−÷π−

                       EQ..3.19
      where,  k = 1,2…..s (here s indicates the umber of stages)
                   j= 0 ,1, ….. n/2-1 (n is the number of input samples)

The sequence diagram of the algorithm is given in Figure 3.7.  The array structure with
n/2 buffer units BU0… BUn/2-1 is presented in one column. 2n storage elements are
shown in two columns.  n  is  the total  number of input  samples.  Storage units  in  this
structure are represented as Sqr where r ranges from 0 to n-1 while q has the value of either
0 (for left column) or 1(for right column). So in the first stage, BUs access the input data
from left column and store the result in the right column. In the first stage, the left column
is used as the source and right column is used as the destination, and so on. In the first
stage, ith Buffer Unit (i ranging from 0 to n/2) fetches data from S0(2i)  th and S0(2i+1)   th
storage units from the left column and stores the result to S1(i)   th and S1(i+n/2)   th storage
units of the right column. While in the second stage,  ith  Buffer Unit (BU) fetches data
from S1(2i) th and S1(2i+1)  th storage units of right column and stores the result to S0(i)  th and
S0(i+n/2)  th storage units of left column. Thus the process continues for all log n stages.
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Architecture:

The  Array processing  mapping  algorithm  makes  use  of  an  array  architecture  which
typically comprises  a  number  of  independent  processing  elements  with  local  buffers,
interconnected through  a network.

                

4.  Performance Measurements 

This section describes several performance metrics used to compare the algorithms. 

Comparison of Parallel Tree and Transpose Algorithms 

The Complexity is analyzed as follows [3]:

 (Tp) =Computation cost +Communication cost
   Tp = W/P + O(P*P)/P =Θ(2NlogN/P + P) 
Where W is computation time for sequential algorithm and P is the number of processes

The Speedup and Efficiency are analyzed as follows [3]:

Speedup (S) = W/Tp =W/(W/P+O(P*P)/P
Efficiency (E)= S/P =(W/Tp)/P=W/((W/P + O(P*P)/P )*P= W/(W+O(P*P))

For  2  processors  the  Tree  algorithm  provides  better  efficiency  than  the  Transpose
algorithm since the load imbalance does not have any effect. As the number of processors
is  increased,  the Transpose algorithm provides better  efficiency as compared with the
Tree algorithm.
                                    
Isoeffciency [3] determines whether an algorithm maintains constant efficiency. To have
a constant efficiency the rate of increase in the number of computations should be directly
proportional to the rate of increase in communication overhead.

Re-writing the efficiency equation:
W = E/E-1 *O(P*P)
    = k *O(P*P)  => equation of Isoeffciency 

Scalability [3] of these algorithms is computed by determining the changes in speedup or
efficiency as we increase the number of processors.  The Transpose algorithm is more
scalable than the Tree, as it avoids imbalance load.

Comparison of Modular Pipeline and Regular Pipeline Algorithms:
The analysis of the Modular Pipeline Algorithm is done based on Latency, Complexity
and Efficiency  [5]. Latency of the pipeline algorithm is determined by the amount of
time  required  to  perform N-point  FFT.  The  Modular  pipeline  requires  an  additional
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amount of time, compared to the conventional pipeline. So the equation of Latency for
modular pipeline can be written as:
TModular = Tconventional  + TDelay = 2 *(N/r)  +  2( N /r - 1)

The Complexity of the pipeline algorithm is computed in terms of coefficient memory i.e.
ROM.  The  Modular  pipeline  requires  less  amount  of  ROM  as  compared  with  the
conventional pipeline. Efficiency of the pipeline is measured as the percentage of utilized
memory which  is  quite  high  in  the  case  of  the  modular  pipeline  compared with  the
conventional pipeline. 

Analysis of Array Processing Mapping Algorithm:
Analysis of this algorithm is done based on criteria such as Latency and Throughput [1]. 

The Latency of the array processing algorithm is given by:
(s×2s-k + pipelinelength)×tclk 
and the throughput  of  the array processing algorithm is given by:
n/(s×2s-k × tclk )
Where,   2s  represents  input  size (n) of FFT where s indicates  the number of stages
required  to  compute  FFT.2k represents  the  number  of  buffer  units  required  for
computation of FFT where k ranges from 0 to s-1 and tclk denotes the clock period of the
system. 

5. Conclusion

This paper presented recent advances in parallel and pipeline FFT algorithms and their
mapping architectures. Out of these algorithms, the Parallel Tree and Transpose, follows
the  parallel  architecture  while  modular  pipeline  algorithm  follows  Parallel  pipelined
architecture and Array processing mapping follows array architecture. A learning module
that can be used in the classroom based on the algorithms and architectures presented in
this paper is at [12]. 

The FFTW [11],  Fastest Fourier Transform in the West, consists of MPI routines that
adapt to the hardware and are competitive with hand tuned libraries. FFTW is searching
for flexible and adaptive software architecture. 
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