

Improving Programs’ Quality in Programming Courses

Syed M. Rahman Paul L. Juell
Department of Computer Science, North Dakota State University

258 IACC Building, Fargo, North Dakota 58105, USA
{Syed.Rahman, Paul.Juell}@ndsu.edu

Abstract

In our research, we developed a new software development method by emphasizing
software-testing phase to improve programs’ quality. Our method has been implemented
in last five semesters in the Department of Computer Science at North Dakota State
University. This method improved students’ program quality at least 24% (in terms of
black box testing) comparing to other sections that did not apply this method. Students
claimed that this method helped them understanding the problems and writing the codes,
made the code easier to debug, helped them debugging their codes, and improved the
students’ code reliability and quality. In this paper, we have also recommended a few
additional activities that we believe need to consider teaching introductory programming
courses so that students could produce higher quality programs.

1 Introduction

Many researchers found that computer science (CS) students’ in introductory
programming courses that completed CS-1 and CS-2 or even who completed the degree
produce the code of low quality. An industry survey has reported that more than 50% of a
software project’s budget is spent on activities related to improving software quality.
Industry leaders claimed that this is caused by the inadequate attention paid to software
quality in the development phase. The classroom experience shows that students in
programming classes produced “toy” programs that are superficially tested, graded, and
eventually discarded. Generally, students are not worried about the quality, reuse, or
maintenance of their programs. We believe our existing teaching style of programming
courses does not prepared students producing higher quality programs.

In our research, we developed a new software development method by emphasizing
software testing phase and it has been implemented in last five semesters in the
Department of Computer Science at North Dakota State University in five different
introductory programming courses. This method improves students’ program quality at
least 24% (in terms of black box testing) comparing other sections that do not apply this
method. Students reported that this method helped them understanding the problems and
writing the codes, made the code easier to debug, and improved the students’ code
reliability and quality.

Besides applying the new software development method for teaching introductory
programming courses to improve students’ programs quality, we have recommended a
few other activities that need to be considered in teaching undergraduate CS
programming or related courses; however, our research couldn’t provide any quantitative
measurement of the effectiveness for the following features:

a) More testing need to teach in the undergraduate courses in general. CS or
related majors in the undergraduate course curriculum should emphasize on
software testing, as it is the most expensive (typically 40-70% of the total cost)
phase in software lifecycles both in terms of money and time.

b) Provide feedback or comments online if the instructor post scores online.
Most of the students do not pickup their assignments or projects and check the
mistakes they made. Most likely they would make the same mistakes in the later
project or assignment.

c) Programming courses should have at least two to three group projects so that
students get work experience in a group and gather many other skills such as how
to distribute the work in a group into pieces, how to integrate those pieces,
brainstorming, and learn from each other.

d) Identify the most common mistakes or weaknesses and instructors emphasize
teaching those topics. Instructor can identify the common mistakes and deliver
more lectures or emphasize teaching those items.

e) More lab classes are useful for learning computer programming and in lab
classes should have teaching facilities so that instructor can teach in the lab class
and students can follow the instructor.

f) Improve students’ participations in the classroom. Increase the students’
participation in the classroom. Students’ attention can be maintained throughout a
class session by periodically involving students’ in some activities.

2 Apply the Testing Before Coding Method for Teaching
Courses

While teaching we have witnessed students in the programming courses write toy
programs that are superficially tested, graded, and then eventually discarded. Students do
not focus on code reuse, integration, quality, or maintenance of their programs.
Depending on software type typically, software testing is about 40 % to 70% of total cost
of software in the industry although usually testing receives very little attention in CS
curriculum [4][9]. Testing is the single most expensive phase in the software lifecycles;
however, software failure cost is still very high. National Institute of Standards &
Technology released a report on June 28, 2002 that software failures cost the US
economy an estimated $59.5 billion per year [3]. We believe one of the root causes of this
problem is our educational system where students are not received enough background or
training how to develop higher quality software or even how to test their own code
properly. They do not learn how to integrate, test, reuse, or maintenance their codes.

In our research, we have addressed this problem and introduced a new software
development method that emphasizes software-testing phases. Our method makes a
cultural change in software development, and produces higher quality programs. Our
method, Testing Before Coding (we refer to it as TBC) does not require previous
background in applying software lifecycles and can be adopted in the existing
programming or related courses without changing the course contents, syllabus, policies,
or course loads.

The TBC method has been applied in teaching undergraduate computer programming
courses for the last five semesters in the Department of Computer Science at North
Dakota State University in five different introductory programming courses. More than
150 students in each semester participated in our experiment, and the sections that
applied the TBC method improved at least 24 % of their programs’ quality (in terms of
black-box testing) comparing to the sections that did not apply the TBC method. Our
experiment also concluded that applying the TBC method in program development
helped in understanding the problems and writing the code, made it easier to do
debugging, improved the quality and reliability of the codes, boosted developers’
confidence, and so on.

2.1 Evaluations of the TBC Method

Testing before coding method (Figure: 1) is
suitable for teaching the introductory
programming courses in undergraduate
computer science or related majors. We also
assume that the TBC method can be adopted
in the industry. Because TBC provides wide
range of the developers do not need any
training, adding or changing the requirements
would be cheaper, and so on. In section 2.1.7,
we have discussed why industry should adopt
the TBC method.

In our experiment, the same instructor teaches
the same course in two different sections. One
section students’ follow the TBC model,
generate test suites before writing the codes,
and another section’s students did not.
Keeping all factors unchanged, we found that
the TBC model improve the students’
program quality. We found that teaching
basic concept of software testing does not
take much time.

2.1.1 TBC improves the Students’ Program
Quality

We created a test suite following different
testing techniques such as boundary value
analysis and equivalence partitioning. We
executed all test cases in all students’
programs in both sections. Keeping all factors

such as textbook, course contents, syllabus, teaching materials unchanged, in both
sections, we found that the passing rate of the black box test suite in the TBC section was
at least 24% higher than the non-TBC sections.

Gather and analyze
the requirements

Draw high-level
design diagram

Data modeling and
data specifications

Generate test cases
and create test suite

Develop the program

Execute the test suite
and test the program

Passed all test cases

If any test
cases fail

Customer communication
or add new requirements

QA and Customer
evaluation

Add new
requirements

Place in production

Identify any faults or
failure

Add more similar
test cases

Figure 1: TBC development method

2.1.2. TBC method can be adopted in the existing programming courses

We understand that introductory programming courses already are in huge load for the
students. There are too many things that need to cover in one semester, and there is no
room for additional loads. In our experiment, TBC method has been adopted in the
existing courses without changing any course contents, syllabus, grading policies, or
course loads.

2.1.3. A Cultural Shift in Software Development

In the traditional software development method (e.g. waterfall method), most of the time
developers do not test their code properly. In the TBC approach, we make a cultural shift
in teaching programming languages by making testing an integral part of programming
practices and apply software engineering concepts in programming courses. In our
approach, developers or students must learn how to test their own code. Not only
producing the correct output or a compiled version of the code, in our opinion, if
developers or students know how to write the program then they better know how to test
it and make sure that their programs are doing what they expected it to do.

2.1.4. Makes the program easier for debugging and improves the code’s reliability
and quality

In the TBC method, students write a test suite before writing the codes. Students execute
the whole test suite and record the results and find out if there are any faults and failures
in the programs. If any test case fails, students would know exactly which test case fails
and fixes the corresponding codes. They will also generate a few additional similar test
cases to investigate properly and execute the whole test suite again to make sure that their
program does not break somewhere else for the recent changes.

2.1.5. Spends extra time upfront and these extra efforts eventually well payoff in
program development.

TBC method forces the developers to understand the problem better while they specify
the requirements, specify the data, and write test cases before coding. Developers or
students get advantages while implementing the program. In our experiment, we
surveyed the total time spent on few specific projects/assignments in both the sections
who applied the TBC method or who did not apply the TBC for developing their
programs. We could not find any significant difference in total time spent on the program
development.

2.1.6. Increases developers’ confidence in the correctness of their programs

In the TBC method, students follow the instructions and several steps/cycles to develop
the program. Students generate test cases and create a test suite. They execute the
program and execute the test suite to test their programs. If the program passes all test
cases, it increases the confidence of the students about their programs’ correctness. The
developers’ confidence also increases while making any changes in the program. After
making any changes, the developers execute the test suite and make sure that the recent
change in one place does not break the program somewhere else. Even if it does, the
developer would know the exact reason and place to fix the problem.

2.1.7. Apply TBC method in the software industry

TBC method is not only suitable for the introductory programming courses but also in the
software industry. To some extent the developers in industry are not much different from
the students. An industry survey reported [7] that more than 50% of a software project’s
budget was spent on activities related to improving software quality, and the survey
stated the developers did not put enough attention in quality while developing the
program as the reason. The developers in the industry would get the benefits that we
discussed in the above section. We believe the TBC method would be suitable in the
industry because:

 TBC method is very useful for understanding the requirements and writing the
programs.

 Experience developers can adapt the TBC model quickly and produce higher
quality programs. Non-experience or new developers can start developing
software soon, as TBC does not require any training.

 TBC makes the program easier to find errors in the developers’ code.
 It increases the developers’ confidence in the correctness of their programs

and encourages them to move forward.
 It makes the program easier to maintain and modify and is less expensive for

changing the requirements or adding any new requirements.
 TBC reduces the software testing cycle and save huge money in the industries,

as the testing cycle would be very short in the TBC method.

It is easy to manage the project and easier for customer communication in the TBC
method. Because everyone works closely in the project and maintain a constant
communication that would lead the project in the right direction.

3 Some Other Important Activities for Improving Students’
Program Quality

We have addressed several activities or issues that we believe need to take to improve
students’ program quality. We have made the following recommendations so that
students’ would produce better quality programs and would prepare to face the real
world’s challenges in this field.

a) More testing need to teach in the undergraduate courses in general. Depending

on the software, 40-70% of the total cost is only for software testing phase. However,
CS or related majors in the undergraduate course curriculum does emphasize on
software testing. Most of the faculty and staff in the survey claimed that
approximately 60% of the undergraduate students in the CS dept do NOT know how
to properly test their code. We believe that we should teach at least one software
testing course in both undergraduate and graduate level students. Students should
learn and practice software testing from the beginning of their programming courses.

b) Provide feedback or comments online if the instructor post scores online. In our

research, faculty and staff survey found that at least 50% of the students do not pick
up their assignments or project as long as they receive the score online. If they do not
pick the assignment most likely they would make the same mistakes in the later
project or assignment.

 Students should receive feedback online if they receive their score online.
o If students submit their work online using a digital drop box, email or any other

web application, they should receive the feedback when they would see their
scores.

o This can be done through a web application or even instructor could create a
excel datasheet and upload in the course website with comments / feedbacks.
Instructor could provide a separate secret password to every student so that they
would be able to check their score and feedback.

 Automated Grading Tool
o We found that most of the students do not pick their programming assignments

and projects. They do not learn from their mistakes and end up making the
same mistakes repeatedly. We recommend using an automated tool where
students would submit their assignments or projects.

o The tool would evaluate students’ work and provide an immediate feedback to
the students.

o Students would upload their work online and verify their work several times
before final submission deadline.

o The tool would receive students’ generated test cases as inputs. Students should
get partial credit even if their code would not compile. The tool should not only
look for correct output and compiled version of the code.

c) Programming courses should have at least 2 to 3 group projects so that students

get work experience in a group and gather many other skills such how to distribute
the work in a group into pieces, how to integrate those pieces, brainstorming, and
learn from each other.

 Assign more group projects in the programming courses
o Students learn more from each other. Students feel more comfortable asking

question or sharing ideas to the group members than discus with the
instructors. Most importantly, instructors are not accessible like group
members.

o Students earn valuable group-work experiences and receive a real world work
flavor.

d) Identify the most common weaknesses and instructors emphasize teaching those

topics. Identify the common mistakes and weaknesses of the students and instructors
would spend more time or explain in those topics.

 Instructor should emphasis on teaching students’ weaker topics
o The instructor identifies the students’ weaknesses and emphasis on teaching

those topics.
o The grader or teaching assistant who grades the courses make a list for the

common mistakes to the instructor and the instructor could spend few minutes
discussing in the classrooms.

 Instructors need to communicate with students’, graders, or TA’s to find out

the students’ weaknesses.
o Instructors need to oversee the graders or TA’s work so that he/she would

have an idea about students’ common mistakes and discus in the classroom.
o Grader could provide a list of problems/weaknesses that students would have

in that class.

e) More lab classes are useful for learning computer programming. Most of the

faculty & staffs and students in different programming courses expressed that in the
introductory programming classes, the ratio of the classroom lecture to lab sessions
should be at least 50% or more labs. Lab classes should have teaching facilities so
that instructor can teach in the lab class and students can follow him.

f) Improve students’ participations in the classroom. Increase the students’

participation in the classroom. Many research found that (such as [2]) most students
couldn’t stay focus throughout a lecture. After about 10 minutes their attention begins
to drift, first for brief moments and then for longer intervals, and by the end of the
lecture students’ take in very little and retain less. A classroom research study
showed that immediately after lectures students recalled 70% of the information
presented in the first ten minutes and only 20% of that from the last ten minutes [2].

Students’ attention can be maintained throughout a class session by periodically
involving students’ in some activities. Many different activities can serve this purpose
such as asking questions, recalling prior material, giving some small tasks in the
classroom as individual work or as a small group work. We are also actively use
Personal Response System (PRS) system in the classroom and found more students
participate in the classroom and they may not participate in the class or raise their hands;
however, using the PRS those students participate in the classroom. We found the PRS
system as fun learning tool for the students.

4 Results

We have proposed and implemented a new software development method primarily
emphasizing on the software testing phases. Our method has been applied in the five
different introductory programming courses and improved students’ program quality and
makes a cultural shift in the program development. In our opinion, if the students know
how to write the programs then they should know how to test it and make sure that their
programs are doing what they expected to do.

There are few findings of our research are given below:

 TBC section students’ program quality was 24% higher than non-TBC section,
in terms of the black box testing.

 We spent only around 25 minutes how to write test cases and 70%-90% students
in the different classes came up with test cases instantly.

 Our approach integrates into the existing programming courses without changing
the textbook, course contents, materials, policies or the course loads.

 88% of the students expressed that TBC method was helpful for understanding
and writing the program

 67% students agreed that TBC method boosts students’ confidence and it gave
them the courage to move forward

 Most of the faculty and staffs claimed that at least 50% of the students do NOT
pick up their assignments or projects and do not learn from their mistakes.

 Faculty and staffs also claimed that at least 60% of the CS undergraduates
should improve the quality of their programs.

 Most of the faculty and staffs agreed that at least 60% of the CS students do not
know how to properly test their code.

 TBC method is not designed for any programming languages specific or level of
courses. It has been implemented in different languages with different level of
courses such introductory and intermediate java programming, Visual Basic.
NET etc. and improve students’ programs.

5 Conclusions

Software testing is the most expensive phase in software development but acknowledges
very little attention in CS course curriculum. We found most of the cases, the students
write poor quality programs and they do not know how to test their programs. Faculty
and staffs expressed that at least 60% of the CS undergraduates should improve the
quality of their programs. Students are not worried about the program quality, code reuse,
integration or maintenance of their programs. We believe the traditional way of teaching
introductory programming courses leaves students unprepared for developing reliable and
high quality software.

In our research, we addressed this problem and introduced the TBC model that mainly
applies software engineering concepts in program development by emphasizing on
software testing lifecycle. Applying this cultural shift approach, in teaching introductory
programming courses, students improve their programs quality, in terms of black box
testing. Not only producing compiled version of the codes and correct outputs; students
must test their own codes and make sure that their programs are doing what they
expected to do.

The TBC model integrates into the existing programming courses without changing the
course policies, contents or loads and it improves the students’ program quality. Most of
the students claim that the TBC helps students’ understanding the requirements and

writing the program; makes the code easier to debug and improve their codes’ reliability
and quality. Students initially spend some extra time well payoffs in later phases in the
program development. We have also made several recommendations for teaching
introductory programming courses and making some adjustment in the course curriculum
so that students would gather experience how to produce higher quality programs and
would be ready to accept real world’s challenges.

6 References

[1]. Townhidnejad, Hilburn, Software quality: a curriculum postscript?, Technical
Symposium on Computer Science Education, Proceedings of the thirty-first
SIGCSE technical symposium on Computer science education, Austin, Texas,
United States Pages: 167 – 171, 2000

[2]. Felder, Richard and Brent, Rebecca; “How to Improve Teaching Quality”
Quality Management Journal, 6(2), 9-21, 1999, http://www.ncsu.edu/felder-
public/Papers/TQM.htm

[3]. Newman, Micheal, "Software Errors Cost U.S. Economy $59.5 Billion
Annually," NIST Assesses Technical Needs of Industry to Improve Software-
Testing, June 28, 2002, http://www.nist.gov/public_affairs/releases/n02-10.htm

[4]. Rahman, Syed, Salah, Akram and Others; “Teaching Software Testing in
Introductory CS Programming Courses”, the Conference of the Midwest
Instruction and Computing Symposium, April 8 - 9, 2005, Eau Claire, Wisconsin,
USA.

[5]. Edwards, Stephen H.; “Using software testing to move students from trial-and-
error to reflection-in-action”, Technical Symposium on Computer Science
Education, Proceedings of the 35th SIGCSE technical symposium on Computer
science education, Norfolk, Virginia, USA, Pages: 26 – 30, 2004

[6]. Wolfgang Zuser, Stefan Heil, Thomas Grechenig Software quality development
and assurance in RUP, MSF and XP: a comparative study, ACM SIGSOFT
Software Engineering Notes, Proceedings of the third workshop on Software
quality 3-WoSQ, Volume 30 Issue 4, May 2005

[7]. Townhidnejad, Hilburn: Software quality: a curriculum postscript?, Technical
Symposium on Computer Science Education, Proceedings of the thirty-first
SIGCSE technical symposium on Computer science education, Austin, Texas,
United States Pages: 167 – 171, 2000

[8]. Pressman, Roger, S; Software Engineering: A Practitioner’s Approach, 6th Ed,
McGraw Hill, New York, NY, 2005, Page 467-594 Portland, Oregon, 2003

[9].Rahman, Syed and Salah, Akram; “Teaching Software Testing in Introductory CS
Courses and Improving Software Quality”, 3rd international Workshop on
Modeling, Simulation, Verification and Validation of Enterprise Information
Systems (MSVVEIS-2005), May 24, 2005, Miami, FL, USA.

[10]. Rahman, Syed and Salah, Akram; “Adopting Test-Driven Development in Web
Applications' Developments" ISCA 20th International Conference on Computers
and Their Applications (CATA-2005), March 16-18, 2005,New Orleans,
Louisiana, USA

http://www.ncsu.edu/felder-public/Papers/TQM.htm
http://www.ncsu.edu/felder-public/Papers/TQM.htm

[11]. Beck, Kent; Test-Driven Development: By Example, Pearson Education Inc.,
2003

	Abstract

