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Abstract

In designing crypto systems the emphasis  is  not  only on security, but  also on speed.
Cryptographic algorithms are more efficiently implemented in custom hardware than in
software  running  on  general-purpose  processors.  We  have  been  experimenting  with
methods  to  improve  undergraduate  research  experiences  and  the  quality  of  teaching
crypto systems in security and architecture courses for Computer Science and Information
Systems  students.  Mapping  algorithms  to  special  purpose  hardware  is  an  important
concept  to  learn  in  any Computer  Security course.  This  paper  describes  the  learning
module developed to help students understand asymmetric key cryptographic algorithms
and architectures. It will focus on the software-to-hardware transformation of asymmetric
key cryptographic algorithms, recent advances in high speed hardware implementations
of  the  RSA algorithm and our  experiences  incorporating such  concepts  in  Computer
Security and Architecture courses.  
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1. Introduction

In 1977, Scientific American published a $100 award for decrypting a 4 x 32 cypher text
matrix, the first RSA challenge. The public key was 129 decimal digits long and e was 4
digits long. In 2002 Rivest, Shamir and Adelman received the ACM Turing Award for
introducing the RSA algorithm and their contributions to cryptography.

In 1977 R.L Rivest, A. Shamir and L. Adleman (RSA) came up with a new technique for
security similar to our day-to-day life paper documentation, i.e, our information is private
and the transactions that we do are signed. These two methods, when done digitally, have
a great advantage. The signatures cannot be shorn off or counterfeited, making this a
perfect application for electronic banking and smart card applications. [7].

The RSA asymmetric key algorithm is based on modular exponentiation. This modular
exponentiation is also related to the factorization of large integers.  Today’s RSA
challenge is factorizing large numbers. In 1974, the largest number factorized was 45
decimal digits long. There is a $10,000 award for factorizing 174 digits long decimal
numbers and $200,000 award for factoring 617 decimal digit long numbers [14].

Finding the exponent of large numbers is a difficult problem to solve. Similarly,
factorizing large numbers is a difficult problem to solve. This paper addresses the
problem of finding modular exponents efficiently.

Many applications depend on the security provided by the RSA algorithm.  Web services
provide  a  wide  range  of  applications  extending  from e-mails  and  online  banking  to
commercial business. Most of web-based authentication uses single factor authentication,
either a password or a pin,  which makes it  easy to perpetrate account hijacking.  The
FDIC,  Federal  Deposit  Insurance  Corporation,  suggests  two-factor  authentication
methods, a password or pin along with an authenticator like a pass code, for preventing or
minimizing identification theft [2]. Business organizations are looking for cost effective
techniques to preventing identification theft. 

Hardware-based  security  functions  have  proved  to  be  more  secure  with  higher
performances. Such functions are not only resistant to code breakers, but are not restricted
by a fixed block size, making them useful in database applications. Some hardware-based
cryptosystems can be programmed to change the vendor code every 60 seconds and hence
the pass code changes [8]. 

The RSA algorithm has proved to be one of the best methods for preventing ID theft, as it
uses  two-factor  authentication  methods  for  encryption  and  decryption.  High-speed
implementations of the RSA algorithm are necessary in applications such as smart cards
and  SIM cards  in  cell  phones.  The  RSA  algorithm,  when used  as  a  ‘software  only’
implementation by an end user, proves to be weak when compared with hardware and
software combined application implementation. When implementing the ‘software only’
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method, the application becomes static and the reused password becomes an easy target
for crackers. 
A  hardware  implementation  of  the  RSA  algorithm  is  more  secure  and  faster  when
compared with  a  software implementation.  The faster  the  cryptosystem, the  safer  the
encryption  is.  The  probability  of  the  password  being  cracked  in  a  hardware-based
implementation is less.  Many crypto systems consist of key sizes varying between 1024
bits to 2048 bits. This increasing key size tends to increase the length of the modulus and
hence the computation time. RSA security primarily depends on modular exponentiation,
performed by a series of modular multiplications. Hence one of the problems in hardware
implementation is finding a high performance circuit for modular exponentiation. 

This  paper  focuses  on  the  software-to-hardware  transformation  of  asymmetric  key
cryptographic algorithms. Section 2 describes the RSA algorithm with examples. Section
3  reviews  left-to-right  binary  exponentiation  algorithm  and  architectures.   Section  4
presents  right-to-left  binary  exponentiation  algorithm  and  architectures.   Section  5
presents Montgomery multiplication. These three sections present software-to-hardware
transformation, sequential and parallel  implementations. These examples can be easily
used  in  a  classroom  to  help  students  understand  the  implementation  of  modular
exponentiation. Section 6 provides a summary.

2. The RSA Algorithm

Diffie and Hellman first  introduced the concept of a public key in 1976 [10].  In this
public key cryptosystem (PKC) the encryption and decryption are done with two different
keys. RSA uses either of the two keys for encryption. One of the main advantages of PKC
is that it provides confidentiality and key management. The characteristics of PKC not
only depend on the keys, but also on the algorithm used. 

The basic operation of the RSA algorithm is as follows [10]: 

The message  M to be sent is first represented in integer form (between 0 and n-1). In
general, the representation of M should be of block size less than or equal to log2 (n). 

The private key or the secret key consists of two large prime numbers p and q and two
exponents e and d. 

The cipher text C = Me (mod n).
 
The decrypted text M = Cd (mod n). 

It is understood for the above equations that the encryption keys (public keys) are e and n
and  decryption  keys  (private  keys)  are  d  and  n.  It  is  understood  that  both  the
communicating parties would know the value of n. The sender would know e, while the
receiver will know d.  

The procedure for establishing keys for encryption and decryption are as follows:
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• Compute n, a very large number such that n = p*q and is difficult to factor
• Compute Euler’s totient function φ(n)  such that φ(n)  = (p-1)*(q-1)  ---(1)

o Check that d satisfies gcd (d, φ (n)) =1
• Compute e such that e*d ≡ 1 mod (φ (n)).  ---(2)

In general [7] a PKC encryption and decryption have the following properties:

• Given Med = M mod n for all M <n, it is possible to find e, d, and n.
• For all M < n, the value of Me and Cd can be calculated easily.
• If e and n alone are given, it is impossible to find d.

Example of RSA Encryption 

The following example would help to understand the RSA algorithm more clearly. Let us
assume that the keys were generated with the two prime numbers p = 5 and q = 11 then:

Step 1 calculate n
• n = p*q = 5 * 11 = 55

Step 2 Calculate the Euler’s totient function φ(n)
• φ(n) = (p-1)*(q-1) = 4*10 = 40
• e should be relatively prime and less than φ(n) so we can choose e = 3

Step 3 Compute d from equation (2)
•  e*d ≡ 1 mod 40; hence d = 27

Now that we know e, d, and n, we can form the private and the public keys. The private
key consists of d and n i.e. (27, 55) and the public key consists of e and n i.e. (3, 55). 

Once the public key and the private keys are known, we can encrypt the message using
the public key as C = M3 mod 55. 

The decryption process involves the use of private keys and the encrypted message can be
retrieved from M = C27 mod 55. 

Assume that the plain text M is the integer 12. 
Then to encrypt M we use C = Me mod n, i.e,

C = 123 mod 55
   = [(12 mod 55) * (122 mod 55)] mod 55
12 mod 55 = 12
122 mod 55 = 144 mod 55 = 34, therefore,
C = [12 *34] mod 55 = 23

To decrypt the cipher text we use M = Cd mod n
M = 2327 mod 55
    = [(233 mod 55) *(238 mod 55) *(238 mod 55) *(238 mod 55)] mod 55
23 3 mod 55 = 12167 mod 55 = 12
238 mod 55 = [233 mod 55 * 233 mod 55 * 232 mod 55] mod 55
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238 mod 55 = [12*12*34] mod 55 = 1
 M = [12*1*1*1] mod 55 = 12

Initially we selected M to be 12, and after encrypting and decrypting we have the initial
value of M. 

RSA key sizes currently vary between 512 bits to 2048 bits.  This increasing key size
tends to increase the length of the modulus and hence the computation time. It also affects
modular  exponentiation,  register  length  and  the  size  of  the  adders.   The  following
sections  describe  various  algorithms  and  architectures  that  are  used  in  solving  the
modular exponentiation and multiplication problems. 

3. LR Binary Exponentiation Algorithm and Architecture [3]

Consider the encryption of a plain text M to C, C = Me mod n where M multiplies by M
‘e’ times and then finally with the modulus function to get the cipher text C. There are
several  methods proposed, one of which is  the Binary exponentiation method.  In this
method we convert the exponent from decimal to binary and thus use the Left to Right or
Right to Left methods to perform the multiplication.

LR Binary Exponentiation 

In the Left to Right binary exponentiation method, the ‘e’ is converted from decimal to
binary bi  bits and arranged from MSB to LSB. Then the modular squaring is performed
for each bit [3]. 

Example LR Binary Exponentiation 

Let us calculate  C = 2325 mod 55 where e  =25;  M =23;  n  = 55 then by LR binary
exponentiation algorithm 

e = (25)10  = (1   1   0   0  1 )2

                      e4 e3 e2 e1 e0
C = ((((23mod55)2*23 mod55)2 mod55)2 mod55)2 23mod55

C = 2325 mod 55 = 12
Different colors represent the relationship in steps of the computation. 

Algorithm
The algorithm for LR Binary exponentiation is presented below:
For the given input message M, exponent e, modulus n the cipher text C is represented as
C = Me (mod n)

1. If ebi-1 = 1 then C = M else C = 1
2. For i = bi – 2 down to 0

2a. C = C*C (mod n)
2b. If ei =1 then C = C*M (mod n)

3. Return C
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The complete computation of the exponentiation is shown in Table1.

Table 1: Computation for LR Binary exponentiation method

If  ebi-1  = 1 then
     C = M
else C = 1

for i = bi – 2 down to 0
 C = C*C (mod n)

   If ei =1 then 
       C = C*M (mod n)
Return C

Figure 1: Hardware Implementation of the LR Binary Exponentiation Method

The hardware architecture of LR exponentiation is presented in Figure 1. This method
requires two registers, one to store M and other to store the value of C. Different colors
are used in Figure 1 to help understand the software-to-hardware transformation of If

i ei Step 2a Step 2b

3 1 232 232*23 =233

2 0 236 236

1 0 2312 2312

0 1 2324 2324 *23 = 2325
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Then .. Else ..and For loop expressions. Many software-to-hardware transformations for
symmetric key algorithms are presented in [16]. 

4.  RL Binary Exponentiation Algorithm and Architecture [3]

The  Right  to  Left  Binary  Exponentiation  is  similar  to  Left  to  Right  Binary
Exponentiation, except that the computations are performed with e from LSB to MSB. 

Example RL Binary Exponentiation
 
Let  us  consider  the  same  example  used  for  LR Binary  Exponentiation  to  show the
working of the RL Binary Exponentiation method:
 e =25; M=23; n= 55

e = (25)10 = (   1   1   0   0  1 )2

          e4 e3 e2 e1 e0
((23) 1 1 (238 mod 55)(2316mod55))

C = 2325mod 55 = 12

Different colors represent the relationship in steps of the computation. 

RL Binary Exponentiation Algorithm
Let us assume the input message to be M, e as the exponent, and the modulus n then the
output of the encrypted message is C = Me mod n. In the RL binary method, we initially
make the value of C to be 1 and another register R to hold the value of the powers of M
every time it is computed. 
1. C =1; R = M
2. For i = 0 to bi – 2

2a. If ei = 1 then C = C*R mod n
      2b. R = R*R mod (n)
3. If ebi-1 = 1 then C = C*R mod n
4. Return C

Calculations of the above problem are shown in Table 2.
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Table 2:
Calculations for

the RL Binary Exponentiation Method

Figure 2: Parallel Hardware Implementation of RL Exponentiation 

The function-to-hardware transformation provides simple and direct mapping for parallel
high  performance  implementation.  Figure  2  represents  the  parallel  hardware  for  RL
Binary  Exponentiation.  Figure  3  shows  the  general  hardware  for  RL  Binary
Exponentiation. This computation can be represented as an iteration consisting of If Then

i bi Step 2a Step 2b

0 1 1*23 = 23 232
1 0 23 234

2 0 23 238

3 1 238*23 2316

4 1
239*2316 =2325 
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Else and For loop expressions. This sequential implementation  reduces space, cost and
performance. 

Figure 3: Hardware Implementation of RL Binary Exponentiation Method
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5. Montgomery Multiplication Algorithm 

This algorithm was introduced by Peter L. Montgomery in 1985 [15]. This method was
used primarily for modular arithmetic reductions. The Montgomery method is used to
find the modulo of a large number  multiplied  by the exponentiation of  two numbers
similar to M = ab (mod n). 

The Classical method involved computing the product of the integers and then reducing
the  result  modulo  n,  whereas  the  Montgomery  method  involves  multiplication  and
shifting, rather than division, making it more efficient than the Classical method. 

Formally, if n, T, R are three positive integers such that
• R > n, gcd (n, R) = 1; n and R should be relatively prime (hence should be odd)
• n * R >T >= 0;  Then T mod n with respect to R  = TR-1(mod n).

Hardware implementation of the Montgomery Algorithm is discussed in [3]. 

Algorithm
Let A and B be two positive integers, then the Montgomery product is A*B*r-1 mod n.
Montgomery proposed MonPro ( ) function to describe the algorithm.

The  description  of  the  algorithm  to  compute  MonPro  (A,  B)  using  Binary add-shift
algorithm is as follows:
 

 r = 2K A, B < K
 A = (Ak-1, Ak-2

 …..A0)
 MonPro (A, B) = 2-k. (Ak-1, Ak-2 …..A0).B

 => 2-k 

 Let t = (A0 + 2A1+… +2k-1Ak-1).B
 Let u = t *mod n

Computation of‘t’:

1. t = 0
2. For i = k-1 to 0

2a. t = t + Ai * B
2b. t = 2*t

When in summation 2-k direction is reversed
1. t = 0
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2. For i = 0 to k -1 
2a. t = t + Ai * B
2b. t = t/2

Computation of ‘u’:

u = t * mod n = 2-k*A*B (mod n)
This can be done by either subtracting n during every add-shift step or by changing u to
be even. i.e., u = u + n

u = u*2-1(mod n)
The Binary shift add algorithm is used to compute u is as follows:

1. u = 0
2. For i = 0 to  k -1

2a. u = u + Ai*B
2b. if u is odd

u = u + n;
3.  u = u/2
 Combine 2a and 2b to compute the least significant bit, u0 of u. u0 = u0 xor (Ai*B)

The Montgomery Algorithm function from [3] is given below in Table 3.

MonExp (M, e, n)
1. Compute n’ (Extended Euclidean

method)
2. M’ = M *r*mod n
3. x’ = 1* r* mod n
4. for i = k-1 down to 0

1. x’ = MonPro (x’,x’)
         4a. if ei = 1

                   x’ = MonPro (M’,x’)
5. x = MonPro (x’,1)
6. return x

MonPro(a, b)
1. t = (a’*b’)
2. m = t *n’ mod r
3. u = (t +m *n) / r
4. if u >= n

1. Then u = u – n
5. else u = u

Table 3: Montgomery Algorithm and Function

Example
Consider computing x = 2325 mod 55 using the above function
x = 2325 mod 55
 n = 55; r = 64 = 26 > n
1. Compute n

(64 * 49) – (55 *57) = 1
r’ = 49; n’ = 57; 

2. Compute M’
M’ = M * r * mod n
      = 23 * 64 * mod 55
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M’ = 42
3. x’= 1*r*mod n

=1*64*mod 55 
   x’= 9
25 10 = (11001)2

The calculations for step 5 and step 6 of the algorithms are shown in Table [3]

E Step 4 Step 4a
1 MonPro(9,9) MonPro(42,9)
1 MonPro(42,42) MonPro(42,31)
0 MonPro(53,53)
0 MonPro(31,31)
1 MonPro(64,64) MonPro(42,64)

MonPro(42,1)

Table 3: Calculation Table for the Montgomery Algorithm

The expanded calculation of Table 3 for the MonPro function is given in Table 4.

MonPro(9,9)
t = (x’ * x’) = (9*9) = 81
m = t * n’ mod r
    = 81 * 57 mod 64 = 9
u = (t + m * n)/r
   = (81 + 9*55) /64 = 9

MonPro(42,9)
t = 42*9 = 378
m = 378*57 mod 64 = 42
u = (378 + 42*55)/64 =  42

MonPro(42,42)
t = 1764
m = 1764*57 mod 64 = 4
u = (1764+4 *55)/64 = 31

MonPro(42,31)
t = 1302
m = 1302*57 mod 64 = 38
u = (1302+ 38*55)/64 = 53

MonPro(53, 53)
t = 2809
m = 2809* 57 mod 64 = 49
u = (2809 + 49*55) /64 = 86
u>n => 86-55 = 31
MonPro(31,31)
t =  961
m = 961* 57 mod 64 = 57
u = (961+57*55)/64 = 64
MonPro(64,64)
t = 4096
m = 4096*57 mod 64 = 0
u = (4096+ 0*55)/64 =  64

MonPro(42,64)
t = 42*64 = 2688
m = 2688*57 mod 64 = 0
u = (2688 +0*55)/64 = 42
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MonPro(42,1)
t = 42
m = 42*57 mod 64 = 26
u = (42+55*26)/64 =  23

Table 4: Calculation Procedure for MonPro Function

6.  Summary

This paper focused on helping students understand algorithms and architectures for the
RSA algorithm. The RSA algorithm, numerical examples, RL Binary Exponentiation, LR
Binary  Exponentiation,  iterative  computations,  function-to-hardware  mapping  and
sequential and parallel architectures were presented. Also, we have discussed the speed,
space  and  cost  advantages  of  architectures.  The  Loop  unrolled,  parallel  RL  Binary
Exponentiation architecture speeds up in RSA implementation. 

Numerous papers  discuss  space and time tradeoffs.  For  example,  by adding an extra
RAM [6]  implemented 1024-bit  RSA exponentiation on a 32-bit  processor  core with
execution time less than a second. The signed sliding window algorithm performs the
exponentiation  and  multiplication.  Different  versions  of  Montgomery  Multiplication
algorithm were presented and compared space and time requirements in [1]. Algorithms
analyzed  in  [1]  include  Separated  Operand  Scanning,  Coarsely  Integrated  Operand
Scanning, Finely Integrated Operand Scanning, Finely Integrated Product Scanning and
Coarsely  Integrated  Hybrid  Scanning.  It  appears  that  Coarsely  Integrated  Operand
Scanning is better on general-purpose machines than the other algorithms discussed. 

We  have  been  experimenting  with  methods  to  improve  undergraduate  research
experiences  and  the  quality  of  teaching  crypto  systems  in  Security  and  Architecture
courses for Computer Science and Information Systems students. The goal has been and
continues to be to help them become good information assurance and security experts in a
relatively short period of time, with both a theoretical understanding and practical skills,
so that they can enter in and make valuable contributions to the profession. A learning
module  that  can be  used  in the  classroom based  on  the  algorithms  and architectures
presented in this  paper is  at  [12].  The Turing Award lecture [13]  given by Adelman,
Rivest and Shamir is a good starting point to present research related to RSA.
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