

A Core Course on Systems for a Liberal Arts Curriculum

A. A. Lopez
Computer Science

Division of Science and Mathematics
University of Minnesota, Morris

600 East 4th Street
Morris, MN 56267

alopez@morris.umn.edu

Abstract

This paper is about a one semester core course in systems taught at a liberal arts college. The course covers
fundamental concepts of computer organization, assembly language, operating systems and networking. This
course has been taught for seven years and we feel that it meets the basic recommendations of the ACM/IEEE
Computing Curricula 2001 Project [1]. Topics to be taught in the course had to be carefully selected so as to
provide an integrated learning experience compatible with the breadth liberal arts graduation requirements.

A laboratory component has added immensely to the success of the course. The course depends on simulators
and emulators to illustrate many of the key concepts taught. About one third of the labs are done in teams of two
or three students. The goal of several of the labs is for the students to read documentation on their own and
apply that information to the lab exercises.

mailto:alopez@morris.umn.edu

Introduction

This paper is about a core course in systems taught at a liberal arts college. This course has been taught for
seven years and we feel that it meets the recommendations of CC2001 [1]. Due to the typical liberal arts
graduation requirements, the course needed to be very innovative on how topics were combined into one
instructional unit.

The following sections include a discussion of computer science programs at liberal arts colleges, description of
UMM’s computer science program, a description of our innovative, integrated core systems course, and how
this course fits into the computer science major. A course outline and descriptions of lab assignments are
included in the Appendices.

Computer Science programs at liberal arts colleges

Bachelor of Arts degrees in a discipline, typically require that students take about two thirds of the credits
required for graduation in disciplines other than their major discipline. This implies that students majoring in
computer science at a typical liberal arts college requiring 120 semester credit-hours for graduation will only be
allowed to count about 40 credits in computer science toward graduation. This presents a major challenge for a
new discipline such as computer science, where knowledge has not been completely synthesized. On the other
hand, students are continuously demanding that we offer more and newer courses dealing with the latest topics
in the field.

Students frequently feel that they must know all the latest techniques, otherwise they will not be employable.
This situation is not unique to computer science, for example on our campus the music majors frequently
accumulate 60 credits in music before they graduate. The challenge for computer science, as it is in music, is
how to divide or subdivide our discipline so the students get a good sense of the breadth of the field.

Historical Background on UMM’s Computer Science Program

The Bachelor of Arts degree in computer science at the University of Minnesota, Morris was approved in 1984.
At that time, the institution operated in the quarter system and that allowed us to offer three sets of courses per
academic year. In 1999, the University of Minnesota decided to change to a semester system on all of its
campuses. The campuses were at liberty to choose their instruction module and our campus chose to adopt a 4-
credit module (despite the objection of the science faculty that preferred a 3-credit module). The 4-credit
module was chosen to minimize the number of preparations a faculty member would have. With a nominal 20-
semester credit teaching load per year, that implied five preps per year.

Once the 4-credit module decision was made, the computer science discipline set out to develop a curriculum
that would include the breadth that we thought our students deserved while living within the 4-credit module
requirement. We came up with a proposal that included three foundations courses- CS/1, CS/2 and Data
Structures; three core courses in Systems, Theory and Programming; a two credit seminar course that
encouraged our students to develop their communication skills and a series of elective courses with their
corresponding core courses as a prerequisite. The foundation, core and several of the elective courses were
proposed as 4-credit courses. We soon realized that if we were to strictly stick with the 4-credit module for our
electives, we would be offering many fewer electives than we had been offering under the quarter system. That
brought us to consider offering half-courses as elective. These courses would award two semester credits and
would deal with more ‘researchy’ topics that would interest the students and they would be more involved in the
learning process.

We have more or less followed this paradigm for the past seven years. After a couple of offerings of the
Software Design and Development core course, we realized that a lab was essential to that course and it was
added. In 2002 when more reasonable lab facilities became available to our discipline, we added lab
components to our Data Structure course and to all the core courses, and increased the number of credits for
each of these courses to five credits (so much for the 4-credit module). Along the way we also realized that the
seminar course would be more meaningful to our students if it was divided into two one-credit courses. The
first course forces the students to talk and write about ethical issues in computing. The second seminar course
is more of a capstone experience where the students read, write and talk about recent research papers that they
have studied. For the latter course, the student chooses a faculty advisor, the student and faculty advisor choose
a topic to be researched, the student does a literature search, writes a paper about her/his findings and presents
the results of their research at a mini-conference held at the end of the semester. Proceedings of the conference
are prepared and distributed and students present their results orally to faculty, fellow students and anyone else
on campus that cares to attend.

The major drawback of the current curriculum is that it is almost as much work to teach a 2-credit elective
course as it is to teach a 4-credit elective course. The anticipated involvement of the students in the teaching of
these 2-credit has not developed to the faculty expectations. The two credit courses are hard on both the
students and the faculty, so we are looking for ways to reduce the number of 2-credit elective courses that we
offer every semester.

Systems graduation requirements

All students must currently take the five-credit Systems core course called Models of Computing Systems. In
addition, students must take either two or four credits of elective courses in the Systems area before graduation.
The students must take 10 credits of electives beyond the core courses and these 10 credits must be distributed
among the three core areas in a 2-4-4 fashion. The students get to choose which area they will take the 2-credit
elective and then they must take 4 credits in each of the other two areas. In reality, many of our graduates take
more than the minimum number of electives.

Systems core course

The Models of Computing Systems course has now been taught seven times. Six of those times by the author.
The course has been quite challenging at times for both students and faculty. The course attempts to give the
students some principles of computer organization, a little understanding of machine/assembly language,
principles of operating systems and an introduction to networking. A serious limitation for this course is that
there is no one or two textbooks that cover the water front. Recently, I have resorted to requiring an Operating
System textbook [2] and putting other materials on reserve in the library to deal with the computer organization,
assembly language and networking.

After experimenting with several systems textbooks for the computer organization and assembly language, I
have found that Warford’s [3] book, now in its third edition, does an excellent job of treating these topics in a
concise and clear way. I have found his Pep emulators to be an ideal way to teach simple assembly language
concepts without getting the students overwhelmed with all the details of a real assembly language. This book
is very well written and it is relatively easy to skip over sections of the book without losing the students.
Despite the fact that I do not require the students to buy this book, the word has gotten around campus that this
is a valuable book and I have noticed that a couple of the students bought their own copy of it this year.

The biggest portion of the course is to cover the principles of operating systems. Again, through trial and error,
I have found that for our students, a fairly traditional and concise textbook such as Silberschatz [2] works well.

Typically, we will cover about a third of the book including the chapters on processes, inter-process
communication, threads, scheduling, synchronization, deadlocks, memory management, virtual memory and
security.

The last segment of the course deals with networking principles. Initially I felt that the students would need a
reference in order to grasp the principles of networking. I have recommended a couple of simple networking
books to the students in the past, but they do not seem to need them. This is my area of research, so this
material comes relatively easy to me and the students seem to take good notes in class and master all of the
important principles.

In Appendix A, you will find a typical class schedule for the semester. The numbers on the left, on each
column, refer to the class period during the semester. The numbers on the right are the pages that the students
should read from Silberschatz for that day.

Appendix B outlines some of the lab assignments given during the semester. We are fortunate to have three sets
of laboratory hardware that we can use in support of these lab exercises. We have access to a public lab with
Windows computers that we use for the Pep assembly language exercises. The Pep emulator is also available to
run under Linux, but that version does not seem as well developed. Labs 5 and 6 are designed to familiarize the
students with Linux and many of the commands relating to process and resource management. The students are
given free rein to explore any of these commands using the man pages. Lab 7 uses a simulator to study various
scheduling algorithms developed by Professor Robbins at the University of Texas at San Antonio. While the
students are continuously finding bugs in this software, nevertheless it gives them experience with downloading
and installing software in a Linux system, it forces them to think critically about the simulations that they run,
and the software has many forms of output built into the emulator that saves time in plotting the results, etc.
Lab 8 uses simulators from Professor Robbins to study various process synchronization techniques for the
Dining Philosophers problem. In Lab 9, the students get to do some Unix shell scripting. Labs 10 through 14
are done in a dedicated network of computers where students can experiment with the configuring of Unix
systems without affecting the campus network. These exercises are done in teams of two or three students. We
have attempted to do these exercises using older computers that were no longer viable for other work, with
VMtware, and most recently, using the Knoppix system that allows each workstation to be booted from a CD
and configured without having to save things to disk. Through these exercises the students get to install Unix,
configure the network connection for their workstation, configure Domain Name Service (DNS), e-mail and
Web server and they also are able to explore other Unix commands that require superuser privileges, such as
deleting a process, shutting down a system, etc.

Evaluation of Systems Core Course and Elective Systems Courses

Prior to the establishment of the Models of Computing course, our students graduated with a variety of
inconsistent systems background. This course has helped provide a more uniform systems background to our
students. This is particularly noticeable when the students take some of the elective systems courses.

Since adding the laboratory component, more of the lectures have had to be geared toward preparing the
students for that week’s lab exercises. This has made it difficult to cover some basic topics from computer
organization for the past two years.

Another challenge is the lack of a textbook that would cover the variety of topics that we cover in this course.
The author was hopeful that with the advent of electronic publishing offered by some vendors, this problem
could be addressed, but the number of publishers participating in such projects is still limited and no such
solution has been achieved yet. Even if we were able to obtain an electronic textbook through such a
methodology, challenges would remain since different authors have different writing styles and they will
assume different backgrounds on the part of the students.

When the course was offered without a lab, the students had a very hard time conceptualizing the concepts
being described during the lecture. While these lab exercises are not perfect, they give the students a better
sense of how computers work and some of the issues that they will be confronted with upon graduation.

After taking this course, the students are eligible to take a variety of 2 and 4 credit elective courses in systems.
These courses include Computer Networks, Database Systems, Distributed Systems, Parallel Systems, TCP/IP
Networks, Network Security, Robotics, Wireless Data Networks and Computer Forensics. The author has also
taught a variety of these courses before and, after the Models of Computing course was introduced, there is no
doubt that the students are now better prepared to enter these elective courses.

Conclusion

This course has helped us established some uniformity to the systems background of our graduates. The
graduates now have a more balanced and better sense for topics such as assembly language, computer
organization, operating systems, networking and how to configure a Unix system.

Acknowledgement

I would like to acknowledge the contribution of the UMM computer science faculty and student representatives
who since 1998 have worked very hard on adapting our quarter-based computer science curriculum to our
semester-based curriculum. I also like to acknowledge the contribution of my colleague, Professor Dian Lopez,
who assisted me in the editing of this paper.

References

1. Computing curricula 2001, Journal on Educational Resources in Computing (JERIC), Volume 1, Issue
3, Article 1, 240 pages, ACM, Fall 2001

2. A. Silberschatz, P. Galvin and G. Gagne, Operating System Concepts, 7th Ed, John Wiley & Sons, 2005
3. J. Warford, Computer Systems, 3rd Ed, Jones and Bartlett Publisher, 2005

Appendix A

CSci 3401 Course Outline Spring 2006

The purpose of this course is to introduce the students to computer systems. This course attempts to integrate topics from
four areas: Computer Organization, System Programming, Operating Systems and Networks. Each of these topics can be
a course in itself. We are hoping to capture the salient characteristics of each of these areas and allow you to learn
specifics about each area in our 44xx courses. To assist us in these tasks, I have selected a textbook Operating Systems
Concepts by Silberschatz, Galvin and Gagne, Seventh Ed, Wiley, 2005 and several handouts. A brief course outline
follows.

1 Machine instructions, Assembly Lang Prog
2 Assembly Language Programming

3 Assembly Language-addressing mechanics
4 Assembly Language-Stack operations
5 Wrap-up of Assembly Language

6 Combinational circuits
7 Sequential circuits
8 Intro to Operating Systems 3-38

9 Computer-System Structures 39-54
10 OS Structures 55-78
11 Processes 81-95

12 Interprocess communication 96-124
13 Review
14 ***First Hour Exam

15 Threads 127-151
16 CPU Scheduling 153-172
17 Thread Scheduling, Alg. Evaluation 172-189

18 Process Synchronization 191-200
19 Semaphores 202-209
20 Guest lecture

SPRING BREAK

21 Critical regions, monitors 209-222

22 Wrap-up Synchronization 222-241
23 Deadlocks, models, handling, prevention 245-256

24 Deadlock avoidance, detection 256-265
25 Recovery from Deadlock 266-271
26 Memory Management 275-288

27 Paging, Segmentation, Seg w Paging 288-312
28 Virtual memory 315-363
29 Security, threats, intrusion detection 559-600

30 Computer Networks
31 Terminology, media, review
32 ***Second Hour exam

33 Topologies, WAN, LAN
34 ISO Model
35 Physical Layer

36 DLL protocols
37 Network Layer
38 Transport Layer

39 Application Layer
40 Network devices-routers, bridges,
41 hubs, switches, NIC, MAU, gateways

42 Networking protocols
43 Routing protocols
44 Faculty evaluation, Review

Appendix B

Lab 1 Introduction to Assembly Language and the Pep emulator. Download the
emulator, run a program from the printed material available.

Lab 2 Simple assembly language program created by the student to satisfy given
requirements using direct and immediate addressing mechanisms, input and output
functions and giving appropriate documentation.

Lab 3 Assembly language program that demonstrate the use of index addressing and
array data structures.

Lab 4 Assembly language program that demonstrate the use of a stack in making
recursive calls to a function (e.g computing Fibonnacci numbers)

Lab 5 and 6 Unix based exercises for the students to learn about the ‘man’ capabilities,
investigate topics having to do with processes, resources, etc. Trying to get them to be
independent thinkers and not run to the instructor and/or web for all their answers.

Lab 7 Study Scheduling algorithms using simulators developed by Professor Robbins at
the University of Texas, San Antonio under an NSF grant.

Lab 8 Study Process Synchronization using simulators developed by Professor Robbins
at the University of Texas, San Antonio under an NSF grant.

Lab 9 Unix shell scripting exercise. Build confidence in their ability to do shell
scripting.

Lab 10 and 11 Install the Knoppix system on a workstation on a dedicated network,
configure the network adapter with IP address, etc. and investigate unix commands that
require privileges.

Lab 12 through 14 Using the Knoppix system on a dedicate network configure the
workstations such that DNS, e-mail and web services are available on the network.
Create servers for the above mentioned services. Test that all services work correctly.
Prepare lab reports describing the successes and failures encountered along the way.
Done in teams of two to three students.

	CSci 3401 Course Outline Spring 2006

