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Abstract

The load of a computer is an important metric and is usefulamyrapplications, such as balancing
load across heterogeneous computers. In this paper, a ngw foe characterizing the load of a
uniprocessor computer is studied. This metric is definedras@of the average waiting time expe-
rienced by computing jobs to the average idle time of thegsser. The definition of the new load
metric is based on two important observations: 1) the aeeidlg time between serving consecutive
computing tasks shrinks as the load becomes heavier; 2ytrage waiting time experienced by
computing jobs increases as the load becomes heavier.

The new load metric aims to being able to compare differead Ktatus of a single-server system—
the typical abstraction of a uniprocessor computer. Thaitalof comparing two different load
status using the new load metric is subject to the satisfacti certain conditions. These conditions
are that relations of stochastic ordering need to be satiséwveen the two processes of physical
observations under different load statag,. the process of idle time and the processes of waiting
time. When these conditions are not fully satisfied, the nead Imetric only serves as the first-
moment approximation to the status of operations of a siggteer system.

Numerical analysis on the effectiveness of the new loadimk#&s been conducted by simulating
operations of a single-server system under different tybg¢sb arrivals, the new load metric has
been demonstrated to have the ability of characterizingsthels of operations of the system, and
the limitations on its ability have also been demonstraté€tde ability of the new load metric in
characterizing different load status is also compared d¢cathility of the traditional load metric—
the average utilization, by comparing their effectivenessserving as job assignment criteria for
balancing load across multiple uni-processor systems diftrent service capabilities. The pre-
liminary results suggest that the new load metric serveanoalg the load more evenly across
multiple systems than the average utilization.
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1 Introduction

The computational load of a computer is an important metiiccharacterizing the operational
status of the computer. The computational load of a compwitin a time period is typically
characterized by the average utilization of the procesS&U) during this time periodi.e. the
ratio of the amount of time spent in processing computingstggbs) within this time period to
the duration of the period. The load of a computer closelgtesl to other observable performance
metrics. For instance, when the load of a computer is highatlerage waiting time of computing
tasks drastically increases [9]. In general, a heavilydoazbmputer is vulnerable to sudden external
changes because there is no sufficient amount of availadpenees in ready to sudden changes. The
computational load of a computer has vast applicationsnmsglon control and scheduling of tasks,
especially in environments consisting of heterogeneougpaters. For example, the computational
load can be used in balancing load across computers of niforuarservice capabilities in order to
prevent individual computers from being more heavily laatlen others. When computers are with
different capabilities, the same amount of task assignmmeyt result in different load. Therefore,
the load status is useful for assigning computing tasksgpeers with respect to their load status.
Whether the average utilization of the processor is the@pfate metric characterizing the load
of a computer? A uniprocessor computer is typically modelea@ single-server system:. a work-
conserving processor and a buffer of unbounded space. Qmmpasks are first queued in the
buffer if the processor is busy, and the processor handhkls at a first-come-first-serve order.
Hence, it is important to know what feature of the operatiba single-server system can be char-
acterized by the average utilization of the processor. Rtmrpoint of view of the processor, its
idle time reflects the load of the system. From the point ofwid tasks waiting to be processed,
their waiting time reflects the load of the system. For exanpable 1 illustrates the average idle
time of the processor and the average waiting time of tasksuored at different values of average
utilization. In cases (1), (2), and (3), even though valuesverage utilization are similar, but the
operation of a single-server system in different casesldimudifferent because either the average
idle time or the average waiting time is different. In cas®s (4), and (5), even though values of
average utilization are very different, but the operatiba single-server system shares some com-
mon feature in different cases because either the averéméite or the average waiting time is
similar. Hence, comparison of different load status of glsitserver system using average utiliza-
tion is difficult because the average utilization lacks thiitst of revealing the status of operations
of a single-server system reflecting concerns from both tbegssor and the tasks.

Average | Average CPU| Average
Utilization Idle Time | Waiting Time
% (in seconds) | (in seconds)
Q|| 76.199% 0.14383 0.72390
2 75.48% 0.12323 0.49921
3) || 73.401% 0.02732 0.10270
4 51.07% 0.20316 0.10340
(5) || 37.048% 0.12812 0.02207

Table 1:The average idle time of the processor and the average wiitire of tasks measured at different
values of average utilization of a single-server system.

In this paper, we propose a new metric which is more apprpfea characterizing the load status



of a uniprocessor computer than the average utilizatioris méw metric is derived from both the
idle time of the processor of a single-server system and #itng time of tasks in the system. Both
the idle time and waiting time are important physical measueflecting the operation of a single-
server system driven by task arrivals, and they are dirgeligted to the load status of a single-
server system in the way that: the mass of the probabilitiibiigion of idle time becomes more
concentrated in a narrow region close to zero as the loacafytiitem becomes heavier; the mass of
the probability distribution of waiting time of tasks gealty spreads out across a wider region as the
load of the system becomes heavier. Correspondingly, trege idle time and the average waiting
time generally shrinks and increases, respectively, ab#teof the system becomes heavier. This
new load metric is defined as the ratio of the average waitng to the average idle time. The
value of this ratio generally becomes larger as a singleesaystem becomes more heavily loaded.
This new load metric is also purposed to aid comparison démift load status. The validity of
comparison of different load status using this new load imétisubject to the satisfaction of certain
conditions.

The effectiveness of the new load metric on characteridiggldéad status of the system needs to
be examined. Stochastic expressions are commonly usegfssing the typical behaviors of the
operation of a single-server system. Since the new loadaengstill defined on the average values
of physical observations, and many stochastic features @néire probability distribution of the
values of a physical observation can not be captured by thage value of this physical observa-
tion. Thus, a method of representing the status of operafiensingle-server system is needed for
examining the effectiveness of the new load metric, whictulthbe able to reveal more stochastic
features of the operation of the system. The entropy deffrnaed the probability distribution of a
physical observation can do for this purpose, because thepgrderived from a probabilistic distri-
bution reflect the difference between the distributionlitsed a uniform distribution. In general, the
more the mass of a probability distribution is concentratea narrow region, the smaller the value
of the entropy derived from the probabilistic distributisn1, 4]. Thus, the entropy expression of
the operation of a single-server system can be defined aatibeof the entropy of waiting time to
the entropy of idle time, and the value of this ratio gengraécomes larger as the load status of a
single-server system becomes more heavier.

When a physical measure is abstracted into a random varkbliee set of possible values &f is
denoted ast’. The probability distribution ofX can be expressed with a probability mass function
px () wherez € X. The entropy ofX can be used to characterize the entire distributioX @ind

is defined as [3]

H(X) = pr[logp;(x)}

— 3 pxla)log (1)

TEX X(:C) '

The entropy of a random variable can be interpreted as tlighgnumber of bits) of the shortest
description of the probability distribution of this randamriable [3].

Our main results on characterizing the load status of aeisgtver system are as follows. First,
the load status of a single-server system can be approxdntgte new load metric which is the
ratio of the average waiting time of tasks to the averagetiaie of the processor. The effectiveness
of the new load metric has been demonstrated by comparingatbes of the new load metric to
the entropy expression of the status of operation of a sisgjeer system under different types of
task arrivals. Second, the necessary conditions for theityabf comparison of different load status
using the new load metric is demonstrated. Third, a MontdeCaethod is proposed to examine the



satisfaction of the necessary conditions for valid congmariof different load status using the new
load metric. Fourth, load-balancing mechanisms can beloj@»@ based on the new load metric,
and the new load metric can be further potentially used irsttanting cluster-oriented load metrics
for balancing load across clusters.

The rest of this paper is organized as follows. The previookwelated to our work is described
in Section 2. The new load metric and its efficiency of repnéeg the load status are described
in Section 3. A demonstration of balancing load adoptingrtee load metric as a criterion for
assigning jobs to receive actual service in a system idridltesd in Section 4. The new load metric
is discussed in Section 5, and our work is summarized in @e6ti

2 Related Work

The load information of a computer has vast applicationsdimiasion control or scheduling of
computing tasks, especially in environments consistinigedérogeneous computers.

Feiet al. [6] studied the method of selecting the best server from stetlbased on the criteria of
shortest response time. In their work, the response timewirgy requests is the time duration
between the moment sending a request to a server and the mi@oeining the complete response
to the request. The response time of serving a request toosithe time the request waits in the
buffer of a server. As discussed in our work, the waiting tadae does not act well as a sign of the
load status of a server. Moreover, selection of servergudimamic response time tends to result
in unbalanced loads across a cluster. Godstesl. [7] studied the technique of balancing load
across heterogeneous servers organized by a structurstobDied Hash Tables (DHTS). In their
work, the full service capacity of a server is used for distting requests to servers. Assignment
of tasks based on full computing capacities of servers méywark well in situations when the
specifications of tasks are very similar; otherwise, thedibalancing technique does not see to
work well in general. The load metric proposed in our work baradopted in their work for their
load-balancing technique to function well under genersl &pecifications.

Stochastic representation of features of a system has bigehywsed in performance analysis of
systems, and the entropy is among the methods of repregahtnstochastic features. Balafi

al. [15] has made use of the entropy method to characterize thegels of stochastic features of
task arrivals to a single-server system when the task &rg@ through the system. It has been
shown that the stochastic features of a number of types kfaa#/als can be enriched by going
through the system under different types of service pdicie

Majorization and stochastic ordering are theoreticalgdor comparing performance of systems
under different conditions. When a system is viewed as atfiom@reserving a particular relation,
the output from the system is comparable if the correspgndiput to the systems is assumed
to satisfy the particular relation. The methods of majdriraand stochastic ordering serve for
establishing relations between different input and beiwtbe corresponding output.

The methods of majorization and stochastic ordering haes peesented in a number of good
sources: Hardgt al. [8], Marshall et al. [13], Bhatiaet al. [1], etc. A key technique for exam-
ining the satisfaction of majorization or stochastic onaigibetween two physical measures is the
Schur-convexity [13]. When two physical measures satigfgiaion of majorization or stochastic
ordering, the functional results of the two physical measurave the same relation if the function
is Schur-convex. Specifically, Moralesal. [14] showed that the respective entropy of two physical
measures satisfy an inequality if a relation of stochagtileiing is satisfied between the two mea-
sures. Ebrahimiet al. [4] explored the properties of entropy of random variablestheir work, a
very useful inequality relation has been shown betweeropytof two random variables satisfying



a relation of stochastic ordering. Their work builds therfdation of our work on characterizing
the status of operation of a single-server system.

The methods of majorization and stochastic ordering hase la¢en applied in analysis of the per-
formance of systems. Chang [2] discussed the applicati@tochastic ordering in the theoretical
study of balancing load and scheduling in multi-serverayst Coffmaret al. [5] also made use
of the technique of stochastic ordering in comparing thenésis of job assignment in balancing
load across processors in parallel systems. Keiodé [10] studied the comparison of queue length
distribution of queueing systems fed with on-off sourceditierent stochastic specifications.

3 Characterizing the load of a single server system with infiie buffer
space

A work-conserving single-server system is commonly usedrfodeling a uniprocessor computer.
A work-conserving single-server system consists of a buifeunlimited space and a processor
of constant processing rate. Computing tasks are procéssedirst-come-first-serve order, and
they wait in the buffer if the processor is busy. For a serietasks{1,2,---,4,---} (i € N)
arriving at the single-server system, their arrival timel @ervice time requested are denoted as
{an,n € N} and{S,,n € N}, respectively. The departure time of tasks is denotefllasn €
N}. Furthermore, the inter-arrival time between consecutasksn — 1 and n is derived as
A, = an, — an_1, and the inter-departure time between tagks 1 andn is denoted ad),, =

d, — d,—1. The process of inter-arrival time and inter-departurestame denoted aSA4,,,n € N}
and{D,,,n € N}, respectively. The average inter-arrival time and the ayerservice time re-
quested are denoted #§A] and E[S], respectively. F[A] < oo and E[S] < oo0) The load of

a single-server system is traditionally expressed as tbeage utilizationp of this system, and
p = E]fraction of time the processor is bysy

Both the waiting time of tasks and the idle time of the prooesse important metrics for charac-
terizing the operation of a single-server system. The ngitime of taskn, denoted a$V,,, is the
amount of time the task waits in the buffer before it is beimgcessed. Following from standard
gueueing analysis [12, 9V,, can be expressed into:

Wy =dp —an — Sp = (Wn_1 + Sn_1 — Ap)T (2)

where(z)* = max{0,z}. The idle duration of the processor between processing task1 and
n, denoted ag,,, is the interval starting at the moment when task 1 finishes its processing and
ending at the moment when taskegins its processing,, can be expressed into

L= (an —dp-1)" = (A — Sp1 — W) ™" €)

as itis illustrated in Figure 1. The process of waiting tinnel ¢he process of idle time are denoted

as{W,,n € N} and{I,,n € N}, respectively. The average waiting time and the averagetiitie

are denoted a®&[IV] and E[I], respectively. The traditional load metriccan be expressed into
E[1]

1_m.

3.1 A New Metric for Characterizing Load Status

We claim that the rati(%—vﬁ with respect to a sequence of tasks is more appropriate leaverage
utilization for characterizing the load of a single-serggstem driven by this sequence of tasks.
The new load metric is still a first-moment approximation e fictual status of the operation of
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Figure 1:lllustration of The Idle Time.

a single-server system, and it can not fully characterieestbchastic features of the two physical
observations, idle time and waiting time, that directhyated to the operation of the system. In order
to demonstrate the effectiveness of the new load metrig riecessary to find a way to characterize
more of the stochastic features of the two important obsens Hence, the entropy method is
under consideration for expressing the probability distibn of a physical observation. When it is
to characterize the stochastic features of a sequence efiationsX = (X1, - - -, X,,), the average
entropy (also called entropy rate) is used to express thie erictor X, denoted agl R(X' ), which
represents the average number of bits used in expressimgli@idual random variable iX. The
average entropy ok is defined based on the joint entropyﬁf denoted a$/ (X4, -+, X, ), and
Hppr(X) is expressed into

Hpp(X) - M )

The joint entropy of X1, - - -, X,,) is expressed into
H(X1>"'>Xn) =
- Z p(ilfl,"',l'n)'logp(l'l,"',l'n) (5)

(z1,+52n)

wherep(z1, - - -, z,,) is the joint probability mass distribution function (pmf) X4, ---, X,,), and
(z1,---,zy) € R™ are the arguments of the joint pmf.
Whenl = (I,---,I,) andW = (W,---,W,,) are used for characterizing the operation of

a single-server system driven by a sequence tdsk arrivals, the ratidL;R(([})) is defined as a
ER
reference index of the status of the operation of a singleeseystem.

3.2 The Effectiveness of the New Load Metric

The effectiveness of the new load metric on characteriziegdad status of a system can be evalu-
ated by examining the relation between the new load m%ﬁ% and the reference inde%ff*—((wf))

ER
under various types of task arrivals.

3.2.1 Poisson Task Arrivals

When both the service time of tasks and the inter-arrivaétimtween consecutive tasks follows
exponential distributions, the process of task arrivalsn®a Poisson process. The probability
mass function (pmf) of an exponential distribution is dedoasp(z) = X - e~ (A > 0) with a
mean of%. When the average inter-arrival time and average servige &f tasks are denoted as
E[A] andE[S], respectively, the corresponding average utilizationgihgle-server system %%.
Moreover, it is usually assumed tha{S| < E[A] for the stable operation of the system. Setting
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Figure 2:The effectiveness of the new load metric in characteridiregdperation of a single-server system
under different patterns of task arrivals, as compareddceffectiveness of the traditional load metric—the
average utilization.

different mean values for the distributions of inter-aatitime and service time results in different
values of utilization. When the mean inter-arrival time & ® bel.0 and the mean service time
ranges betweefl.1,1.0], the relation between the new load metﬂ%} and the reference index

Honl) is shown in Figure 2 (a). The rau%m increases with larger values of the new load

metric, which corresponds to higher load.

3.2.2 Task Arrivals with Highly Variable Service Time

In order to generate task arrival patterns of highly vagadtrvice time requested by tasks than
the service time in Poisson arrivals, the service time dftas made to follow Weibull distribu-
tions [16], and the inter-arrival time between consecutagks still follows exponential distribu-
tions. The probability mass function of a Weibull distrilout is denoted as

p(z) = 9(3)(b s (a>0,b>0)
with a being the scale parameter ahdbeing the shape parameter. The Weibull distribution is a
versatile distribution that can take on the charactesstioother types of distributions, based on the
value of the shape parametewhich controls the decay rate of the tail of a Weibull digitibn. For
example, a Weibull distribution df = 1 mimics an exponential distribution; a Weibull distributio

of 0 < b < 1 has a longer tail than the distribution of an exponentiatrithstion; a Weibull
distribution ofb > 1 has a shorter tail than the distribution of an exponentisirithution. A long-
tailed distribution has a larger variance than a shorédadistribution. For generating task arrival
patterns of different variances, a Weibull distributiorttwéh = 1.0 is used for the distribution of
inter-arrival time of tasks and Weibull distributions with< b < 2.0 are used for the distribution
of service time of tasks. Under task arrivals of highly vlalgaservice time, the behaviors of the
entropy rate of the idle time and the entropy rate of the wgitime are shown in Figure 2 (b). It
can be seen that the new load metric can still perform a gdodfdistinguishing different status
of the operation of a single-server system.



3.2.3 Task Arrivals with Dependent Service Time

Task arrivals with dependent service time can be introdwaeen rigid autocorrelation structures
are used for generating the service time requested by tAsélew-delay autocorrelation structure
on the amount of aggregated service time formed at incrga#ime scales forms a long-range
dependence structure on task arrivale, the variance of the amount of aggregated service time
requested by tasks do not decay quickly as the length of e $icale increases [11]. A single-
server system fed with task arrivals with dependent semvige is usually with a highly dynamic
load compared to the load when the system is fed with taskadsnivith independent service time.
The process of fractional Gaussian noise (fGn) is an apprtmamodel a physical observation with

a long-range dependence structure. A fGn process is a @aysicess with its autocorrelation
function represented as (in [11])

p(k) = k% (k — o0)

wherek is the lag of the autocorrelation arfimeasures the degree of the dependence structure
exhibited in a physical process. Specifically, the faet 8 < 1 indicates the existence of a long-
range dependence. Under task arrivals with their service kieing modeled as fGn series and their
inter-arrival time following exponential distributionthe behaviors of the entropy rate of the idle
time and the entropy rate of the waiting time are shown in f&dli(c). The dispersed region at
the lower-left corner of Figure 2 (c) also demonstrates iméte¢d ability of the new load metric

in characterizing the operation of a single-server systdranatask arrivals are with dependence,
because the dispersed region states that different stitiig operation of the system results in the
same or very close values of the new load metric.

3.3 Discussion

Seen from Figure 2, even though the new load metric has thigyafidistinguishing different status
of the operation of a single-server system, the ability efribw load metric is still limited. The new
load metric can not well distinguish different load statusew task arrivals are with dependence,
and this is especially true when the system is lightly loa@eftl Figure 2 (c)). The possible cause to
this fact is that the first-moment approximation to idle tioa not well capture the rich stochastic
features of the distribution of idle time when the distribatspans a wide range. Furthermore, the
new load metric is not appropriate for charactering the lmader extremely regulated task arrivals,
i.e. both the service time of tasks and the inter-arrival timevieeh consecutive tasks are constant.
When the inter-arrival time and the service time of tasksdmeoted asd and .S, respectively,
the corresponding average utilization of a single-serystesn is%. The value of the new load
metric isO when A > S. In this case, the average utilization is the only apprapriaad metric.
The relation of entropy rate of idle time and the averagezation under regulated task arrivals
is shown in Figure 3, and the values of entropy rate of waitimg of tasks aré at all values of
average utilization. The entropy rate of idle time decreasethe average utilization increases. This
fact is coincident with the shrinking idle time as utilizatibecoming high. If the entropy rate of the
idle time is denoted a&, then2! denotes the size of the support set of idle time. As the agerag
utilization becomes high, the size of the support set oftidte shrinks, and thus, the entropy rate
of idle time decreases.
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Figure 3:Relation of entropy rate of the idle time and the averagéatibn under regulated task arrivals.

4 Balancing Load across multiple single-server systems ugj the new
load metric

In order to demonstrate the new load metric’'s ability of idptishing different load status, the
new load metric is used for balancing load across multipigleiserver systems with unequal ser-
vice capabilities. A cluster di single-server systems with unequal service abilities éxlus this
demonstration. Arrivals of computing tasks are from a sireaixed from multiple arrival patterns.
The inter-arrival time follows a distribution mixed &fdifferent exponential distributions, and the
service time of jobs follows a distribution mixed from exgorial, Weibull, and fGn distributions.
The 5 hosts are set purposely with different initial load statysphtting various-length backlogs
of pending jobs in different hosts before a load-balanciregimanism starts to function. A load-
balancing mechanism aims to balancing the load metric satueasured among ttiehosts, and

it adopts a simple strategy of assigning a newly arrived ¢oa host with the current lightest load,
i.ewith highest availability. Two different load metrics arsad in this demonstration: the new load
metric and the average utilization. A load metric is updatdebn a job finishes processing in a
host in order to reflect the dynamic changes of load in a hdst.effectiveness of a load-balancing
mechanism adopting a particular load metric is evaluatedidsgrving the fairness on average idle
time across different host, as well as the fairness on aeenagfing time across the hosts. The ef-
fectiveness of the two load-balancing mechanisms adoghtimgew load metric and the utilization,
respectively, are illustrated in Figure 4.

For the load-balancing mechanism using the new load metcavailability of a host is defined
ase!~W) whereI and W are the average idle time and the average waiting time, ctigely.
This expression avoids the computational problems whéeseitor W is zero. The load-balancing
mechanism assigns a newly arrived job to the host with theentihighest value of availability. A
highly available host has its value of =) prominently different from others (ref. Figure 4 (a)-
(3)). Aided by the metric of availability, differences angpaverage idle time and among average
waiting time, respectively, are made small over time (réjuFe 4 (a)-(1) and (a)-(2)).

For the load-balancing mechanism using the average titilizathe most available host is the one



with the current smallest value of average utilization. Tded-balancing mechanism assigns a
newly arrived job to the host with the current smallest valtiaverage utilization. Since the average
utilization only focuses on the business of the processeiffjta host with a high average utilization
will not be able to receive new jobs even if its backlog of gagdobs is not long. Therefore, a
large amount of new jobs can be cumulated at those hosts \thes average utilization over time.
The load in different hosts can oscillate largely, and @poadingly, it is not good to reduce the
differences among average idle time and among waiting trefe Figure 4 column (b)).

This demonstration only shows the potentials of applying lew load metric in balancing load
across multiple hosts with different service capabilitigore in-depth work needs to be performed
on the subject of balancing load. Moreover, the metric oflaldity defined based on the new
load metricj.e.c~") also offers an opportunity to characterize the overalilabiity of a cluster

of hosts. If the operation of each host is assumed indepétiaen other hosts, then the overall
availability of hosts in a cluster can be expressed as a sumdvidual availability metric. Aided
by the cluster-oriented availability metric, inter-cleistoad-balancing can be studied.

5 Discussion

Two metrics are considered for characterizing the loadistaf a single-server system: the ratio
E [W]} and the ratloHERi((W)) As we know, the entropy expressions of physical obsematto the
operation of a single-server system reveal more stochfastiares of the probabilistic distributions
of the physical observations.e. the entropy expression of a physical observatieg. (the idle
time) reveals the degree of uncertainty of the probahislidistribution of the physical observation.
In contrast, the average value of a physical observatios doereveal many stochastic features of
the probability distribution of the observation. In thisatimstance, it is necessary to note that the

ratio [[ }] is still a good load metric for two reasons: 1) the ra@%l is easier to evaluate than
the ratio ILER((I) ; 2) in many cases, the ratl%— has a similar ability as the rati ’i;;f( )) on
distinguishing two different load status. The #act of begimgple to be evaluated makes the ratio

bjE[HT/]} a good candidate load metric in realistic applications.

6 Conclusion

We proposed a new load metric for approximating the statugpefation of a single-server system,
in order to remedy the incomplete representation of thestaitoperation when using the traditional
load metric—the average utilization. This new load metiexpressed as the ratio of the average
waiting time of tasks to the average idle time of the processa single-server system. Both the
idle time and the waiting time reflect different aspects &f litad of a single-server system. Since
this new load metric is still a first-moment approximationthe status of operation of a single-
server system, entropy representations of the idle timep&tite waiting time are used to examine
the effectiveness of the new load metric on representindot status of the system. The ability
of the new load metric in characterizing the load status efrafions of a single-server system has
been demonstrated under different job arrival patterns.

This new load metric aims at gaining the ability of compatritifierent load status. The validity of
comparison of different load status using this new load imétisubject to the satisfaction of certain
conditions. These conditions are that relations of std@hasdering need to be satisfied between
two processes of the idle time and between the two procegsie avaiting time, respectively,
derived under two different load status. If these cond#ican not be satisfied, the difference on



load status suggested by the new load metric can only beetreat a first-moment approximation
to the actual difference between the status of operatiotisedivo systems.

The difference on the abilities between the new load metritthe traditional load metric—average
utilization—is also compared. The comparison is condutheaugh comparing their effectiveness
on serving as criteria for job assignments, in order to lmddoad across multiple single-server
systems in a cluster. Preliminary results showed that thd-lmlancing mechanism adopting the
new load metric could provide a better fairness among aesg time and among average waiting
time among the multiple systems, as compared to a load-tiatarsystem adopting the average
utilization.
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Figure 4:The history of changes on average idle time, average wditimgwhen different metrics are used
for balancing load. There afecomputing hosts wittdunequal service abilities.



