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Abstract

The load of a computer is an important metric and is useful in many applications, such as balancing
load across heterogeneous computers. In this paper, a new metric for characterizing the load of a
uniprocessor computer is studied. This metric is defined as aratio of the average waiting time expe-
rienced by computing jobs to the average idle time of the processor. The definition of the new load
metric is based on two important observations: 1) the average idle time between serving consecutive
computing tasks shrinks as the load becomes heavier; 2) the average waiting time experienced by
computing jobs increases as the load becomes heavier.
The new load metric aims to being able to compare different load status of a single-server system—
the typical abstraction of a uniprocessor computer. The validity of comparing two different load
status using the new load metric is subject to the satisfaction of certain conditions. These conditions
are that relations of stochastic ordering need to be satisfied between the two processes of physical
observations under different load status,e.g. the process of idle time and the processes of waiting
time. When these conditions are not fully satisfied, the new load metric only serves as the first-
moment approximation to the status of operations of a single-server system.
Numerical analysis on the effectiveness of the new load metric has been conducted by simulating
operations of a single-server system under different typesof job arrivals, the new load metric has
been demonstrated to have the ability of characterizing thestatus of operations of the system, and
the limitations on its ability have also been demonstrated.The ability of the new load metric in
characterizing different load status is also compared to the ability of the traditional load metric—
the average utilization, by comparing their effectivenesson serving as job assignment criteria for
balancing load across multiple uni-processor systems withdifferent service capabilities. The pre-
liminary results suggest that the new load metric serves balancing the load more evenly across
multiple systems than the average utilization.
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1 Introduction

The computational load of a computer is an important metric for characterizing the operational
status of the computer. The computational load of a computerwithin a time period is typically
characterized by the average utilization of the processor (CPU) during this time period,i.e. the
ratio of the amount of time spent in processing computing tasks (jobs) within this time period to
the duration of the period. The load of a computer closely relates to other observable performance
metrics. For instance, when the load of a computer is high, the average waiting time of computing
tasks drastically increases [9]. In general, a heavily loaded computer is vulnerable to sudden external
changes because there is no sufficient amount of available resources in ready to sudden changes. The
computational load of a computer has vast applications in admission control and scheduling of tasks,
especially in environments consisting of heterogeneous computers. For example, the computational
load can be used in balancing load across computers of non-uniform service capabilities in order to
prevent individual computers from being more heavily loaded than others. When computers are with
different capabilities, the same amount of task assignmentmay result in different load. Therefore,
the load status is useful for assigning computing tasks to computers with respect to their load status.
Whether the average utilization of the processor is the appropriate metric characterizing the load
of a computer? A uniprocessor computer is typically modeledas a single-server system: a work-
conserving processor and a buffer of unbounded space. Computing tasks are first queued in the
buffer if the processor is busy, and the processor handles tasks at a first-come-first-serve order.
Hence, it is important to know what feature of the operation of a single-server system can be char-
acterized by the average utilization of the processor. Fromthe point of view of the processor, its
idle time reflects the load of the system. From the point of view of tasks waiting to be processed,
their waiting time reflects the load of the system. For example, Table 1 illustrates the average idle
time of the processor and the average waiting time of tasks measured at different values of average
utilization. In cases (1), (2), and (3), even though values of average utilization are similar, but the
operation of a single-server system in different cases should be different because either the average
idle time or the average waiting time is different. In cases (3), (4), and (5), even though values of
average utilization are very different, but the operation of a single-server system shares some com-
mon feature in different cases because either the average idle time or the average waiting time is
similar. Hence, comparison of different load status of a single-server system using average utiliza-
tion is difficult because the average utilization lacks the ability of revealing the status of operations
of a single-server system reflecting concerns from both the processor and the tasks.

Average Average CPU Average
Utilization Idle Time Waiting Time

% (in seconds) (in seconds)

(1) 76.199% 0.14383 0.72390
(2) 75.48% 0.12323 0.49921
(3) 73.401% 0.02732 0.10270
(4) 51.07% 0.20316 0.10340
(5) 37.048% 0.12812 0.02207

Table 1:The average idle time of the processor and the average waiting time of tasks measured at different
values of average utilization of a single-server system.

In this paper, we propose a new metric which is more appropriate for characterizing the load status
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of a uniprocessor computer than the average utilization. This new metric is derived from both the
idle time of the processor of a single-server system and the waiting time of tasks in the system. Both
the idle time and waiting time are important physical measures reflecting the operation of a single-
server system driven by task arrivals, and they are directlyrelated to the load status of a single-
server system in the way that: the mass of the probability distribution of idle time becomes more
concentrated in a narrow region close to zero as the load of the system becomes heavier; the mass of
the probability distribution of waiting time of tasks generally spreads out across a wider region as the
load of the system becomes heavier. Correspondingly, the average idle time and the average waiting
time generally shrinks and increases, respectively, as theload of the system becomes heavier. This
new load metric is defined as the ratio of the average waiting time to the average idle time. The
value of this ratio generally becomes larger as a single-server system becomes more heavily loaded.
This new load metric is also purposed to aid comparison of different load status. The validity of
comparison of different load status using this new load metric is subject to the satisfaction of certain
conditions.
The effectiveness of the new load metric on characterizing the load status of the system needs to
be examined. Stochastic expressions are commonly used for expressing the typical behaviors of the
operation of a single-server system. Since the new load metric is still defined on the average values
of physical observations, and many stochastic features of an entire probability distribution of the
values of a physical observation can not be captured by the average value of this physical observa-
tion. Thus, a method of representing the status of operationof a single-server system is needed for
examining the effectiveness of the new load metric, which should be able to reveal more stochastic
features of the operation of the system. The entropy derivedfrom the probability distribution of a
physical observation can do for this purpose, because the entropy derived from a probabilistic distri-
bution reflect the difference between the distribution itself and a uniform distribution. In general, the
more the mass of a probability distribution is concentratedin a narrow region, the smaller the value
of the entropy derived from the probabilistic distributionis [1, 4]. Thus, the entropy expression of
the operation of a single-server system can be defined as the ratio of the entropy of waiting time to
the entropy of idle time, and the value of this ratio generally becomes larger as the load status of a
single-server system becomes more heavier.
When a physical measure is abstracted into a random variableX, the set of possible values ofX is
denoted asX . The probability distribution ofX can be expressed with a probability mass function
pX(x) wherex ∈ X . The entropy ofX can be used to characterize the entire distribution ofX and
is defined as [3]

H(X) = EpX

[

log
1

pX(x)

]

=
∑

x∈X

pX(x) log
1

pX(x)
. (1)

The entropy of a random variable can be interpreted as the length (number of bits) of the shortest
description of the probability distribution of this randomvariable [3].
Our main results on characterizing the load status of a single-server system are as follows. First,
the load status of a single-server system can be approximated by a new load metric which is the
ratio of the average waiting time of tasks to the average idletime of the processor. The effectiveness
of the new load metric has been demonstrated by comparing thevalues of the new load metric to
the entropy expression of the status of operation of a single-server system under different types of
task arrivals. Second, the necessary conditions for the validity of comparison of different load status
using the new load metric is demonstrated. Third, a Monte-Carlo method is proposed to examine the
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satisfaction of the necessary conditions for valid comparison of different load status using the new
load metric. Fourth, load-balancing mechanisms can be developed based on the new load metric,
and the new load metric can be further potentially used in constructing cluster-oriented load metrics
for balancing load across clusters.
The rest of this paper is organized as follows. The previous work related to our work is described
in Section 2. The new load metric and its efficiency of representing the load status are described
in Section 3. A demonstration of balancing load adopting thenew load metric as a criterion for
assigning jobs to receive actual service in a system is illustrated in Section 4. The new load metric
is discussed in Section 5, and our work is summarized in Section 6.

2 Related Work

The load information of a computer has vast applications in admission control or scheduling of
computing tasks, especially in environments consisting ofheterogeneous computers.
Fei et al. [6] studied the method of selecting the best server from a cluster based on the criteria of
shortest response time. In their work, the response time of serving requests is the time duration
between the moment sending a request to a server and the moment receiving the complete response
to the request. The response time of serving a request consists of the time the request waits in the
buffer of a server. As discussed in our work, the waiting timealone does not act well as a sign of the
load status of a server. Moreover, selection of servers using dynamic response time tends to result
in unbalanced loads across a cluster. Godfreyet al. [7] studied the technique of balancing load
across heterogeneous servers organized by a structure of Distributed Hash Tables (DHTs). In their
work, the full service capacity of a server is used for distributing requests to servers. Assignment
of tasks based on full computing capacities of servers may only work well in situations when the
specifications of tasks are very similar; otherwise, this load-balancing technique does not see to
work well in general. The load metric proposed in our work canbe adopted in their work for their
load-balancing technique to function well under general task specifications.
Stochastic representation of features of a system has been widely used in performance analysis of
systems, and the entropy is among the methods of representing the stochastic features. Balajiet
al. [15] has made use of the entropy method to characterize the changes of stochastic features of
task arrivals to a single-server system when the task arrivals go through the system. It has been
shown that the stochastic features of a number of types of task arrivals can be enriched by going
through the system under different types of service policies.
Majorization and stochastic ordering are theoretical tools for comparing performance of systems
under different conditions. When a system is viewed as a function preserving a particular relation,
the output from the system is comparable if the corresponding input to the systems is assumed
to satisfy the particular relation. The methods of majorization and stochastic ordering serve for
establishing relations between different input and between the corresponding output.
The methods of majorization and stochastic ordering have been presented in a number of good
sources: Hardyet al. [8], Marshall et al. [13], Bhatiaet al. [1], etc. A key technique for exam-
ining the satisfaction of majorization or stochastic ordering between two physical measures is the
Schur-convexity [13]. When two physical measures satisfy arelation of majorization or stochastic
ordering, the functional results of the two physical measures have the same relation if the function
is Schur-convex. Specifically, Moraleset al. [14] showed that the respective entropy of two physical
measures satisfy an inequality if a relation of stochastic ordering is satisfied between the two mea-
sures. Ebrahimiet al. [4] explored the properties of entropy of random variables.In their work, a
very useful inequality relation has been shown between entropy of two random variables satisfying
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a relation of stochastic ordering. Their work builds the foundation of our work on characterizing
the status of operation of a single-server system.
The methods of majorization and stochastic ordering have also been applied in analysis of the per-
formance of systems. Chang [2] discussed the application ofstochastic ordering in the theoretical
study of balancing load and scheduling in multi-server systems. Coffmanet al. [5] also made use
of the technique of stochastic ordering in comparing the fairness of job assignment in balancing
load across processors in parallel systems. Kooleet al. [10] studied the comparison of queue length
distribution of queueing systems fed with on-off sources ofdifferent stochastic specifications.

3 Characterizing the load of a single server system with infinite buffer
space

A work-conserving single-server system is commonly used for modeling a uniprocessor computer.
A work-conserving single-server system consists of a buffer of unlimited space and a processor
of constant processing rate. Computing tasks are processedin a first-come-first-serve order, and
they wait in the buffer if the processor is busy. For a series of tasks{1, 2, · · · , i, · · ·} (i ∈ N)
arriving at the single-server system, their arrival time and service time requested are denoted as
{an, n ∈ N} and{Sn, n ∈ N}, respectively. The departure time of tasks is denoted as{dn, n ∈
N}. Furthermore, the inter-arrival time between consecutivetasksn − 1 and n is derived as
An = an − an−1, and the inter-departure time between tasksn − 1 andn is denoted asDn =
dn − dn−1. The process of inter-arrival time and inter-departure time are denoted as{An, n ∈ N}
and{Dn, n ∈ N}, respectively. The average inter-arrival time and the average service time re-
quested are denoted asE[A] andE[S], respectively. (E[A] < ∞ andE[S] < ∞) The load of
a single-server system is traditionally expressed as the average utilizationρ of this system, and
ρ = E[fraction of time the processor is busy].
Both the waiting time of tasks and the idle time of the processor are important metrics for charac-
terizing the operation of a single-server system. The waiting time of taskn, denoted asWn, is the
amount of time the task waits in the buffer before it is being processed. Following from standard
queueing analysis [12, 9],Wn can be expressed into:

Wn = dn − an − Sn = (Wn−1 + Sn−1 − An)+ (2)

where(x)+ = max{0, x}. The idle duration of the processor between processing tasks n − 1 and
n, denoted asIn, is the interval starting at the moment when taskn − 1 finishes its processing and
ending at the moment when taskn begins its processing.In can be expressed into

In = (an − dn−1)
+ = (An − Sn−1 − Wn−1)

+ (3)

as it is illustrated in Figure 1. The process of waiting time and the process of idle time are denoted
as{Wn, n ∈ N} and{In, n ∈ N}, respectively. The average waiting time and the average idle time
are denoted asE[W ] andE[I], respectively. The traditional load metricρ can be expressed into
1 − E[I]

E[A] .

3.1 A New Metric for Characterizing Load Status

We claim that the ratioE[W ]
E[I] with respect to a sequence of tasks is more appropriate than the average

utilization for characterizing the load of a single-serversystem driven by this sequence of tasks.
The new load metric is still a first-moment approximation to the actual status of the operation of
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Figure 1:Illustration of The Idle Time.

a single-server system, and it can not fully characterize the stochastic features of the two physical
observations, idle time and waiting time, that directly related to the operation of the system. In order
to demonstrate the effectiveness of the new load metric, it is necessary to find a way to characterize
more of the stochastic features of the two important observations. Hence, the entropy method is
under consideration for expressing the probability distribution of a physical observation. When it is
to characterize the stochastic features of a sequence of observations~X = (X1, · · · ,Xn), the average
entropy (also called entropy rate) is used to express the entire vector ~X , denoted asHER( ~X), which
represents the average number of bits used in expressing an individual random variable in~X. The
average entropy of~X is defined based on the joint entropy of~X, denoted asH(X1, · · · ,Xn), and
HER( ~X) is expressed into

HER( ~X) =
H(X1, · · · ,Xn)

n
. (4)

The joint entropy of(X1, · · · ,Xn) is expressed into

H(X1, · · · ,Xn) =

−
∑

(x1,···,xn)

p(x1, · · · , xn) · log p(x1, · · · , xn) (5)

wherep(x1, · · · , xn) is the joint probability mass distribution function (pmf) of (X1, · · · ,Xn), and
(x1, · · · , xn) ∈ R

n are the arguments of the joint pmf.
When ~I = (I2, · · · , In) and ~W = (W2, · · · ,Wn) are used for characterizing the operation of

a single-server system driven by a sequence ofn task arrivals, the ratioHER( ~W )

HER(~I)
is defined as a

reference index of the status of the operation of a single-server system.

3.2 The Effectiveness of the New Load Metric

The effectiveness of the new load metric on characterizing the load status of a system can be evalu-

ated by examining the relation between the new load metricE[W ]
E[I] and the reference indexHER( ~W )

HER(~I)

under various types of task arrivals.

3.2.1 Poisson Task Arrivals

When both the service time of tasks and the inter-arrival time between consecutive tasks follows
exponential distributions, the process of task arrivals forms a Poisson process. The probability
mass function (pmf) of an exponential distribution is denoted asp(x) = λ · e−λ·x (λ > 0) with a
mean of 1

λ
. When the average inter-arrival time and average service time of tasks are denoted as

E[A] andE[S], respectively, the corresponding average utilization of asingle-server system isE[S]
E[A] .

Moreover, it is usually assumed thatE[S] ≤ E[A] for the stable operation of the system. Setting
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Figure 2:The effectiveness of the new load metric in characterizing the operation of a single-server system
under different patterns of task arrivals, as compared to the effectiveness of the traditional load metric—the
average utilization.

different mean values for the distributions of inter-arrival time and service time results in different
values of utilization. When the mean inter-arrival time is set to be1.0 and the mean service time
ranges between[0.1, 1.0], the relation between the new load metricE[W ]

E[I] and the reference index
HER( ~W )

HER(~I)
is shown in Figure 2 (a). The ratioHER( ~W )

HER(~I)
increases with larger values of the new load

metric, which corresponds to higher load.

3.2.2 Task Arrivals with Highly Variable Service Time

In order to generate task arrival patterns of highly variable service time requested by tasks than
the service time in Poisson arrivals, the service time of tasks is made to follow Weibull distribu-
tions [16], and the inter-arrival time between consecutivetasks still follows exponential distribu-
tions. The probability mass function of a Weibull distribution is denoted as

p(x) =
b

a

(x

a

)(b−1)
e−(x

a
)b

(a > 0, b > 0)

with a being the scale parameter andb being the shape parameter. The Weibull distribution is a
versatile distribution that can take on the characteristics of other types of distributions, based on the
value of the shape parameterb which controls the decay rate of the tail of a Weibull distribution. For
example, a Weibull distribution ofb = 1 mimics an exponential distribution; a Weibull distribution
of 0 < b < 1 has a longer tail than the distribution of an exponential distribution; a Weibull
distribution ofb > 1 has a shorter tail than the distribution of an exponential distribution. A long-
tailed distribution has a larger variance than a short-tailed distribution. For generating task arrival
patterns of different variances, a Weibull distribution with b = 1.0 is used for the distribution of
inter-arrival time of tasks and Weibull distributions with0 < b ≤ 2.0 are used for the distribution
of service time of tasks. Under task arrivals of highly variable service time, the behaviors of the
entropy rate of the idle time and the entropy rate of the waiting time are shown in Figure 2 (b). It
can be seen that the new load metric can still perform a good job of distinguishing different status
of the operation of a single-server system.
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3.2.3 Task Arrivals with Dependent Service Time

Task arrivals with dependent service time can be introducedwhen rigid autocorrelation structures
are used for generating the service time requested by tasks.A slow-delay autocorrelation structure
on the amount of aggregated service time formed at increasing time scales forms a long-range
dependence structure on task arrivals,i.e. the variance of the amount of aggregated service time
requested by tasks do not decay quickly as the length of the time scale increases [11]. A single-
server system fed with task arrivals with dependent servicetime is usually with a highly dynamic
load compared to the load when the system is fed with task arrivals with independent service time.
The process of fractional Gaussian noise (fGn) is an approach to model a physical observation with
a long-range dependence structure. A fGn process is a Gaussian process with its autocorrelation
function represented as (in [11])

ρ(k) → k−β (k → ∞)

wherek is the lag of the autocorrelation andβ measures the degree of the dependence structure
exhibited in a physical process. Specifically, the fact0 < β < 1 indicates the existence of a long-
range dependence. Under task arrivals with their service time being modeled as fGn series and their
inter-arrival time following exponential distributions,the behaviors of the entropy rate of the idle
time and the entropy rate of the waiting time are shown in Figure 2 (c). The dispersed region at
the lower-left corner of Figure 2 (c) also demonstrates the limited ability of the new load metric
in characterizing the operation of a single-server system when task arrivals are with dependence,
because the dispersed region states that different status of the operation of the system results in the
same or very close values of the new load metric.

3.3 Discussion

Seen from Figure 2, even though the new load metric has the ability of distinguishing different status
of the operation of a single-server system, the ability of the new load metric is still limited. The new
load metric can not well distinguish different load status when task arrivals are with dependence,
and this is especially true when the system is lightly loaded(ref. Figure 2 (c)). The possible cause to
this fact is that the first-moment approximation to idle timecan not well capture the rich stochastic
features of the distribution of idle time when the distribution spans a wide range. Furthermore, the
new load metric is not appropriate for charactering the loadunder extremely regulated task arrivals,
i.e. both the service time of tasks and the inter-arrival time between consecutive tasks are constant.
When the inter-arrival time and the service time of tasks aredenoted asA and S, respectively,
the corresponding average utilization of a single-server system is S

A
. The value of the new load

metric is0 whenA ≥ S. In this case, the average utilization is the only appropriate load metric.
The relation of entropy rate of idle time and the average utilization under regulated task arrivals
is shown in Figure 3, and the values of entropy rate of waitingtime of tasks are0 at all values of
average utilization. The entropy rate of idle time decreases as the average utilization increases. This
fact is coincident with the shrinking idle time as utilization becoming high. If the entropy rate of the
idle time is denoted asH, then2H denotes the size of the support set of idle time. As the average
utilization becomes high, the size of the support set of idletime shrinks, and thus, the entropy rate
of idle time decreases.
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Figure 3:Relation of entropy rate of the idle time and the average utilization under regulated task arrivals.

4 Balancing Load across multiple single-server systems using the new
load metric

In order to demonstrate the new load metric’s ability of distinguishing different load status, the
new load metric is used for balancing load across multiple single-server systems with unequal ser-
vice capabilities. A cluster of5 single-server systems with unequal service abilities is used in this
demonstration. Arrivals of computing tasks are from a stream mixed from multiple arrival patterns.
The inter-arrival time follows a distribution mixed of5 different exponential distributions, and the
service time of jobs follows a distribution mixed from exponential, Weibull, and fGn distributions.
The 5 hosts are set purposely with different initial load status by putting various-length backlogs
of pending jobs in different hosts before a load-balancing mechanism starts to function. A load-
balancing mechanism aims to balancing the load metric values measured among the5 hosts, and
it adopts a simple strategy of assigning a newly arrived job to a host with the current lightest load,
i.e.with highest availability. Two different load metrics are used in this demonstration: the new load
metric and the average utilization. A load metric is updatedwhen a job finishes processing in a
host in order to reflect the dynamic changes of load in a host. The effectiveness of a load-balancing
mechanism adopting a particular load metric is evaluated byobserving the fairness on average idle
time across different host, as well as the fairness on average waiting time across the hosts. The ef-
fectiveness of the two load-balancing mechanisms adoptingthe new load metric and the utilization,
respectively, are illustrated in Figure 4.
For the load-balancing mechanism using the new load metric,the availability of a host is defined
as e(Ī−W̄ ) where Ī and W̄ are the average idle time and the average waiting time, respectively.
This expression avoids the computational problems when either Ī or W̄ is zero. The load-balancing
mechanism assigns a newly arrived job to the host with the current highest value of availability. A
highly available host has its value ofe(Ī−W̄ ) prominently different from others (ref. Figure 4 (a)-
(3)). Aided by the metric of availability, differences among average idle time and among average
waiting time, respectively, are made small over time (ref. Figure 4 (a)-(1) and (a)-(2)).
For the load-balancing mechanism using the average utilization, the most available host is the one
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with the current smallest value of average utilization. Theload-balancing mechanism assigns a
newly arrived job to the host with the current smallest valueof average utilization. Since the average
utilization only focuses on the business of the processor itself, a host with a high average utilization
will not be able to receive new jobs even if its backlog of pending jobs is not long. Therefore, a
large amount of new jobs can be cumulated at those hosts with alower average utilization over time.
The load in different hosts can oscillate largely, and correspondingly, it is not good to reduce the
differences among average idle time and among waiting time (ref. Figure 4 column (b)).
This demonstration only shows the potentials of applying the new load metric in balancing load
across multiple hosts with different service capabilities. More in-depth work needs to be performed
on the subject of balancing load. Moreover, the metric of availability defined based on the new
load metric,i.e.e(Ī−W̄ ), also offers an opportunity to characterize the overall availability of a cluster
of hosts. If the operation of each host is assumed independent from other hosts, then the overall
availability of hosts in a cluster can be expressed as a sum ofindividual availability metric. Aided
by the cluster-oriented availability metric, inter-cluster load-balancing can be studied.

5 Discussion

Two metrics are considered for characterizing the load status of a single-server system: the ratio
E[W ]
E[I] and the ratioHER(W )

HER(I) . As we know, the entropy expressions of physical observations to the
operation of a single-server system reveal more stochasticfeatures of the probabilistic distributions
of the physical observations,i.e. the entropy expression of a physical observation (e.g. the idle
time) reveals the degree of uncertainty of the probabilistic distribution of the physical observation.
In contrast, the average value of a physical observation does not reveal many stochastic features of
the probability distribution of the observation. In this circumstance, it is necessary to note that the
ratio E[W ]

E[I] is still a good load metric for two reasons: 1) the ratioE[W ]
E[I] is easier to evaluate than

the ratio HER(W )
HER(I) ; 2) in many cases, the ratioE[W ]

E[I] has a similar ability as the ratioHER(W )
HER(I) on

distinguishing two different load status. The fact of beingsimple to be evaluated makes the ratio
E[W ]
E[I] a good candidate load metric in realistic applications.

6 Conclusion

We proposed a new load metric for approximating the status ofoperation of a single-server system,
in order to remedy the incomplete representation of the status of operation when using the traditional
load metric—the average utilization. This new load metric is expressed as the ratio of the average
waiting time of tasks to the average idle time of the processor in a single-server system. Both the
idle time and the waiting time reflect different aspects of the load of a single-server system. Since
this new load metric is still a first-moment approximation tothe status of operation of a single-
server system, entropy representations of the idle time andof the waiting time are used to examine
the effectiveness of the new load metric on representing theload status of the system. The ability
of the new load metric in characterizing the load status of operations of a single-server system has
been demonstrated under different job arrival patterns.
This new load metric aims at gaining the ability of comparingdifferent load status. The validity of
comparison of different load status using this new load metric is subject to the satisfaction of certain
conditions. These conditions are that relations of stochastic ordering need to be satisfied between
two processes of the idle time and between the two processes of the waiting time, respectively,
derived under two different load status. If these conditions can not be satisfied, the difference on
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load status suggested by the new load metric can only be treated as a first-moment approximation
to the actual difference between the status of operations ofthe two systems.
The difference on the abilities between the new load metric and the traditional load metric—average
utilization—is also compared. The comparison is conductedthrough comparing their effectiveness
on serving as criteria for job assignments, in order to balance load across multiple single-server
systems in a cluster. Preliminary results showed that the load-balancing mechanism adopting the
new load metric could provide a better fairness among average idle time and among average waiting
time among the multiple systems, as compared to a load-balancing system adopting the average
utilization.
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(a) Using the New Load Metric (b) Using the Average Utilization
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(1) Average Idle Time
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(2) Average Waiting Time
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(3) Load Metric

Figure 4:The history of changes on average idle time, average waitingtime when different metrics are used
for balancing load. There are5 computing hosts with unequal service abilities.12


