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Abstract

Waves can be modeled mathematically and simulated using a computer in the forward
direction with respect to time. Knowing various properties of the medium such as the
density and the size, a source of a wave can be propagated through time. Using the existing
forward direction wave simulation, we were able to find and simulate the original wave
with very little information known about the wave itself.



1 Wave Propagation

1.1 What is Wave Propagation?

A wave may be defined as the propagation of disturbance carrying energy. We can model a
wave mathematically by the following equation
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where U is the pressure function of (x,y,t) x,y and ¢ being the position and time respec-
tively. p and c are the density of the medium and speed of the wave in the medium. There
was an existing program that would simulate a wave in the forward direction. The program
took in sets of parameters such as the length of time, the dimension of the space, the density
of the field and the speed with which the wave propagated. The output could either be a 2
dimensional or 3 dimensional animation created by combining a sequence of jpeg images
created in each time instance while the program was running. Each pixel on the screen
represented one unit of dimensional space. The major problem in this simulation was what
to do at the boundaries. The existing program simply reflected the wave when it hit the
boundary.

Figure 1 illustrates how the propagated wave would look like after a certain period of time.
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Figure 1: Initial wave (leff) and wave after 50 time units (right).

1.2 What is Inverse Wave Propagation?

Inverse Wave Propagation is the process of trying to find the original wave that propagated
in a medium while knowing very little information about the pressure the wave created.
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For example : Suppose we record a voice in a normal room for a given time period with
some type of pressure sensor or a microphone. Inverse wave propagation is the method of
finding the properties of the medium in which the sound wave traveled. For our particular
example, the speed of the sound in the medium after calculation should turn out to be close
to the real speed of the sound in air and the density of the medium should be fairly equal to
that of air.

Inverse Wave Propagation would be useful for scientists who are getting wave signals from
space and want to find some properties of the medium in which the wave has traveled. It
also can be used in underground explorations for gas and oil.

1.3 What does Inverse Wave Propagation Mean Mathematically?

Let the Forward Wave Propagation be represented by a function F(parameters) — d where
d is the final output. The parameters are the size, density of the medium, and the speed of
the wave in the medium. Inverse Wave Propagation is the process of finding out the real
wave with very little information about the wave.

To simplify the problem, it was decided that the density of the field would be assumed con-
stant and both the density and size of the field is known. Now, the problem was simplified to
estimate the speed of the wave. The speed field could be represented with a variable called
¢. Using the equation F(¢) — d, we can find ¢ by simply solving the equation F'~* (cf) — C.
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Figure 2: Figurative representation of the Forward (left) and Inverse (right) Wave Propaga-
tion.

Since F(¢) did not have any closed form solution, the function F(¢) was estimated using our
Forward Wave Propagation program. Actually, even if F(¢) had a formula the dimension of
the parameter is too large to solve.

The concept of minimization can be used here. Instead of trying to find the inverse, we can
try to minimize the misfit function. The misfit function may be represented as F(a—cf and
is the difference between the actual pressure changes and the simulated pressure changes.
We tried different methods to obtain the minimum misfit, as discussed below.
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1.3.1 Monte-Carlo Gradient Method

In this process, the parameter ¢ which is the speed of the wave in the medium was first
randomly guessed. The forward wave was simulated, and the two data were compared.
With these two sets of data we could calculate both F(@—J and the gradient vector for c.
Following the direction of the gradient vector, we tried to minimize the misfit function.

The problem with this method was that the gradient vector step size was too small and the
program could not complete the task within a day. Thus it was decided to implement a new
method instead of the Monte-Carlo Gradient method.

1.3.2 Newton’s Tangent Line Method for n dimension

This method is similar to the two-dimensional Newton Tangent Line method which is cov-
ered in Calculus. We first found the tangent vector for the misfit function and moved
towards the direction of the tangent. The advantage of this method over the Monte-Carlo
Gradient method was that this method selected the step size dynamically, a large step size
at first and then small step-sizes when the misfit function was getting smaller. Newton’s
Tangent Line method was better than the Monte-Carlo Gradient method because it could
complete a particular problem in a given time frame. Most of the time, the speed vector
field ¢ of the wave in the medium could be found which would produce the misfit function
within 1% of the true value.

However, both the methods mentioned above are unreliable. This is because the Newton
Tangent Line method and the Monte-Carlo Gradient method only give us a local maximum
or a local minimum. We not only have to minimize the misfit function but also find the
absolute minimum or absolute maximum to get a true value of ¢. For this reason, we
decided to use the Simulated Annealing method, which is described below.

1.3.3 Simulated Annealing Method

Simulated Annealing is a technique in which new solutions to the optimization problem are
picked at random and checked for the least misfit. If the misfit turns out to be smaller than
the smallest misfit we have observed thus far, the new solution is considered to be the best
solution.

The pseudo code for this algorithm is as follows:

For j=1,n4¢, do:

1. For k=1,2 do:

(a) Compute céw

1. Let r be a random number between O and 1
ii. Letp = sign(r — 0.5)T(1 + £)@ =1
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iii. Let &ew = ¢; + p(&nas — gnin)

iv. if @ does not satisfy &"'" <= ¢; <= &"* change it so it does
(b) If G("") < G(?), then ¢ = " otherwise,
i. Let r be a random number between 0 and 1
ii. LetdE = G(c™") — G(¢)
iii. Letp = exp(—dE/T)
iv. if p > r then ¢ = ™"

2. Let T = Toexp(—CV/5)

The input parameters are 1g, C, n;.,. where Tj is the initial temperature, C' is the step size
and 7., 1s the amount of steps you want to apply in the annealing process. For our problem
we selected n;,., to be between 500 and 1500.

The Simulated Annealing algorithm is a heuristic search algorithm that allows non-improving
solutions to be accepted with decreasing probability over time. This method eliminates the
problems caused by the previous methods because there is a chance of avoiding local min-
ima or local maxima. This algorithm was relatively fast compared to the methods described
previously. Figure 3 illustrates how fast this algorithm works.
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Figure 3: n;;., vs Misfit % comparison. Within 100 loops, the error was minimized to less
than 1%.

1.4 Testing of The Program

To implement this program in the real world, we needed some test data with which to verify
its accuracy. The sets of test data taken were from the Forward Wave Propagation program.



14.1 Calculating d

A wave was propagated in a medium. There were sensors put in the program such that it
recorded the pressure changes for some time.

1.4.2 Calculating ¢

The recorded pressures, along with the dimension of the medium and the density vector,
were transmitted to the Inverse Wave Propagation program. The Inverse Wave Propaga-
tion program tried to find the speed vector of the medium using the Simulated Annealing
method.

1.4.3 Calculating F(c)-d

The new speed vector was fed to the Forward Wave Propagation software with the same
sensing configuration. The new pressure changes were acquired. In other words, F(¢) was
estimated. This new data was then subtracted from the old data d and then the error was
computed.

The results were very good. The error turned out to be less than 5% when compared to the
original test data.

1.5 Did Changing the Type of Sensor Have an Effect on the Error?

In reality, we can not have a bar of sensor. We can have multiple sensors, for example
microphones place at different places to record the pressure changes. So, instead of taking
a single bar of sensors, we decided to take a set of point sensors as seen in the Figure 4. This
allowed us the flexibility of making customized sensors. The set of points in the sensor set
could be a line, a single point or a circle or simply four points on each side of the medium.

The initial assumption was that the error would decrease when more point sensors were
used. This turned out to be false. Figure 5 will help in illustrating why this was happening.

1.6 Was the Error Computed a True Error Estimate?

The answer to this question is no. The error depended on the location of the sensor. For
example, consider a scenario of a room where two types of medium fill it up. If the sensor
was placed entirely in the side of the room with medium 1, our program did not guarantee
the error of the other side of the room.

To fix this problem, we decided to place sensors on four sides of the room, instead of only
one side. This reduced the speed error and misfit error can be seen on the Figure 7
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Figure 4: Two types of sensors. The single bar is shown on the left. The set of point sensors
is shown on the right.
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Figure 5: Using more sensors showed more errors because we were averaging errors from
more places.

1.7 Conclusion:
After experimenting with different methods to solve the optimization problem, it was de-
cided that the Simulated Annealing method was the best to use for Inverse Wave Propaga-

tion. One should also position the sensor on four sides to get the best possible estimate of
the speed vector.
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Figure 6: Miscalculation of error. Room with only one medium (/eft) and room with two
types of medium (right). Due to the position of the sensor, the Simulated Annealing method
only came up with one possible speed value instead of two.
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Figure 7: Comparison of the misfit error (left) and the velocity error (right) when using
sensors on 1 side and 4 sides. Even though the misfit error graph may suggest that our ¢
was correct, the velocity error graph suggests that we have large velocity error.



