Stereoscopic Visualization of Medical Data Sets

Thomas E. Hansen and John M. Zelle, Ph.D
Math, Computer Science, and Physics
Wartburg College
Waverly, |1A 50677
thomas.hansen@wartburg.edu
john.zelle@wartburg.edu

Abstract

Recent initiatives in low-cost virtual reality (VR) have made the deployment of classroom
VR applications feasible in virtually any educational setting[8]. This paper reports on our
experience using freely available tools to construct stereoscopic visualizations of medical
datasets such as CT scans and magnetic resonance imaging (MRI). Our initial investigations
have centered on functional magnetic resonance imaging (fMRI) data. We present effective
methods for visualizing this information through interactive and/or stereographic software
implementations using VTK[4, 5], an open source scientific visualization package, FSL[6],

a freely available fMRI analysis program, and Python[3], an open source scripting lan-
guage. These ideas are incorporated into a turn-key application, PyMed3D, that facilitates
the creation of anatomical visualizations suitable for use in the biology classroom.

Introduction

Virtual reality (VR) technologies are becoming increasingly popular in diverse arenas from
scientific data analysis to entertainment. An important facet of this technology is the stere-
ographic display of computer images to produce three-dimensional visual effects. We are
interested in bringing aspects of virtual reality, primarily true 3D visualization, into the
classroom. The possible uses of VR in education are nearly unlimited. With VR, students
can explore otherwise inaccessible environments such as the surface of Mars or visualize
abstractions like molecular models and magnetic fields. From the perspective of computer
science education, VR offers a very attractive arena of application projects for students to
tackle.

Recent initiatives in low-cost VR have made the development of such classroom appli-
cations feasible in virtually any educational setting[8]. Such systems use passive stereo
display techniques with readily available and relatively inexpensive technology to produce
a multi-viewer 3D experience. Although stereoscopic viewing in the classroom is now pos-
sible, there are, at the moment, few educational applications compatible with such a setup.
The goal of our project is to develop educational applications for viewing medical datasets
such as CT scans and MRIs.

Our initial investigations have centered on visualization of functional magnetic resonance
imaging (fMRI) data. FMRI makes possible the mapping of hemodynamic changes in the
human brain during mental activity. These “active region” mappings allow for noninvasive
observations of brain activity, which can be used to gain understanding about the roles of
specific parts of the brain, such as the visual cortex.

Typically, fMRI data is presented by showing 2D images that portray “slices” of the brain
with regions of activity color-coded. The slices can also be “stacked” to construct a 3D
representation. We have extended that idea a step farther to present the 3D model stereo-
scopically for a true 3D viewing effect. Building on free and open software toolkits, we
have produced a software environment for stereoscopic visualization of fMRI, and similar
volume data.

Compared to the traditional 2D image slice presentation of MRI data, we believe the inter-
active, stereographic representation will prove itself more accessible to novice neurobiol-
ogy students and laypeople. With this effective way of viualizing fMRI data, we hope to
provide a valuable teaching aid aimed at the neurobiology classroom.

The rest of this paper outlines our approach. This work may be of interest to those who
either want to make use of the software that we have developed or use similar techniques
to develop their own visualization applications.

Visualizing Medical Data

Form of Data

In order to create a stereoscopic visualization from medical data, the data must be trans-
formed into a 3 dimensional representation. The first step is the aqusition of digitial images
representing “slices” of the portion of the body being studied. MRI equipment uses strong
magnetic fields and pulsed radio waves to record data. Raw MRI data is an array of numbers
representing the relaxation of nuclear spin magnetization, which are ultimately represented
in a series of slice images after the application of mathematical transformations that result
in a gray value being assigned for each pixel of each slice[4]. An example series of slices
is shown in Figure 1.

YU NSO 0000

6600060060000
0000000 06 0

Figure 1: fMRI data: A lowresolution MRI scan aquired as part of a functional MRI scan.
The series of images represent slices through a 3 dimensional volume.

A series of slice images can be easily interpreted by trained radiologists, but it not so easily
digested by novies. If these slices are “stacked” up, they can be considered as a three-
dimensional volume. This stack of images can then be used to produce three-dimensional
respresenations for a more natural visualization.

In the case of fMRIs, an initial high—resolution scan of the brain is followed by a series of
lower resolution scans. These lower resolution scans are then analyzed to produce “active
region” maps within the initial scan. Each of these active region mappings can be treated as
a separate 3D volume that is positioned somewhere inside of the original full brain volume.

3D Visualization Techniques

Two distinct techniques are available for visualizing volume data: surface extraction, and
volume rendering (see Figure 2). The surface extraction approach attempts to model tissue
boundaries within the volume using the polygonal meshes frequently used in computer
graphics. Surface extraction or Contouring is done by seperating an image into distinct
regions based on similar scalar values, an isosurface. By carefully specifying a scalar value
range, contouring can be used to extract specific isosurfaces, for example outlining bones
in a CT dataset.

The classical method for volume rendering involves ray casting. A ray is cast through each
pixel of the display and its path through the volume is traced. A compositing function is
used to “summarize” what the ray encounters as it passes through the volume, and this
function is used to color the pixel. Basic ray casting techniques and algorithms are concep-
tually much simpler, than the algorithms involved in surface extraction. The accuracy and
detail achieved by volume rendering techniques make it favorable for medical purposes,
where physicians need to produce diagnoses based on the visualization[4]. Unfortunately,
the flexibility and detail of ray tracing comes with a hefty drawback when it comes to
rendering speeds.

(a) (b)

Figure 2. Example visualizations. (a) was produced by Surface Extraction. (b) was pro-
duced by Volume Rendering.

There are tradeoffs between these two visualization approaches. Extracting isosurfaces can
be very time consuming, especially when the input data are large. On the other hand, once
the isosurface is extracted, the hard work is done, and the resulting polygonal representation
can be rendered at interactive speeds using common graphics harware.

Volume rendering has no such computational intensive initialization; instead each frame
rendered requires approximately the same computational effort. Unfortunatly, this "per-
frame” rendering results in visualizations that are too slow for interactive presentation on
stock hardware. While hardware acceleration for volume rendering is available, it is both
sparse and very expensive.

Given these observations and our goal of creating interactive stereoscopic visualizations,
we have focused on producing visualizations that utilize surface extraction tecniques, rather
than volume rendering. In experimentation with the two techniques we also discovered that
the polygonal meshes visualize better in stereoscopic environments, which further strength-
ens our bias towards the use of surface extraction.

Using the VTK

Platform/Toolchain Considerations

Figure 3 depicts the tools we are using and the overall structure of our syRydhed3D
The heart of our software platform is Kitware’s open soWfiseialization Toolkitor VTK[4,
5]. As described on the VTK website:

The Visualization ToolKit (VTK) is an open source, freely available software
system for 3D computer graphics, image processing, and visualization used by
thousands of researchers and developers around the world. VTK consists of
a C++ class library, and several interpreted interface layers including Tcl/Tk,
Java, and Python.

The VTK s cross platform, but all of our experiments have been done under Linux (Kubuntu
5.10) using the KDE desktop environment.

/\ pyMed3D A
| O -

Python Other tools

— v
VTK QT Standard

FSL Image etc.
Tools

Figure 3. Software foundation for PyMed3D

The VTK is particularly attractive because of its Python bindings. Python is a very high-
level, object-oriented open source scripting language that is frequently used in scientific
computing contexts. Python is our main development language, and its use as a glue lan-
guage has been integral to the success of this project. For visual presentation, we use
KDE’s native GUI toolkit, QT. A nice set of QT bindings exists for Python (PyQT [2]),
which allows us to build complete QT/VTK applications quickly and easily in Python.

Before using the VTK to produce any specific visualizations, it is important to make sure
that the data is present in a VTK compatible format. The VTK can read various image
formats, such as DICOM, JPEG, PNG, BMP, TIFF as well as other, more specialized
formats[7]. However, not all formats are supported. For example, our initial fMRI Data
Set, acquired from Mark Dow at the University of Oregon, was created using FSL, a library
of image analysis and statistical tools for fMRI, MRI, and DTI brain imaging data[6]. The
image information we needed was stored in NIfTI format[1]. NIfTl is an extension of the

4

Analyze format specifically designed for functional MRI data. As the VTK has no class
for reading NIfTI files, another way of getting the data into the VTK is needed.

Although extending the VTK with an appropriate NIfTI-reader would have be an interest-
ing project, we avoided having to do this by using another tool. The FSL awutils package
includes a utilityniftiascii that converts NIfTI files into a simple ASCII format.
The resulting ASCII files are very similar to the common Portable Pixmap (PPM) format,
and it becomes a matter of writing a short 10-20 line Python script to convert the data into
whatever common file format is needed/desired.

Visualization Pipeline

Visualization can be thought of in general as the transformation of data into various graph-
ical forms that represent the original data. This transformation process will be unique
for different visualizations, but oftentimes similar steps will be performed as part of the
process. A functional model, to cope with this inherent modularity, is at the base of visual-
ization with the VTK; it is referred to as thasualization pipelingt].

v

‘ Image Reader ‘

- Image Shrink
Input
data *

Image Threshold

v

‘ Contour Filter ‘

v

‘ Connectivity Filter ‘

v

‘ Decimator ‘

v

‘ PolyData Writer M Normal Filter ‘

v v

‘ Output File ‘ ‘ Mapper ‘

v

‘ Actor ‘

Figure 4. A Surface Extraction Pipeline

A visualization pipeline consists of data objects, process objects, and an indicated direction
of data flow—the former two of which can be classified as pipeline stages. Process objects
can further be divided into three subcategories: Sources, Filters, and Mappers/Sinks. We
can think of the original data as a data object. To create a visualization, a careful selection

5

of pipeline stages needs to be connected; starting with a Data object, the data flow will lead
through a series of filters, before it finalizes as it reaches the mapper which converts the
data into a geometric visualization. Figure 4, shows an example of a visualization pipeline;
here the data is transformed by a series of filters that ultimately create a polygonal mesh—
displayed either as an actor on screen or saved to a file.

VTK API: Programming with the VTK

The various language bindings (Java, Tcl, Python) provided by the VTK make program-
ming it accesible to programmers with little C++ experience. Especially the very object
oriented design throughout the VTK API, makes translating other C++ code (e.g. in the
VTK Documentation) to the supported language of choice almost trivial. We shall demon-
strate the use of the VTK API by means a surface extraction pipeline as that in Figure 4 in
our favorite language, Python.

The first step is setting up an apropriate reader to read the input data. In our case, we
converted the fMRI to sets of PNG image files. Creating an instanetkBNGReader
is rather straightforward:

#create and configure an instance of vtkPNGReader
reader = vtk.vtkPNGReader()
reader.SetFilePrefix("brain")
reader.SetFilePattern("%s%03i.png")
reader.SetDataExtent(0,199,0,263,51,212)
reader.SetDataSpacing(1, 1, 1)

The first two lines after the call to the vikPNGReader initialization configures the reader to
read the relevant files; in this case the files are located in the same directory as the script and
are named brain000.png through brain255.png. Sét&ilePattern member function

takes a format string as an argument to determine what files will be read. In this case
"%s%03i.png" represents the 3 digit labeling ending in ”.png” after the prefix "brain”

set with theSetFilePrefix member function.

The member functionSetDataExtent and SetDataSpacing provide the reader

with further required information. The data extent specifies what parts of the images actu-
ally need to be read. This code then, will make the reader consider slice 51 through 212,
which are images of resolution 199x263. The data spacing, needs to be changed, if the
spacing from one slice to the next is different from the spacing of one pixel to the next. For
example, if only every second image was considered, the data spacing would need to be set
to (1,1,2). With our data being spaced equally over all dimensions, this step was straight-
forward; another dataset we have worked with involved images of a neuron aquired through
confocal microscopy in which the data spacing played a much more vital role.

After setting up the reader, pipeline creation becomes a matter of selecting the appropriate
pipeline stages and connecting them. Connecting pipeline stages is achieved by passing
objects returned by one stag&3etOutput method as an argument to another stage’s

6

Setlnput Method. For example, this code hooks an image-shrink filter to the output of
the reader:

#connect the reader to an instance of vtkimageShrink3D
shrink = vtk.vtkimageShrink3D()
shrink.Setlnput(reader.GetOutput())

The object returned by &@etOutput method can also be stored in a variable. This can
be useful, when writing the programs, as it allows one to quickly add and exlude certain
stages by simply commenting in or out the variable assignments.

#connect the reader to an instance of vtkimageShrink3D
pipe = reader.GetOutput()

shrink = vtk.vtkimageShrink3D()

shrink.SetInput(pipe)

We shall now briefly examine the other pipeline stages outlined in Figure 4 in regard to
their purpose and functionality. The python code setting up the entire pipeline can be
found in Appendix A. Obviously, the reference documents for VTK provide more detailed
descriptions [7].

vtkimageShrink3D This can be used to reduce the size of initial data to make visualiza-
tion and rendering faster, albeit with reduced detail.

vtkimageThreshold This is used to manipulate the intensity values in the original image.
Through thresholding, areas of similar scalar values can all be clamped to a specific
value to improve subsequent contour extraction.

vtkContourFilter This is the filter that generates an isosurface. The underlying algorithm
used by a vtkContourFilter instance can vary, but most likely some implementation
of the MarchingCubes algorithm will be used. Careful selection of a value for the
contour results in surfaces representing different tissues in the image.

vtkPolyDataConnectivityFilter This filter is used for selecting among various contoured
regions. For example, the “whole brain” can be extracted by taking the largest con-
nected region.

vtkDecimatePro The decimator is a filter that reduces the number of polygons used to
represent a surface, while still maintaining a good approximation to the initial shape.
Fewer polygons results in faster visualization and rendering, leading to better inter-
active behavior.

vtkPolyDataNormals This filter recomputes the normal vectors for each polygon in the
mesh. These normals are used to do shading in the visualization.

vtkPolyDataWriter This is used to save the resulting surface(s) to a file for later viewing.

vtkPolyDataMapper This turns the polygonal data into graphics primitives that can be
displayed.

Automating the Pipeline: PyMed3D

Although it is relatively easy for an informed programmer to put together a pipeline script,

it is not a trivial task. In order to facilitate the creation of visualizations by non-experts, we
have developed PyMed3D. PyMed3D is a Python program that provides a graphical user
interface for working with datasets such as those discussed in earlier sections. PyMed3D
lets users set up pre—defined visualization pipelines, allows real-time modifications to the
pipeline, and provides convenient I/O capabilities. By providing a graphical user interface
and approriate documentation, we hope to make the creation and use of medical, stereo-
graphic visualization accessible to non-programmers, for example, biologists.

X app.py —ojT=

File Pipelines

| Render PipelLine Editor | brain.dsi region@.dsi |

|:agel | Stage2 | Stage3 | Stage4 | StageS5 | Stage6 | Stage7 | Staged | Stage® |.1|=i

|vtkOpenGLActor “

'+ |setopacity: 7 \!!

SetDiffuseColor:|,9,.6,.5 ‘HI
!| Update ||

Figure 5: PyMed3D’s user interface

PyMed3D allows for importing sets of images. An import wizard will pick the appropriate
underlyingvtklmageReader instance and configure it as completely as possible. The
wizard subsequently produces a simple text configuration file that describes the volume
in VTK compatible input formats. This approach allows more experienced users to create
specialized input descriptions in cases where the import wizard is too generalized. Multiple
image sets can be loaded simultaneously with independent pipelines; this allows for the
creation of visualizations with multiple parts (e.g., fMRI with multiple "active regions”).

The PyMed3D GUI allows for real-time modification of individual pipeline stages. Each
dataset read by PyMed3D has its own pipeline editor, which is accessbile through a tabbed
interface above the 3D viewport (Figure 5). For example, by adjusting the threshold or
contouring values, various detail levels can be achieved. This interactive approach to ad-
justing parameters should prove more natural for individuals not all that comfortable with
modifying lines of a program source file.

Left Eye

CPU

|

() ()

Right Eye

Figure 6: Stereo projection is accomplished by sending the two images from the dualhead
graphics card to separate projectors with polarizing filters placed in front of them. The
images are then projected on top of each other onto a silvered screen.

Once a satisfactory result has been achieved, pyMed3D users can export the models they
are working on in a VTK compatible format. By using the VTK’s built in export func-
tions, the results can be used for other VTK visualizations, as well pyMed3D’s own viewer
application, which supports both regular and stereoscopic display.

Stereo Rendering

Stereo Viewing Setup

One of the main motivations for this visualization project was to make use of stereo presen-
tation for a true 3D effect in a classroom setting. The main requirement for stereo viewing
IS getting separate images to the left and right eye to produce the 3D illusion. There are
many different techniques for doing this[8]. Our setup, called SVEN, comprises two LCD
projectors attached to the outputs of a stock dualhead graphics card. The computer desktop
is extended across both screens so that images on the left-half of the desktop are shown
on one projector and images on the right-half are projected on the other. Polarizing filters
are placed in front of the projectors, and the images are superimposed on a silvered screen
that preserves the polarization. Viewers wear inexpensive polarized 3D glasses. Figure 6
depicts the setup.

The main advantage of this stereo setup is that it does not require any expensive graphics
hardware such as a quad-buffered stereo graphics card or shutter glasses. Instead, the
application has to present a fullscreen window spanning the entire desktop with the left
and right views placed side-by-side. The disadvantage of this approach is that off-the-shelf
packages such as VTK are generally not designed for this type of passive stereo projection.

Embedding VTK in QT

Although the VTK does not include direct support for SVEN stereo, it is generally stereo-
aware. The VTK provides stereo modes for certain types of active stereo displays as well
as red-blue stereo mode. One nice design feature of the VTK is that the left and right views
that are generated for these stereo modes are also available as separate rendering modes. In
other words, its easy to tell a VTK window to simply produce what the left (or right) eye
would see.

The simplest way to use the VTK with SVEN is to put two images side-by-side in a single
window with the left image being the left-eye view and the right image being the right-eye
view. Unfortunately, although VTK provides a way to place multiple renderers (images)
into a single window, the selection of which stereo mode to use happens at the window
level, not at the renderer level. So it is not directly possible to place left- and right-eye
views into a single VTK window.

Our solution to this problem involves using the Python bindings for VTK and the QT graph-
ical interface toolkit to create a QT widget that encapsulates a VTK window. VTK includes
an example widgetQVTKRenderWindowInteractor that allows such embeddings.
Using this widget as a base, it is relatively straightforward to place multiple VTK windows
inside of a QT window, with each having a different stereo setting. One stumbling block in
using theQVTKRenderWindowlInteractor is that it did not work correctly out of the

box with our versions of QT and Python. We had to tweak the code in several obvious ways
such as converting certain integer parameters to make use of QTs enumerated values (e.g.
setBackgroundMode(2) needed to beetBackgroundMode(QWidget.NoBack

ground)). Once these changes were made, we were able to embed VTK windows inside
of PyQT applications.

For convenience, we designed a class ca(ladkWidget that acts simultaneously as

a generic QT Widget (®Widget), a VTK window, and a VTK renderer. This is ac-
complished with a little Python “magic.” The class itself is a subclas€Wfidget
(throughQVTKRenderWindowlInteractor). When an instance d@vtkWidget is
created, it also creates an instance/d@iKRenderer which is attached to the underly-

ing VTKRenderWindow and also saved in an instance variable. All of these entities
are tied together using Python’s dynamic method dispatch mechanism. A QT method
will succeed directly, since @vtkWidget is a QWidget. When a non-QT method

is called on theQvtkWidget , it first tries to find a suitable method in the associated
VTKRenderWindow and then in thevTKRenderer . The programmer using @Qvtk

Widget sees an object that responds to all three kinds of methods and normally does not
need to worry about where the various methods are actually implemented. This illustrates
Python’s utility as a general “glue language” for our application.

Synchronizing Stereo Views

Of course, being able to place two VTK windows side-by-side in an application is just the
first step. We also need to set the windows up to show the appropriate stereo views and

10

stay in synch as the views are manipulated. For convenience, we want the pair of widgets
to act like a single VTK window/renderer. To accomplish this, we created a new class
StereoQvtkWidgets . Aninstance of this class encapsulates a pa@wakWidget s,
representing the left- and right-eye views.

When a method is called on $tereoQvtkWidgets object, the object delegates the
method to both its left and right views. So, for example, adding an object to both views in
a stereo widget can be carried out in a single call:

create a Stereo widget pair
stereoView = StereoQvtkWidgets()

VTK calls are passed through to both left and right views
stereoView.AddActor(someVTKActor)
stereoView.ResetCamera()

The last piece of the display puzzle is ensuring that any interaction with the scene (changes
in the camera) take place simultaneously in both views. This is done by having the two
views share the same VTK Camera object that defines the current view. Any change to
the camera will be reflected in both views. The only complication is making sure that
both views actually get updated on screen. VTK provides an underlying observer/callback
mechanism. We use this machinery to ensure that every time the camera changes, both
views are notified of the event. The net result is that the programmer only has to place
appropriate actors into the scene, and any mouse manipulations to zoom, rotate, or pan the
view produce (nearly) simultaneous updates in both the left and right views.

These stereo viewing techniques are put to use in PyMed3D’s viewer application (see Fig-
ure 7). This viewer is designed specifically to support fMRI visualization. Users specify a
main model with an adjustable opacity. A second set of models (e.g., representing active
regions) can be shown one at a time, superimposed on the main model. The application
is interactive allowing the user to zoom, rotate, and pan the view using the mouse. The
viewer can also be used for less specific, general stereoscopic visualization of VTK com-
patbile PolyData files.

Stereo Viewing Issues

Using the techniques described in this section, we were able to construct SVEN-style stereo
views of VTK models with only a little bit (less than 100 lines) of Python glue code. The
resulting interactive visualizations of simple models are remarkably smooth on relatively
modest hardware (1.6 ghz P4 with stock graphics card). However, we do still have some re-
maining issues. When manipulating complex models (hundreds of thousands of polygons),
the updating is not as immediate, and the stereo views are out of synch during interaction.
This can be a somewhat jarring visual experience. We have also noticed a severe memory
leak during interactions on some platforms. This can lead to a program lock-up if a model
is manipulated over an extended time frame. These are issues that we still need to address.

11

Figure 7: PyMed3D's viewer application showing left- and right-eye views. Slider controls
at the bottom are used to adjust the opacity of the main model and to traverse through
various extra models (e.g. fMRI regions)

Conclusions and Future Work

Building on VTK and the QT toolkit, we have been able to assemble a complete demon-
stration application, PyMed3D, that allows for stereographic display of fMRI data. While
this is a significant milestone, it is really just a first step toward our longer-term goal of
bringing 3D visualizations into the science classroom. We have a number of important
directions for future work.

First, we would like to address some of the performance issues mentioned in the previous
section. If it is not possible to interact smoothly with complex datasets, a viable alternative
might be to generate an animation, such as a rotating view, that is then simply played back
in the classroom. We have already begun investigations into appropriate formats for such
stereo animations.

Another important task is packaging our work so that others can take advantage of it. That
involves work on a number of fronts including: packaging the application so that it can
be easily installed by other users, providing suitable documentation so that non-experts can
build sucessful visualizations, and distributing our work via the web. We hope that by mak-
ing our source code available to others, we can get feedback to continue its improvement.

Finally, we hope to get our visualizations classroom tested in neurobiology courses. That
feedback will be invaluable in guiding the future development of PyMed3D. Building the
system has been an interesting project, but it will be a disappointment if that effort does not
ultimately result in a useful educational tool.

12

Acknowledegments

This work was partially supported by a Maytag Innovation Award for student/faculty research and
by the Wartburg College Undergraduate Research Fellowship program. We further would like to
thank especially Mark Dow and Greogory Scott from the University of Oregon, who provided us
with fMRI data, and John M. Melville, our local neuroscientist at Wartburg College who inspired
much of this work and answered a plethora of questions.

References

[1] http://www.bic.mni.mcgill.ca/nifti/ NIFTI (neuroimaging informatics technology
initiative).

[2] http://www.riverbankcomputing.co.uk/pygt/ PyQt: Overview.
[3] http://www.python.org Python programming language — official website.

[4] Will Schroeder, Ken Martin, and Bill Lorenseithe Visualization Toolkit An ObjectO-
riented Approach To 3D GraphicKitware, Inc. publishers, third edition, 2004.

[5] Will Schroeder, Ken Matrtin, and Bill Lorensefihe Visualization Toolkit User’s Guide
Kitware, Inc. publishers, 4.4 edition, 2004.

[6] S.M. Smith, M. Jenkinson, M.W. Woolrich, C.F. Beckmann, T.E.J. Behrens, H. Jo-
hansenBerg, P.R. Bannister, M. De Luca, I. Drobnjak, D.E. Flitney, R. Niazy, J. Saun-
ders, J. Vickers, Y. Zhang, N. De Stefano, J.M. Brady, , and P.M. Matthews. Advances
in functional and structural MR image analysis and implementation as R8urolm-
age 33(S1)(208219), 2004.

[7] VTK 4.2.1 documentation. http://www.vtk.org/doc/release/4.2/html/.

[8] John M. Zelle and Charles Figura. Simple lowcost stereographics: VR for everyone.
SIGCSE Bulletin36(1)(348357), March 2004.

13

APPENDIX

A VTK Surface Extraction

The following is a python script creating a full VTK Surface Extraction pipleine. The
vtkActor instance at the end of the pipeline, can be added tatkiRenderWindow
instance by using thé&ddActor() method.

reader = vtk.vtkPNGReader()
reader.SetFilePrefix("brain")
reader.SetFilePattern("%s%03i.png")
reader.SetDataExtent(0,199,0,263,51,212)
reader.SetDataSpacing(1, 1, 1)
reader.Update()

pipe = reader

shrink = vtk.vtkimageShrink3D()
shrink.Setlnput(pipe.GetOutput())
shrink.SetShrinkFactors((2,2,1))
pipe = shrink

thresh=vtk.vtkimageThreshold()
thresh.SetInput(pipe.GetOutput())
thresh.ThresholdByUpper(float(sys.argv[1]))
thresh.SetInValue(255)
thresh.SetOutValue(0)
thresh.ReleaseDataFlagOff()

pipe = thresh

cf = vtk.vtkContourFilter()
cf.SetInput(pipe.GetOutput())
cf.SetValue(0,255);

pipe = cf

con = vtk.vtkPolyDataConnectivityFilter()
con.Setlnput(pipe.GetOutput());
con.SetExtractionModeTolLargestRegion();
pipe = con

dec = vtk.vtkDecimatePro()
dec.Setlnput(pipe.GetOutput())
dec.SetFeatureAngle(1)
dec.PreserveTopologyOn()
pipe = dec

norm = vtk.vtkPolyDataNormals()
norm.Setinput(pipe.GetOutput())
norm.SetFeatureAngle(10)

pipe = norm

mapper = vtk.vtkPolyDataMapper()
mapper.Setinput(reader.GetOutput())
mapper.ScalarVisibility Off()

actor = vtk.vtkActor()
actor.SetMapper(mapper)
actor.GetProperty().SetDiffuseColor(1,.6,.6)
actor.GetProperty().SetOpacity(.1)

#actor can be added to vtkRenderWindow

14

