
Investigating Database Security in a Networked
Environment

Matthew Giuliani
Computer Science Department

University of Wisconsin – Eau Claire
Eau Claire, WI 54701
giuliaml@uwec.edu

Eric Lobner

Computer Science Department
University of Wisconsin – Eau Claire

Eau Claire, WI 54701
lobnerec@uwec.edu

Paul J. Wagner, Ph.D.

Computer Science Department
University of Wisconsin – Eau Claire

Eau Claire, WI 54701
wagnerpj@uwec.edu

Abstract

Database and network security have traditionally been separate fields within the realm of
computer security. Currently, there is very little work done to understand the security of
data flowing between client and database systems. Although vender specific information
is available for many database systems, there are very few comparative studies that
analyze multiple database systems. In this study, five database systems were analyzed
and subjected to tests from three separate platforms. The testing platforms included two
software applications and one vendor supplied administration/query tool. The security of
each system was analyzed for five criteria that represent the relative security of data
being transmitted to and from the database system. While passwords were always
encrypted, other information such as password length, usernames, and query content were
sometimes exposed. This research suggests the need for increased usage of encrypted
protocols such as SSL in database applications.

Background and Current Problems

As the world around us becomes more dependent on computer information systems, the
need has arisen for careful analysis of current security systems protecting sensitive data.
Damage, misuse or capture of sensitive data may not only affect a single user, but may
have widespread consequences affecting untold numbers of people.

Database systems emerged in the mid 1960’s and have been continually developed and
modified into the complex systems that exist in today’s market. A database is a
collection of facts (data) stored on a physical medium in such a way that a question, or
query, can be asked of this data and an answer returned. A database management system
(DBMS) is a set of programs used to connect to the database and run queries about the
information stored in the database. Most often the actual database is stored on a separate
computer called a database server which accepts queries and commands from remote
clients.

Only recently, due to the widespread explosion of the internet and the need for storing
more sensitive data, has database security become a primary concern for many database
administrators. In December of 1985 the Federal Government issued a standard against
which all computer security systems could be evaluated1. The Department of Defense
Trusted Computer System Evaluation Criteria (TCSEC), also known as the Orange Book,
was primarily developed “to provide users with a yardstick with which to assess the
degree of trust that can be placed in computer systems for the secure processing of
classified or other sensitive information.” The U.S. Computer Security Center released
the Trusted Database Interpretation in 1991 that used the TCSEC criteria to specifically
evaluate database management systems. Although originally developed for government
use, these criteria are often applied to commercial database systems resulting in a grade
evaluating the confidentiality and security of information.2

Despite a stringent set of security criteria, attacks and vulnerabilities still occur even in
the most advanced and up to date systems. In February of 2003 a breach in the security
of a database owned by Data Processors International, a credit card processing company,
released upwards of 8 million credit card numbers to the individuals responsible for the
attack3. The release of the credit card numbers was estimated to cost the major credit
card companies approximately $200 million dollars in cancellation and renewal expenses.
Many other types of sensitive information are now being stored, including: medical
records, insurance claims, social security numbers, and financial information, are all
stored in complex database systems which could have disastrous effects if the security of
these systems was compromised.

Investigation

Identifying the security level of a particular database management system can be a
difficult task. First, there are multiple components to overall DBMS security, including
how secure the information is sitting on a storage device, and how secure the information

 1

is when moved to and from the database over computer networks. Second, most past
research and information has focused on the security of data on disk, leaving the security
of data in a networked environment difficult to ascertain. Third, this information tends to
be given for each DBMS separately, and has not been collected in a comparative form
across multiple DBMSs that is easily available to those interested in determining database
security. It is important to note that this study does not hope to explore the security risks
of sending information over the internet, as most sensitive information is encrypted via
HTTPS, but rather the network security of information once it has reached an
organization’s internal intranet.

The major objectives of this research are threefold. First, research the network security
status of five major DBMS, both commercial (Oracle4, Microsoft SQL Server 20055, and
IBM DB26) and open source (MySQL7 and PostgreSQL8), by determining the security of
networked query/administration clients and applications accessing those DBMSs.
Second, develop testing applications that use existing network packet sniffing software to
confirm prior claims or establish current status where that information is not given.
Third, generate a comparative chart showing the status of secure communications for the
above five DBMSs.

Hardware and Software Systems

In an effort to produce as accurate as results as possible, the network conditions,
hardware systems and software used during tests were kept as similar and consistent as
possible. All tests were completed within the University of Wisconsin – Eau Claire
intranet. Figure 1 shows a diagram of the basic network and system setup utilized during
testing.

A total of three systems were utilized in the testing process of the five database products.
Two systems were designated as client machines and loaded with the appropriate
development environment for each of the programming languages tested. Both client
machines were Windows XP systems having the most current updates at the time of
testing. The Microsoft .NET client contained Microsoft Visual Studio9 2005
development environment while the Java10 1.5 client contained the latest version of

 2

Eclipse development environment with the Java 1.5 SDK installed. The database server
was a Linux system running the Red Hat11 distribution under kernel 2.4.21-37. Ethereal12
Network Protocol Analyzer version 0.10.13 was installed on the database server to
capture network packets coming into and out of the database server. Remote desktop
software was used on the client machines for purposes of installing and configuring the
individual database systems.

Testing Methodology

The testing of a typical database system followed the same general steps. First, the most
recent version of DBMS was downloaded from the vendor website onto the database
server. The DBMS was then unpacked and installed with the most typical options and set
to accept incoming connections (see sections on client authentication for each DBMS).
The Oracle, MySQL, PostgreSQL and DB2 databases were installed on the Linux
database server. Microsoft SQL Server required a Windows environment to operate and
was installed and configured on the .NET client machine. The Java client machine was
then configured with the Microsoft .NET development environment to provide testing for
both programming language platforms.

Once each database was installed and configured, a test database was created for each
DBMS using prepackaged tools included within the DBMS download. A database was
created with a sample customers table which included the first name, last name and credit
card numbers for five imaginary records. Each table was created using the same script,
defining all columns the same width and data-type. After the database and associated
table were created, two database connection applications were created on each of the two
client machines. In addition, the standard query/administration tool for each DBMS,
when available, was installed and configured on one of the client machines. The java
application for each DBMS was created using the most recent JDBC (type 4) driver
provided by the database vendor. The .NET application required similar steps in order to
connect to the various DBMSs. Each database application performed three steps; connect
to the database, run query, close database connection. All database connection
applications ran a simple query to return all columns for all rows in the table. At the time
of testing a known issue was present regarding the inability of Visual Studio 2005 to
connect to versions of IBM DB2 Express-C. As such, the only testing platform utilized
against the IBM DB2 – Express C database was the java 1.5 application platform.

Once each application was ensured to be working properly, security tests for each DBMS
were conducted. Each test was started by connecting to the database server, via remote
desktop software, and beginning a packet capture of all network packets flowing into or
out of the database system. Each application was then executed and allowed to complete,
after which the packet capture was stopped on the database server. In addition to the two
applications developed, an additional test was performed by remotely connecting to each
DBMS via the default administration/query browser provided by each vendor. A packet
capture was started on the database server before the administration tool logged onto the
DBMS and was stopped after results of the query were returned back to the client

 3

machine. Additional tests were performed on each DBMS if options relating to
authentication methods could be changed reasonably (see PostgreSQL authentication
section).

Once all tests were completed, the packet capture files were loaded back into Ethereal
and analyzed for five conditions of security. The first three conditions related to whether
the SQL query sent to the database was visible, whether the specific database instance
was visible and whether the results of the SQL query being sent back to the client were
visible. The MySQL database did not have what we would consider a traditional
‘database instance’ and was not evaluated as a condition of security for this database.
The final two conditions prove to be most interesting and related to whether usernames
and passwords required to access the database were visible across a network connection.
Every packet capture file was analyzed for each of the five conditions and results of the
analysis were organized into a table (see Table 1: Database Security Results) relating the
security of each database.

 4

Database Security in a Networked Environment

Able to view
SQL Query

Able to view
Database
Instance

Able to view
Query

Results
Able to view
Username

Able to view
Password

Oracle Database 10g

Java 1.5

with JDBC Yes Yes Yes Yes No

VS 2005 with

.NET Yes Yes Yes Yes No

SQL Plus

Worksheet Yes No Yes No No

MySQL Database Server

Java 1.5

with JDBC Yes - Yes Yes No

VS 2005 with

.NET Yes - Yes Yes No

MySQL Query

Browser Yes - No Yes No

PostgreSQL Core Database

JDBC with 'trust' client

authentication Yes Yes Yes Yes No

JDBC with 'password'
client authentication Yes Yes Yes Yes Yes

VS 2005 .NET with
'trust' client

authentication
Yes Yes Yes Yes No

VS 2005 .NET with
'password' client
authentication

Yes Yes Yes Yes Yes

pgAdmin 1.4.1 with

'trust' auth.
Yes Yes Yes Yes No

pgAdmin 1.4.1 with

'password' auth. Yes Yes Yes Yes Yes

IBM DB2 Universal Database Express-C

Java 1.5

with JDBC [Type 4] Yes Yes Yes Yes No

 VS 2005 with .NET IBM Known Issue

Microsoft SQL Server 2005 Express

Java 1.5

with JDBC [Type 4] Yes DB Name -Yes
DB Inst. - Yes Yes Yes Length Given

VS 2005 with

.NET Yes DB Name - Yes
DB Inst. - Yes Yes No No

Microsoft SQL
Server Management

Studio Express
Yes DB Name - Yes

DB Inst. - Yes Yes No No

Table 1: Database Security Results

 5

Oracle Database 10g Authentication

Oracle supports several authentication methods; the method used in our testing was
authentication by Oracle Database. With this method, the client provides a username and
password which is compared against that stored in the Oracle database. Before any
transmission of user credentials, the password is encrypted using a modified AES
(Advanced Encryption Standard) algorithm. Other Oracle authentication methods
include: Network, Multitier Authentication and Authorization, and Secure Socket Layer
Protocol. These methods were beyond the scope of this project and were not taken into
account in our testing.

MySQL Database Server Authentication

MySQL provides only one method of authentication. User passwords are not actually
stored on the MySQL server, rather, the hash values computed from the password is
stored. When a client attempts a connection, a hash value is computed from the provided
password and is compared against the hash value stored in the user table on the MySQL
server. MySQL 4+ uses a 41 byte hash, while previous versions use only a 16 byte hash.

PostgreSQL Core Database Authentication

PostgreSQL provides numerous methods for client authentication, which can be set to a
client’s preference on the PostgreSQL server. The first method is Trust authentication,
where any user who can connect to the server using an existing username is assumed to
be authorized for the database, including superusers. This method should only be used
when every system allowed to connect to the database server can be trusted. Passwords
sent using trust authentication are encrypted for network transmission. The second
method for client authentication is Password authentication, which offers three types of
password encryption: MD5-hashed, crypt-encrypted, and clear-text. For connections
over the internet, MD5-hashed is the preferred method to subdue the capture and
deciphering of the database password. Likewise, the crypt-encrypted option will encrypt
the password, but will not work on passwords that have been encrypted in pg_authid, and
should only be used for backward compatibility. The clear-text option will not encrypt
the password at all, and will be sent via clear-text. The third method is Kerberos
authentication, a leading standard in secure authentication. PostgreSQL supports
Kerberos version 5, and this functionality must be enabled when installing the database
server. This method was beyond the scope of this project and not taken into account in
our testing.

IBM DB2 Universal Database Express-C Authentication

IBM DB2 uses Server authentication as the default method for client connections. The
Server method is invoked even if no method is explicitly specified. With Server

 6

authentication, a username and password must be supplied by the client for connection
with the DB2 server. For clients accessing a local DB2 server, operating system
authentication is sufficient; however, for remote connections a username and password
must be explicitly stated even when the client system is located on the same domain as
the DB2 server. Using the Server_Encrypt option, the password will be encrypted before
transmission over the open network. DB2 employs several more authentication methods,
such as: Client, DCS, DCE and Kerberos. These methods have not been taken into
account in our testing.

Microsoft SQL Server 2005 Express Authentication

Microsoft SQL Server provides two different authentication methods: Windows
Authentication, and SQL Server authentication. Windows authentication calls back to a
client’s Windows NT or Windows 2000 user account to obtain a validated username and
password to authenticate. If a client attempts a connection while providing a blank
username, Windows authentication will be used. Likewise, if a user sends an explicit
username and password, they will be ignored and Windows authentication will still be
used. SQL Server authentication is used with clients who are connecting over a non-
trusted connection. The user provides a username and password, which are compared
against existing user accounts on the SQL Server.

Overall Comparison

Overall, a majority of the database products tested in this study exhibited similar
characteristics of security. The following is a breakdown of similarities and differences
exhibited by each test platform on the five database systems tested.

The specific SQL query text executed on all databases tested was visible using techniques
discussed in this study. The database instance name for each database was also readily
visible using techniques discussed in this study. Although the query itself and database
instance do not reveal any specific sensitive information, it does disclose some evidence
to the structure of the tables within a given database.

All database products and test platforms except one, MySQL database via MySQL Query
browser, were able to view the information returned from a given query on the database.
Information that can be contained within the result of a query can be as simple as a first
or last name, all the way to as sensitive as credit card numbers and other personal
information. While encryption of data is another issue that we did not examine in this
research, the possibility of returning unencrypted data from a DBMS is quite alarming
and could lead to the compromise of extensive amounts of sensitive data.

The database username and password are sensitive pieces of information that if gotten
into the wrong hands could lead to a complete loss of sensitive information stored in
databases. Database usernames were visible for all typical application connections from

 7

both Java and .NET environments. Usernames for the open source database query
browsers demonstrated similar characteristics as the application platforms. The
commercial products of Oracle and Microsoft took more care with their
query/administration clients to encrypt the usernames being used to connect to a
particular database. It was also noted that from the Microsoft .NET application
environment to a Microsoft SQL Server database, encryption of the username occurred
and was the only instance of a username being encrypted from an application platform.

The area of database password visibility demonstrated the most interesting results.
Oracle database passwords for all three platforms were encrypted. MySQL database
passwords were also encrypted for each of the three testing platforms. PostgreSQL
demonstrated significant variance in database password visibility. The tests conducted
using ‘password’ authentication demonstrated results in line with those discussed in the
PostgreSQL authentication section as being passed to the database server as clear-text.
When the PostgreSQL server was switched to ‘trust’ authentication, the passwords
immediately became encrypted and undetectable. IBM DB2 showed results consistent
with the majority of other tests demonstrating an encrypted password on the single
platform that was ran against the database. The Microsoft database showed another
significant security find of this project. Using a Java application platform with the
standard JDBC driver, the length of the database password being used was readily
available. While the actual password is not visible, any data that can be recovered about
a specific password can help an attacker to discover the actual password.

Conclusion

This study set out to determine the network security of five of the leading database
products on the market. Through the testing of these databases, two significant finds
have been discovered. First, using database settings described in this study, the
information being returned from a query is oftentimes sent unencrypted over a network
transmission. Sensitive data such as usernames, passwords, credit card numbers and a
host of other information are stored and retrieved at some point from a database. An
attacker with access to network resources with the same approach and techniques
performed in this study could easily compromise vast amounts of sensitive information.
The second find this study discovered was information regarding password length being
given in communication between and Java environment and Microsoft SQL Server 2005.
Although the actual password was not shown to be visible, the length of the password is
enough information to knock down exponentially the time needed to crack the password.
It is often a small security leak that can provide the entrance to a whole slew of additional
information desired by an attacker.

The results of this study are a first step in the analysis of information available regarding
network and database security. Certainly more research needs to be performed testing for
some of the other common conditions in database networks. Research exploring the
authentication methods not tested in this study could prove to reveal other trends
pertaining to database security in a networked environment.

 8

References

[1] Department of Defense Trusted Computer System Evaluation Criteria.

http://www.radium.ncsc.mil/tpep/library/rainbow/5200.28-STD.html

[2] Computer Security Criteria: Security Evaluations and Assessment. Oracle Corp.

http://www.oracle.com/technology/deploy/security/seceval/pdf/seceval_wp.pdf

[3] Hacker Hits up to 8M Credit Cards. CNN Money Online.

http://money.cnn.com/2003/02/18/technology/creditcards/

[4] Oracle Corporation. http://www.oracle.com

[5] Microsoft Corporation. http://www.microsoft.com/sql/default.mspx

[6] IBM Corporation. http://www-306.ibm.com/software/data/db2/

[7] MySQL Database. http://www.mysql.com/

[8] PostgreSQL Database. http://www.postgresql.org/

[9] Microsoft Visual Studio .NET Framework. http://msdn.microsoft.com/vstudio/

[10] Java Technology. http://www.sun.com/java/

[11] Red Hat Linux Distribution. http://www.redhat.com/

[12] Ethereal Network Protocol Analyzer. http://www.ethereal.com/

 9

	Investigating Database Security in a Networked Environment

