
The Doane Roverbot Simulator

Allen Gilbert, Mark Meysenburg
IST Department
Doane College

Crete, NE 68333
[allen.gilbert, mark.meysenburg]@doane.edu

Abstract

As a continuation of Doane College’s 2004 Summer Research Program, we undertook the
task improving a 3D simulator created to run programs written for a Lego®
Mindstorms™ “Roverbot.” Our primary goal was to implement some sort of physics
engine. We accomplished this by using the Open Dynamics Engine, an open-source
solution that provided us with physics modeling and collision detection. We also made
improvements to the simulator’s Graphical User Interface and camera angle controls.
Our new GUI makes it easier for the user to view and interact with the simulator.

Although we made many improvements to it in the summer of 2005, the simulator is far
from complete. Still, our efforts have provided a good framework for future
improvements, and the experience of developing such a simulator has increased both our
knowledge of and respect for software design.

1 Introduction

Over the past few decades, the importance of computer-aided simulation has been firmly
established. From advances in space travel to improvements in city traffic control, the
ability to simulate real-world events with virtual visualization has proven to be a time and
cost efficient way to solve problems. The possibility to reap these analytical benefits of
simulation provided excellent motivation for the creation of a Lego® Mindstorms™ (1)
Roverbot simulator during our 2004 Summer Research Project. Our vision for the
simulator was for it to allow development of Roverbot programs without need for the
actual Roverbot hardware.

To better understand our project, one must first be familiarized with the concept behind
Lego Mindstorms Robot Kits. In the words of Lego’s website,

LEGO® MINDSTORMS™ lets you design and program real robots that do what
you want them to. With the Robotics Invention System 2.0™, the core set of the
LEGO MINDSTORMS product range, you can create everything from a light-
sensitive intruder alarm to a robotic rover that can follow a trail, move around
obstacles, and even duck into dark corners. (1)

The operation of a robot built with a Mindstorms kit is controlled by a microcomputer
housed inside an “RCX brick.” This yellow brick includes three motor control outputs,
three sensor inputs, operational buttons, a digital display, and an infrared receiver. A user
can create control programs using bundled Lego software that provides a visual
representation of structured programming. Thus, the Lego Mindstorms kits are useful for
teaching the basics of programming to beginners.

The Roverbot (pictured in Figure 1) is a simple robot with two different kinds of sensor
inputs. The front of the robot houses two bumper sensors that can detect and prompt a
reaction to a collision. Although not pictured below, our Roverbot also houses a front-
mounted light sensor that can react to differences of dark and light in its path. Two
motors drive both the front and back wheels on each side, providing mobility for the
Roverbot. Thus, turning is accomplished by supplying more power to one pair of wheels
over the other, or by driving the motors in opposite directions.

Our Roverbot’s test environment is a 4 x 8 foot wooden “arena” with one-inch ridges on
each side. Figure 2 pictures this environment with obstacles (for use with the bumper
sensors) and blue tape (for use with the light sensor).

2

Figure 1: A Real Roverbot

Figure 2: The Roverbot Test Environment

In this paper, we will discuss the basics of the Open Dynamics Engine, our improvements
to the Graphical User Interface, and our future plans for the simulator.

3

2 The Open Dynamics Engine

Initially, the Doane Roverbot Simulator was simply a framework for a simulator. It could
display models of the Roverbot, parse and execute simple Roverbot programs, and allow
the user to manipulate the camera. However, movement of the Roverbot was based on a
crude behavioral modeling scheme. In other words, the virtual Roverbot’s movements
were timing-based, with little regard for physical accuracy. Furthermore, this behavioral
modeling scheme did not implement collision detection or variable power levels for the
motors. Clearly, the simulator would not be useful unless we could find a way to make
the Roverbot move and behave in a more realistic way.

The idea of creating a physics engine was one alternative. However, authoring such an
engine would require an understanding of physics that we did not posses. So, rather than
try to reinvent the wheel, we decided to search for an open source physics engine. After a
little investigation, we came upon ODE: the Open Dynamics Engine. In the words of its
author, Russel Smith,

“ODE is an open source, high performance library for simulating rigid body
dynamics. It is fully featured, stable, mature and platform independent with an
easy to use C/C++ API. It has advanced joint types and integrated collision
detection with friction. ODE is useful for simulating vehicles, objects in virtual
reality environments and virtual creatures. It is currently used in many computer
games, 3D authoring tools and simulation tools” (2).

3 ODEJava

Because our simulator was written in Java and Java3D (3), we were able to utilize
ODEJava, a Java binding for ODE’s C/C++ libraries. The binding not only allows access
to low-level ODE “primitives,” but it also presents a higher level, truly object-oriented
interface to the capabilities of ODE. The required native binaries are available in pre-
compiled versions for Linux, Windows, and OS X (2).

In ODE / ODEJava, objects are represented as primitive shapes connected by joints. Each
shape has size, mass, and position attributes. There are several types of joints that can be
used to connect shapes, including ball and socket, hinge, slider, and fixed or immobile
joints.

Figure 3 shows the shapes that make up our ODE Roverbot. In this first use of ODE in
our simulator, we kept the ODE Roverbot model as simple as possible. The single large
yellow box represents the RCX brick and the driving base of the Roverbot. The smaller
white boxes represent the center support structure of the Roverbot’s bumper mechanism.
The angled yellow shapes represent the bumpers themselves. The gray wheels of the
Roverbot are modeled as spheres, rather than cylinders.

All of these shapes are connected together using ODE fixed and hinge joints. The

4

bumper components are attached to the chassis with fixed joints, which makes them
immobile. The wheels are attached to the chassis with hinge joints. These joints are
configured so that the wheels only rotate around their axes.

Figure 3: ODE Roverbot model

Once we created our ODE model of the Roverbot, it was fairly straightforward to make
our simulated Roverbot move in a realistic manner. Basic movement in the simulator is
now achieved by setting the angular velocities of the ODE spheres that represent the
Roverbot’s wheels. We measured the angular velocities of a real Roverbot’s wheels for
each of the possible motor power levels. These measurements are stored in a lookup
table and applied, along with direction of rotation, to the ODE spheres. The commands
that change the power levels and directions of the wheels come from the Roverbot
program being interpreted by the simulator.

Another benefit of using ODEJava in our simulator is that collision detection is
automatically included. The Roverbot, the Roverbot’s “world,” and the obstacles that are
placed in the world are all modeled as ODE objects. So, when objects collide with each
other, the ODE system detects the collision and updates object positions as necessary.
Thus, we only had to pay attention to collisions with the Roverbot’s bumpers, in order to
allow the Roverbot program to respond to the touch sensor event. This was easy to do
because every collision in the ODE system generates identifying integers. Through a
simple “if” structure, we were able to determine when a collision involved one of the
bumpers; then a call back into the RCX code interpreter was made. Thanks to ODE, we
were able to have collision detection in our simulator basically for free, without having to
write any Java3D collision detection code.

A difficulty we encountered while incorporating ODE into our simulator was the lack of
clear documentation regarding the ODE / ODEJava software. There are several “magic”
parameters that influence the behavior of the simulator in subtle ways, and we are still
unsure exactly which values should be chosen for these parameters. We have a strategy
for tuning these parameters, however. This strategy is discussed below in the “Future
Work” section.

Another difficulty we had with ODE was that the fidelity of the simulation seemed to
vary depending on the size of the objects in the simulation. When we were learning how

5

to use ODE, we were experimenting with relatively large objects. For example, we
worked with a simulated car whose dimensions were better expressed in meters than in
centimeters. However, once we started implementing the Roverbot model with its
smaller dimensions, we found that the ODE simulation would often “depart from reality”
in interesting ways. In particular, the Roverbot model would shake, with all of its
component parts oscillating randomly, even when it was at rest. Through
experimentation, we found that the simulation behaved in a more realistic manner when
all of the dimensions were scaled up by a factor of ten.

4 Graphical User Interface

In order to improve the usability of our simulator, we made some changes and
enhancements to our Graphical User Interface. Most notably, we added controls for
manipulating the camera in a limited way. Prior to this update, our manual camera
scheme was confusing and unintuitive because Java3D’s default mouse-controlled
rotations and translations were uneasy to control. Instead of trying to rewrite those mouse
controls, we created a viewing scheme that follows a hemisphere above the Roverbot’s
world. The user can zoom, rotate, and angle the camera without having to worry about
ending up with a view that is upside down or crooked.

Although not all of the associated features are fully functional yet, we added new menu
items to our GUI. Users will be able to save simulation states, place rectangular obstacles
of a chosen color, and consult a help file. Furthermore, we added a few icons to increase
the visual appeal of the simulator.

Figure 4: Old Doane Roverbot Simulator GUI

6

Figure 5: New Doane Roverbot Simulator GUI

5 Future Work

There are several aspects of our simulator that we plan to improve and enhance. Most
importantly, we plan on improving the fidelity of the ODE physics model by using a
genetic algorithm to fine tune the environmental variables. This should allow us to
optimize the “magic” parameters for the best possible representation of reality. The light
sensor needs to be incorporated into the simulator, along with the ability to place
simulated “blue tape” into the world. We also wish to develop a less restrictive yet
intuitive camera scheme, complete with computer-controlled camera angles that smoothly
follow the Roverbot. Other planned work involves the ability to load other “worlds” for
the Roverbot to operate in. Finally, we wish to create an installer for the simulator so that
we can distribute it to others more effectively.

Work on the simulator will continue during the summer of 2006 with another Doane
Undergraduate Research project.

6 Conclusion

This project provided us with many opportunities to learn through experience. We were
able to learn much about programming in Java and Java3D using the NetBeans
development environment. We were all introduced to a very important concept of group
programming called "common code ownership," and used the NetBeans CVS
(Concurrent Versions System) to keep our files up to date on a server. When using CVS,
we learned how to resolve conflicts in different versions of code, how to submit updates,

7

and how to manage our local development environment.

When implementing the ODE physics model, we were forced to learn independently by
reading documentation and exploring examples of ODEjava code. We were reminded of
the value of Object Oriented Programming, as it provided an easy way to plug in the
Open Dynamics Engine into our existing code. Finally, we gained an appreciation for the
concept and practicality of open-source code.

Over all, the experience of creating our simulator was very valuable. Participating in the
software design process has increased both our knowledge and respect for software
design, 3D modeling, compiler construction, and computer simulation.

8

References

(1) Lego Mindstorms Website: http://mindstorms.lego.com/eng/products/ris/index.asp.
Link active as of 3/23/2006.

(2) ODEjava website: http://odejava.org/OdejavaIntro. Link active as of 3/23/2006

(3) Sun (Java) Website: http://java.sun.com/. Link active as of 3/23/2006.

9

