
On Meaning Preservation of a Calculus of Records

Emily Christiansen and Elena Machkasova
Computer Science Discipline

University of Minnesota, Morris
Morris, MN 56267

chri1101, elenam@morris.umn.edu

Abstract

This paper focuses on meaning preservation of transformations on a system of mutually de-
pendent program components, which models modular programming. Collections of such
components are called records. The term program transformations refers to changes that
compilers and similar tools make to a program to improve its performance and/or read-
ability. Such transformations are meaning-preserving if they preserve the behavior of the
program. While commonly performed transformations are well tested and widely believed
to be meaning-preserving, precise formal proofs of meaning preservation are tedious and
rarely done in practice. Optimized programs may have unexpected changes in their be-
havior due to optimizations. Formal approaches to meaning preservation could lead to
more reliable software without sacrificing the program’s efficiency. In this paper, we give a
formal system for describing program modules and prove some of its important properties.

Records represent collections of components which may depend on each other, with
possible mutual recursion. Records can be evaluated or reduced (i.e. optimized). Evalu-
ation steps model the way the program would be evaluated. Transformation steps happen
only during optimization. In this paper we introduce the necessary formal framework and
prove two important properties: confluence of evaluation and that a non-evaluation step
preserves the state of a term. Confluence of evaluation means that the result of evaluation
of a record does not depend on a specific order of evaluation. The state of a term shows
whether the term can be evaluated, and in the case that it can not be evaluated further, what
value it has. Confluence of evaluation and preserving the state of a term are necessary
fundamental properties for proving meaning preservation of the system of records.

1 Introduction

When programmers write code they usually try to do so in a way that is simple and easy to
read. This involves refactoring, which means separating program components into smaller
modules or classes with many small functions. With the overhead of handling multiple
classes and functions, it is no surprise that there is a trade-off between readability and
running time. To alleviate this potential slow down, the compiler should undo most of the
spreading out and optimize the code through a series of program transformations that do
not change the program’s behavior in any way. We call such transformations meaning-
preserving. Such transformations may include function inlining (replacing a function call
by the code of that function), dead code elimination (removing unused variables and code
fragments that never execute), and other optimizations performed either at compile-time or
at run-time. Knowing that such transformations preserve the meaning of the program is
important because the correctness of software relies not only on the program itself but also
on the correctness of optimizations made by the compiler. This has significant implications
for the writers of safety-critical applications such as programs used by air-traffic controllers
or nuclear power plant monitors.

Many language features and properties can be described in language-independent for-
mal systems such as the lambda calculus. Many transformations, especially the newer
ones, are not yet described and proven meaning-preserving in a formal system. Formaliz-
ing real-life language features and program transformations allows for formal and, ideally,
automated proofs of various safety properties, increasing software reliability. In addition
to proving meaning preservation of program transformations, such formal systems can be
used for proving other properties, such as a guarantee that a program is not going to ex-
ceed a certain memory limit or a function stack limit, that a certain variable has a value
that stays within a certain range, etc. Currently there exist systems that perform auto-
mated verification or proofs of certain properties for a fairly narrow set of specific systems.
However, constructing more general systems for proving program properties, especially
meaning preservation of optimizations, is still quite challenging.

In this research project we sought to develop a system for representing collections of
mutually-recursive components evaluated using a call-by-name strategy (see section 2.1
for details). This system is based on and is similar to the lambda calculus. However, for
simplicity in this paper we present the system and examples in a more traditional function
notation. Our goal was to develop a system in which certain kinds of transformations,
namely pre-evaluating program components at compile time, are guaranteed to be meaning-
preserving. For our system we have proven the basic properties that are necessary for such
transformations to be meaning-preserving. These properties can be used as a base case for
an inductive proof of meaning preservation of the entire system. Completing the proof of
meaning preservation is our future work.

In the following sections we introduce the calculus of records, explain what meaning
preservation means in a formal sense, and define the basic properties that are needed for
meaning preservation. We show a few examples that illustrate the basic properties. Proofs
of these properties require more complex notations and are not shown in this paper, they
are given in [2].

1

2 Calculus of Records and Meaning Preservation

2.1 Calculus of Records

A calculus is a formal system for modeling data and computations. It is used in the area of
computer science called semantics of programming languages to model program elements
(function calls, loops, etc.), just like mathematical calculus can be used for modeling phys-
ical laws. In this work we describe a calculus that we developed to model collections of
components, such as Java or C++ classes, libraries of functions, etc. In our calculus we
model these features by records. We use this calculus to describe and study optimizations
of different components and interactions of these optimizations.

To understand records, simply think of a class with methods and variables, each method
and variable with its own name. A class can be modeled by a record which is an unordered
collection of named components that can reference each other, including a mutually re-
cursive dependency. A class can be used by connecting it to some other class through
inheritance or a library. Therefore components of a record may be referenced from outside
the record. At this point we do not model private components of a class, so any component
may be referenced from outside the record.

As an example, consider a record:

[n 7→ 2, f(x) 7→ x + 3, m 7→ f(n)]

Here the component with the name n has a value 2, the second component represents a
function f(x) = x+3, and the last component is an application of the function f to n. The
symbol 7→ binds a name to its definition. For instance, n is defined as 2, and f(x) as x + 3.
In practice the function and its application can belong to different classes, and the above
record may be the result of linking together several classes. Note that in this example the
component m depends on both n and f(x), the other two component do not depend on any
other components.

The next example illustrates a possibility of mutual dependencies in records:

[isOdd(x) 7→ if (x == 0) then false else not isEven(x − 1),

isEven(x) 7→ if (x == 0) then true else not isOdd(x − 1), (1)

b 7→ isOdd(2)]

This record has two mutually recursive functions and a component b which is bound to
the result of applying one of the functions to a number 2.

The BNF (Backus-Naur form) definition of records given on Figure 1 has two levels:
the first one defines individual components, also called terms, the second level names these
components and groups them into records. We use M to range over terms and D to range
over records. One kind of terms is a constant, denoted by c. We use only booleans and
integer numbers in our examples, but more constants may be added as needed. Likewise,
we use only addition as an operation on integers, other operations can be trivially added.

Additionally, terms may contain a function applied to an argument (denoted by M1(M2)),
an if/then/else statements, or a special term called a black hole, denoted •, which will be
explained in section 2.2.

2

A record has one or more components surrounded by square brackets and separated by
commas. Component names in a record are called labels. Since some of the components
are functions, function parameters are a part of the label for that function. For instance, the
component label isEven(x) contains a function parameter x. We use L 7→ M to indicate
that a label L is bound to a term M . For instance, in example (1) the label isEven(x) is
bound to the term if (x == 0) then true else not isOdd(x − 1), and the label b is
bound to the constant false . The order of components in a record does not matter.

c ::= true | false |0|1|2|...
M ::= c | x | L | M1(M2) | M1 + M2 | M1 == M2 | if M1 then M2 else M3| •
L ::= l | l(x1, ..., xn)
D ::= [L1 7→ M1, . . . , Ln 7→ Mn]

Figure 1: Definition of Calculus of Records.

2.2 Evaluation and Transformation Steps

The calculus of records that we have designed describes records, a way records are eval-
uated, and transformations that can be done on records as optimizations. We describe
reduction - a step that simplifies (i.e. reduces) a record. The reduction follows the call-by-
name strategy explained in section 2.2.1. There may be several ways in which a record can
be simplified, some of which may reduce the same component in different ways.

2.2.1 Call-by-name Reduction Strategy

Reductions in our calculus follow a call-by-name reduction strategy. According to this
strategy, parameters of a function are passed to the function unevaluated. For instance, if
we have a function

int f (int x) {
return x + x;

}

If we call this function with a parameter 2 + 3, as in

int y = f(2 + 3);

then the expression 2 + 3 is copied into x unevaluated, so the return statement effectively
becomes return (2 + 3) + (2 + 3). Most programming languages use a more
familiar call-by-value strategy, when the expression (in this case 2 + 3) is first evaluated,
and then the resulting value is passed to the function. In our example under the call-by-
value strategy the return statement immediately turns into return 5 + 5.

While in most cases the two reduction strategies produce the same result, there are some
cases when the call-by-name strategy makes programs behave differently than the call-by-
value. For instance, suppose the function above is called with an argument that itself is a

3

function call: f(g(2)). If the function gmodifies a global variable (say, adds one to some
global counter), then call-by-name strategy will replace the return statement by return
g(2) + g(2), and the call to g will be made twice, hence the global counter will be
incremented twice. On the other hand, the call-by-value strategy will call g(2) only once
when the value of the parameter is evaluated and pass the result to the function. Therefore
the global counter will be incremented only once.

The record calculus applies the call-by-name strategy not just to function applications,
but also to substitution of record components. See sections 2.2.3 and 2.2.4 for details.

2.2.2 Evaluation and Non-evaluation Steps

There are two kinds of reduction steps we use to transformation components in our calculus.
The first kind models the program execution - these are steps that would be taken to evaluate
the program. Since our programs are records, i.e. consist of several components, the order
of evaluating components does not matter. However, at any given moment there is only
next element that needs to be evaluated in each component. The rules of evaluation are
given below:

1. if a component is an addition of two terms or a comparison of two terms (using ==),
then its operands are evaluated left to right, i.e. the evaluation of the second operand
does not start until the first one is evaluated.

2. if a component is a function applied to an argument, the argument immediately gets
substituted into the function.

3. for an if / else statement, the condition gets evaluated first, and then the if or
the else branch gets evaluated, depending on whether the condition is true or false.

If a record D1 evaluates to a record D2, we write this as D1 ⇒ D2.
For example, the following steps are all evaluation steps:

[f(x) 7→ x + 2, n 7→ f(3 + 5)] ⇒
[f(x) 7→ x + 2n 7→ 8 + 2] ⇒
[f(x) 7→ x + 2, n 7→ 3 + 5 + 2] ⇒
[f(x) 7→ x + 2, n 7→ 10]

The last record in the sequence is completely evaluated.
A detailed example of evaluating if / else statement is given in section 2.2.4.
Note that the evaluation rules specify only the order in which an individual component

is reduced. Different components in a record may be evaluated in any order. For instance,
the record [n 7→ 2 + 3, m 7→ if true then 3 else 5] is evaluated in one step to [n 7→
5, m 7→ if true then 3 else 5] if we evaluate the component with the label n, and to
[n 7→ 2 + 3, m 7→ 3] if we choose to evaluate the one bound to m.

Evaluation steps may also involve substitution if a component references a label and
needs the result of that label to continue execution. For instance, evaluating the component
bound to n in the record below requires substitution from a component bound to m:

[n 7→ m + 2, m 7→ 3 + 5] ⇒
[n 7→ 3 + 5 + 2, m 7→ 3 + 5]

4

Evaluation defines the way the program will be evaluated at run-time. However, our
calculus also models transformation steps that can be performed by the compiler to opti-
mize the record before it gets evaluated. These steps are called reduction steps and are
denoted →.

Note that the compiler may perform some of the same steps that the evaluation would
perform. Therefor, any evaluation step is a reduction step, which more formally is stated
as ⇒⊂→. There are also reduction steps that are not evaluation steps. We call them non-
evaluation steps and denote ↪→. The definition of ⇒ implies that →=⇒ ∪ ↪→.

Non-evaluation steps are the same step as evaluation steps, except they are performed
“out of turn”, i.e. on the elements of the term that do not satisfy the evaluation rules above.

For instance, the following reduction is a non-evaluation step since it reduces the argu-
ment of a function before applying the function. This contradicts the second rule defining
evaluation.

[f(x) 7→ x + 2n 7→ f(3 + 5)] ↪→ [f(x) 7→ x + 2n 7→ f(8)]

This example of non-evaluation reduces the if branch instead of reducing the entire
component to 2 + 4, as required by rule 3 of evaluation definition.

[x 7→ if true then 2 + 4 else 3 + 5] ↪→
[x 7→ if true then 6 else 3 + 5]

2.2.3 Term Reduction

A term reduction is a reduction that operates on an individual component, without inter-
acting with other components. If the element of a term that gets reduced satisfies one of
the three evaluation rules in section 2.2.2 then the term reduction is an evaluation step ⇒,
otherwise it’s a non-evaluation step ↪→. Recall that in either case it is a reduction step →
since →=⇒ ∪ ↪→.

For example:
[n 7→ 2 + 3] ⇒ [n 7→ 5]

is an evaluation step, whereas this reduction

[n 7→ (3 + 5) + (1 + 4)] ⇒ [n 7→ (3 + 5) + 5]

is not, since evaluation would reduce the first operand of the plus (3+5) before the
second one.

A term reduction can also apply a function to an argument, evaluate a condition of
if / else , or reduce the entire if / else statement if its condition is already evalu-

ated. As for the arithmetic operations, if the part of the term that gets reduced satisfies the
evaluation rules in section 2.2.2 then the reduction is an evaluation step, otherwise it is a
non-evaluation step.

5

2.2.4 Substitution

Programs may also require the substitution of certain components. We could have a situa-
tion like this:

[n 7→ m + 2, m 7→ 5]

Naturally, we would replace m in the first equation with 5, since m equals 5 to get:

[n 7→ 5 + 2, m 7→ 5]

Substitution allows us to substitute the name of a component by a term that the name is
bound to, as in the case above. The substitution is call-by-name, just like the term reduction
is. For instance, an unevaluated expression 3 + 2 is substituted for m here:

[n 7→ m + 4, m 7→ 3 + 2] → [n 7→ m + 4, m 7→ 3 + 2]

Substitution is also not limited to simple arithmetic operations. If a label refers to
a function, the function definition is substituted for the label, with the formal parameter
substituted by the actual parameter.

Notice that, similarly to the term reduction, if the substitution happens in a position
defined by the three evaluation rules then it is an evaluation step, otherwise it is a a non-
evaluation step.

The example below is a sequence of evaluation steps (both substitution and term re-
duction) evaluating the record given in example(1) in section 2.1. In the component b, the
function isOdd is called with a parameter 2. Then isOdd(2) calls isEven(1), which in
turn calls isOdd(0), at which point false is returned. false is the negated twice in the
returning calls of isEven(1) and isOdd(2), and the resulting value (also false) becomes
the new value of the component b. Below is the evaluation sequence:

[isOdd(x) 7→ if (x == 0) then false else not isEven(x − 1),
isEven(x) 7→ if (x == 0) then true else not isOdd(x − 1),
b 7→ if (2 == 0) then false else not isEven(1)] ⇒

[isOdd(x) 7→ if (x == 0) then false else not isEven(x − 1),
isEven(x) 7→ if (x == 0) then true else not isOdd(x − 1),
b 7→ not isEven(1)] ⇒

[isOdd(x) 7→ if (x == 0) then false else not isEven(x − 1),
isEven(x) 7→ if (x == 0) then true else not isOdd(x − 1),
b 7→ not if (1 ==) then true else not isEven(1)] ⇒

[isOdd(x) 7→ if (x == 0) then false else not isEven(x − 1),
isEven(x) 7→ if (x == 0) then true else not isOdd(x − 1),
b 7→ not not true] ⇒

[isOdd(x) 7→ if (x == 0) then false else not isEven(x − 1),
isEven(x) 7→ if (x == 0) then true else not isOdd(x − 1),
b 7→ true]

6

Note that the function definitions stay the same and may be used again if the record is
linked with another record that calls isOdd or isEven.

The following example illustrates a non-evaluation substitution step:

[m 7→ if true then 5 else n, n 7→ 4 + 3] ↪→
[m 7→ if true then 5 else 4 + 3, n 7→ 4 + 3]

2.2.5 Black Holes

Sometimes components depend on each other such that it cannot be meaningfully resolved.
Take for example the record: [x 7→ y + 5, y 7→ x]. If we tried to evaluate the component y,
we would quickly see that it is impossible:

[x 7→ y + 5, y 7→ x] ⇒
[x 7→ y + 5, y 7→ y + 5] ⇒
[x 7→ y + 5, y 7→ y + 5 + 5] ⇒ · · ·

The component y has an infinite number of 5s. The components in this system of
equations rely on each other such that they cannot be meaningfully resolved. In our calculus
instead of an infinite evaluation, the component evaluates in one step to a special symbol •
called a black hole:

[x 7→ y + 5, y 7→ x] ⇒ (2)

[x 7→ y + 5, y 7→ •]

Black holes can happen for two reasons in our calculus. The first is where a given label
depends on itself, such as in the above example or in the record x 7→ x.

The second reason is that one component references another component bound to a
black hole so that the label is in the position that needs to be evaluated next. For instance,
continuing example (2) above, we get

[x 7→ y + 5, y 7→ •] ⇒ [x 7→ •, y 7→ •]

Reduction to a black hole is considered to be an evaluation step only. The reason for
that is that a black hole may appear in a component as a result of substitution, but it does
not necessarily imply that the component can not be meaningfully resolved. Consider the
following example (here the substitution is a non-evaluation step):

It is important to note that not all components that depend on themselves will go to
black holes. Consider this example:

[n 7→ •, m 7→ if (2 > 3) then n else 5] ↪→
[n 7→ •, m 7→ if (2 > 3) then • else 5] ⇒
[n 7→ •, m 7→ 5]

Likewise a component may depend on itself in a way that does not make it into a black
hole (here y is another component of the record):

[x 7→ if (y == 3) then x else y]

The notion of a black hole was first introduced by Ariola and Klop in [1].

7

3 Meaning Preservation

3.1 Meaning of a Record

A compiler transformation is meaning preserving if it does not change the behavior of a
program. In our calculus the behavior of a record is defined by the result of its evaluation.
For instance, the record

[isOdd(x) 7→ if (x == 0) then false else not isEven(x − 1),

isEven(x) 7→ if (x == 0) then true else not isOdd(x − 1),

b 7→ isOdd(2)]

evaluates to

[isOdd(x) 7→ if (x == 0) then false else not isEven(x − 1),

isEven(x) 7→ if (x == 0) then true else not isOdd(x − 1),

b 7→ false],

as shown in section 2.2.4. Therefore, the meaning of this record is that its components
isOdd(x) and isEven(x) are functions (isOdd(x) returns true when its parameter is odd,
and false otherwise, and isEven(x) returns true and false the other way around), and the
component b is false.

For a calculus to be meaning preserving, it has to be the case that any reduction step
(evaluation or non-evaluation) preserves the record’s behavior.

Since there is more than one way to evaluate a record by evaluating its different com-
ponents, we need to show that we get the same record at the end. This property is called
confluence of evaluation and is proven in section 3.3.

It would have been desirable to show the same property for the general reduction step
→: if there are two different ways to reduce a record, then there is always a way to reduce
the two results to the same record. This property is called confluence. However, confluence
of → does not hold in our calculus, as shown in section 3.2. Instead we were able to
show two more limited properties that deal with interactions between a non-evaluation and
an evaluation steps. These properties, which we call Basic Strong Lift and Basic Strong
Project, and their relation to meaning preservation are discussed in section 3.4.

3.2 Non Confluence of Reduction in the Calculus of Records

Confluence of a reduction means that if this reduction can reduce a record in two different
ways, then these two results can be reduced so that they end up the same.

For example:
[f 7→ g + 2, g 7→ 3 + 5]

This can be evaluated in two ways. The first one yields:

[f 7→ 3 + 5 + 2, g 7→ 3 + 5]

8

The second one yields
[f 7→ g + 2, g 7→ 8]

Now it is fairly intuitive how these solutions can be brought to an equal solution. The
two new records will eventually be [f 7→ 13, g 7→ 8]. For the purposes of being precise, I
will show how this happens.

The first record is reduced like this:

[f 7→ 3 + 5 + 2, g 7→ 3 + 5] →
[f 7→ 10, g 7→ 3 + 3] →
[f 7→ 10, g 7→ 8]

The second one is reduced to the same record:

[f 7→ g + 2, g 7→ 8] →
[f 7→ 8 + 2, g 7→ 8] →
[f 7→ 10, g 7→ 8]

These two records can be reduced to the same solution. Based on this example, one
might think that reduction → is confluent in our calculus. However, confluence does not
always hold. Sometimes records can be reduced in two different ways, and these reductions
will be such that they can never be made equal to each other. For example, consider the
record:

[f(x) 7→ g, g(y) 7→ f]

This record can be reduced in two different ways. The first one yields:

[f(x) 7→ f, g(y) 7→ f]

The second yields:
[f(x) 7→ g, g(y) 7→ g]

There is no way to bring these two records to a new, equal state. If you can reduce a
record in two different ways such that the two results can never be brought together, then
the reduction → is said to be non-confluent.

3.3 Confluence of Evaluation

Even though the general calculus reduction → is not confluent, its subset evaluation ⇒ is
confluent. This means that if a record is evaluated in two different ways, that the resulting
records can eventually be evaluated to the same record.

For example, given a record [y 7→ x + 5, x 7→ 3 + 3], the final result of evaluation is
[y 7→ 11, x 7→ 6] no matter in what order we evaluate the two records. We could substitute
3 + 3 into the first component first, or we can evaluate x first and substitute 6 in after
that. Confluence of evaluation is an essential property for meaning preservation because it
guarantees that the evaluation step itself cannot change the meaning of a record (recall that
the meaning is defined in terms of the final result of evaluation, see section 3.1).

Here is a more extended example. The record is evaluated two different ways, but both
evaluations end up as the same record in the end.

9

[m 7→ n + 2, n 7→ 3 + 5] ⇒
[m 7→ 3 + 5 + 2, n 7→ 3 + 5] ⇒
[m 7→ 10, n 7→ 3 + 5] ⇒
[m 7→ 10, n 7→ 8]
[m 7→ n + 2, n 7→ 3 + 5] ⇒
[m 7→ n + 2, n 7→ 8] ⇒
[m 7→ 8 + 2, n 7→ 8] ⇒
[m 7→ 10, n 7→ 8] ⇒

The proof of this property involves considering all possible cases of the two evaluation
steps, and is not given here. See [2] for details.

3.4 Basic Strong Lift and Basic Strong Project

Our goal is to show that a transformation step does not change the meaning, or “behavior,”
of a record. Since evaluation steps are confluent, we only need to show that non-evaluation
steps do not change the meaning of a record. Since the meaning is defined in terms of
the result of evaluation, as a minimum we need to show that non-evaluation steps preserve
evaluation steps and that after taking an evaluation step and a non-evaluation step from the
same record we can bring the results back together by some sequence of reduction steps.

The two properties that deal with such interactions between evaluation and non-evaluations
are basic strong lift and basic strong project defined below. These properties involve a sin-
gle evaluation step and a single non-evaluation steps. The extensions of these properties
to a sequence of evaluation steps are called strong lift and strong project, respectively, and
were introduced in [5]. Historically strong lift and strong project are, in turn, generaliza-
tions of the properties lift and project, first introduced in [4] and discussed in detail in [3].
Strong lift, strong project, and confluence of evaluation together imply meaning preserva-
tion of the calculus. The basic strong lift and the basic strong project can be used as base
cases for the strong lift and the strong project properties.

Let us define ↔ as a sequence of forward and backward reduction step, i.e. D ↔ D ′

if and only if there are records D′

1, D
′

2, · · ·D
′

n
, n ≥ 2, where D′

1 = D, D′

n
= D′, and

D′

i
→ D′

i+1 or D′

i+1 → D′

i
for all i.

Basic strong project. Given D1 ⇒ D2 and D1 ↪→ D3, there exists D4 such that
D3 ⇒ D4 and D2 ↔ D4.

Basic strong lift. Given D1 ⇒ D2 and D2 ↪→ D3, there exists D4 such that D1 ⇒ D4

and D4 ↔ D3.
Here are a few examples that illustrate basic lift and basic project. Note that they can

serve as examples of both properties, depending on which of the two evaluation steps is
considered to be the given one, and which one is the constructed one. For instance, in the
first example below if we assume that we are given the steps [n 7→ m + (2 + 3), m 7→ 1] ↪→
[n 7→ m + 5, m 7→ 1] and [n 7→ m + (2 + 3), m 7→ 1] ⇒ [n 7→ 1 + (2 + 3), m 7→ 1], then
the rest of the reductions complete the example of the basic strong project property, where
D4 = [n 7→ 1 + 5, m 7→ 1]. On the other hand, if you are given [n 7→ m + (2 + 3), m 7→
1] ↪→ [n 7→ m + 5, m 7→ 1] ⇒ [n 7→ 1 + 5, m 7→ 1], then the remaining steps complete
the basic strong lift example, with D4 = [n 7→ 1 + (2 + 3), m 7→ 1].

10

[n 7→ m + (2 + 3), m 7→ 1] ↪→
[n 7→ m + 5, m 7→ 1] ⇒
[n 7→ 1 + 5, m 7→ 1]
[n 7→ m + (2 + 3), m 7→ 1] ⇒
[n 7→ 1 + (2 + 3), m 7→ 1] ↪→
[n 7→ 1 + 5, m 7→ 1]

Below is an example with a black hole:

[n 7→ n + (2 + 3)] ↪→
[n 7→ n + 5] ⇒
[n 7→ •]
[n 7→ n + (2 + 3)] ⇒
[n 7→ •]

This example illustrates a function. Note that the resulting steps involve a duplicated
evaluation step since 2 + 3 was copied unevaluated.

[f(x) 7→ x + x, n 7→ f(2 + 3)] ↪→
[f(x) 7→ x + x, n 7→ f(5)] ⇒
[f(x) 7→ x + x, n 7→ 5 + 5]
[f(x) 7→ x + x, n 7→ f(2 + 3)] ⇒
[f(x) 7→ x + x, n 7→ (2 + 3) + (2 + 3)] ⇒⇒
[f(x) 7→ x + x, n 7→ 5 + 5]

The proof of these properties involves considering all possible combinations for evalu-
ation and non-evaluation steps, and is not given here. See [2] for details.

4 Summary of Results and Future Work

We have developed a call-by-name calculus of records and have proven its properties listed
below:

• Confluence of evaluation

• Basic strong lift

• Basic strong project

Our goal is to prove that any transformation of this calculus that involves any sequence
of forward and backward → step preserves the meaning of a record, as defined by the
evaluation ⇒. The relationship between the three properties proven in this calculus and the
meaning preservation property is explained in detail in section no 3.4.

The future work on this paper will be to take the three properties that we have proven
and then combine them inductively for a proof of strong lift and project which in turn
implies the meaning preservation.

11

References

[1] Z. M. Ariola and J.W. Klop.Cyclic Lambda Graph Rewriting. In Proc. of the Eight
IEEE Symposium on Logic in Computer Science, Paris, July 1994.

[2] Emily Christiansen, Elena Machkasova The call-by-name calculus of records and its
basic properties. Technical Report, UMM, 2006.

[3] Elena Machkasova Computational Soundness of Non-Confluent Calculi with Applica-
tions to Modules and Linking, PhD Dissertation, April 2002, Boston University.

[4] Elena Machkasova and Franklyn A. Turbak A calculus for link-time compilation. In
Programming Languages and Systems, 9th European Symp. Programming, volume
1782 of LNCS, pages 260-274 Springer-Verlag, 2000

[5] J. B. Wells, Detlef Plump, and Fairouz Kamareddine.Diagrams for meaning preserva-
tion. In Rewriting Techniques and Applications, 14th Int’l Conf., RTA 2003, volume
2706 of LNCS, pages 88-106. Springer-Verlag, 2003.

12

