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Abstract

Dealing with students  of  diverse  majors,  mathematical  background and programming
experience  presents  a  challenge  to  interdisciplinary courses  such  as  “Introduction  to
Computational Science.”  The author’s solution to this problem was to base the course on
a sequence of interesting and illustrative problems/projects.  This approach allows  the
physical models, mathematical models, numerical techniques, parallelization techniques
and  visualization  techniques  appropriate  to  the  problem  to  be  presented,  discussed,
implemented, and digested in context.  The project orientation provides a welcome focus
for the background mathematics, numerical techniques and programming details.  

The course was offered in the Fall  2005 semester.  The project-oriented strategy was
successful for the expected reasons and the course was able to excite students with a wide
range of  backgrounds.   They were  able  to  complete  the  projects  and  understand the
modules  without  being  overwhelmed  by  whatever  portion  of  the  mathematics  or
programming in which they were less prepared than their peers.



Background

Among  the  many  factors  that  have  lead  the  department  to  investigate  the  area  of
computational science as a possible emphasis for our program there are three we wish to
mention  in  this  paper.   They are  firstly,  the  nature  of  our  department,  secondly,  the
possibility of cooperation with our colleagues in the other sciences, and thirdly, the way
in which computational science combines multiple aspects of our discipline and related
disciplines.

Our department is a combined mathematics, computer science and physics department.
Many of our faculty teach in more than one of these areas;  many of our students major or
minor in more than one of these areas.  Being in the same department, our faculty often
have combined interests in these areas.   Faculty collaboration within the department and
with others outside the department is becoming more common.  A computational science
minor  or  emphasis  will  enhance  these  strengths  of  the  department  and  provide
opportunities  for  students  to  add  value  to  their  science  majors  with  computational
methods or to their computing majors with scientific applications.

At  our  institution,  the  faculty  is  grouped using  a  three-division  model:   the  social
sciences, the humanities/fine arts and the natural sciences.  To take best advantage of this
political  structure,  we in  the natural  sciences  can use interdisciplinary programs such
biochemistry,  bioinformatics,  and  computational  science  to  strengthen  bonds  and
communication  lines  across  departmental  boundaries  and  provide  collaboration
opportunities for faculty and student research.  

Finally, and perhaps most importantly, computational science seems a very natural way to
integrate multiple areas within the department.  Computational science combines physical
models,  mathematical  models,  programming,  high  performance  computing,  and
visualization.  Each of these topics is of independent interest within the department.  An
emphasis in computational science would bring these topics into close cooperation and
allow opportunities for collaboration and cross-fertilization.

For example, one of our on-going projects involves 3-D stereoscopic visualization (Zelle
and  Figura).   This  group  of  faculty  and  students  is  constantly  on  the  lookout  for
applications  to  visualize.   Computational  science  would  provide  them with  data  and
applications  in  need  of  visualization.   Reciprocally,  their  need  for  applications  to
visualize  would  spur  the  computational  science  group  to  consider  attacking  new
problems. 

Similar cross-fertilization has already occurred between an astronomy professor and the
visualization group and between a neuroscience professor and the visualization group.
We hope that computational science can enhance these collaborations and provide the
opportunity for more. 
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The first course to be developed when creating a computational science program, whether
a major, minor or an emphasis, is an introductory course that can be used as a platform to
introduce the concepts needed in the subsequent courses, and provide techniques that can
be  useful  in  solving  problems  in  advanced science  courses.   It  also  needs  to  attract
students to the area who are already involved in the major programs.  We believe that it
must be accessible to science majors, mathematics majors, and computing majors alike.
The diversity of preparation in these students presents the major challenge for such a
course.  If students are going to take the course early enough to be useful, the instructor
can  expect  at  most  a  semester  or  two  of  programming  and  a  semester  or  two  of
mathematics.  The thesis of this paper is that using a project-orientation for the course can
alleviate many of the difficulties that this diversity presents.

The Problems Faced

The diversity of preparation among the students presents the most significant problem for
the would-be instructor of an introductory computational science course.  We want it to
be taken early and we want it  to be open to a wide range of science and computing
majors.  This being the case, and having to work in the context of a four-year liberal arts
college, we cannot expect students to have already taken more than a few basic courses in
programming  and  mathematics.   Many computational  science  courses  start  with  the
assumption that students have already taken such courses as linear algebra and differential
equations  on  the  mathematics  side,  multiple  courses  including  a  numerical  methods
course on the programming side, and are well into a science major of some type.  A small
school with limited faculty resources cannot run courses with deep prerequisite structures
because the student numbers will not support the frequency of offerings that would be
necessary.  Accordingly, one of our goals for this class was to minimize, within reason,
the number and level of the prerequisites.  

Local computer resources can also be a problem.  In our case, we were limited to a lab
consisting of nineteen Pentium-4 machines running Debian Linux.  A later section of this
paper  discusses  the  software  used  to  implement  the  parallel  environment,  and  our
visualizations.   It  suffices at  this  point  to  say we used MPI through pypar,  a Python
implementation for parallelization.  We ran this on top of the lam network-parallelism
system.  For most of the visualizations we used either VPython or plain vanilla ppm files.
On the numerical computation side we used the Numeric package for Python.  All of
these  software  products  are  open-source  and  are  available  free  of  charge  from their
respective web sites and other sources (see reference section).

Why a Project Orientation

When designing the course, we felt our main object was to make it accessible to a wide
variety of students.  In searching for a text we discovered that each one we looked at was
focused for only narrow portion of our perspective audience.  There were texts so heavy
on the theory of differential equations that they would have disheartened any non-math
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major.  There were texts so heavy on the parallel programming details that they would
have done likewise to any non-computing major.  We found none that would make the
science majors comfortable at the start.  Furthermore, we intended to use Python as main
language for the course.   This  is  the language we use in our first  year programming
sequence and would be the most comfortable for the students.  We did not want to force
students to learn a whole new language.  With this in mind we also did not want a text
that provided its examples in a language new to the majority of the students. So, while we
put many resources on reserve for student use, we did not require them to purchase a
computational science text book.    

Since finding a text that would lay out the course for us was doomed, we decided to use
the sequence of projects  that  we wanted the students to implement  as our organizing
principle.  In the end, this decision turned out to be the most critical one for the course.  It
allowed us to achieve our most important goal and had some additional benefits.  

The  project-oriented  approach  modularizes  the  course  so  that  each  project  could  be
approached more or less independently of the others.  This allowed students to focus on
the projects more closely aligned with their interests and their strengths.  Success on these
near and dear projects lead to success on the others they found less interesting or more
challenging.  The goal of making the class accessible to a wide audience was, for the
most part, attained by this means.

One  of  the  additional  benefits  from the  independent  nature  of  the  projects  was  that
students could continue to work on previous projects after the class had moved on to a
new one.  This allowed slower students to continue working on the basic project and the
better students to enhance earlier projects.

Another of the additional benefits came from the fact that any single project could be
proposed at a variety of levels.  For each project there was a basic version that followed
more or less readily from the material given in class.  With the basic version complete the
students could then ‘enhance’ the project in any or all of the areas of better numerical
techniques, larger problem instances, better user interfaces, better visualizations and more
sophisticated  parallelization  techniques.   On  the  one  hand,  the  basic  level  gave  all
students the experience and satisfaction of producing a working solution.  On another, the
enhancements gave the students the opportunity to explore the topic further and add depth
to their understanding.  The grading scheme encouraged students to enhance at least a
couple of the projects beyond the basic level.

The Projects Selected

We attempted to select projects that would exhibit variety in subject, numerical method,
parallelization method and visualization method. The goal was to have students use a
variety of  tools  and  to  offer  problems  from a  number  of  different  mathematical  and
scientific disciplines.  
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For  the  first  project  we  examined  Lotka-Volterra  predator-prey  model  (Sharov;
Mathews).   This  project  from  biology offered  a  relatively  simple  set  of  differential
equations to solve and had solutions that were 2-dimensional.  We could visualize the
solutions with simple graphs showing either or both of the populations as a function of
time  or  the  plot  the  two  against  each  other  to  demonstrate  the  cyclic  nature  of  the
solutions.  Since this project did not lend itself to parallelization, it was a good one to
start with while learning the basics of parallel programming as a separate thread in the
class.   After  solving  the  given  instance  the  students  could  enhance  the  project  to
investigate other initial conditions, other rate parameters or even three species models.
The later would be easier to visual after we had done the 3-D modeling in VPython in the
third project.

In parallel (pun intended) but independently of the Lotka-Volterra project, we introduced
the basics of parallel  programming using lam/mpi and pypar.  This cluster-computing
model  would  allow us  to  build  parallel  applications  to  speed-up later  projects.   The
students did simple “hello world” type routing in each of four virtual network topologies:
hypercube, grid, ring and tree.  This allowed coverage of some basic parallel processing
content and gave them an introductory experience using pypar. 

The next project was to reproduce the Lorenz attractor in 3-D (Bourke; Lorenz).  The
main purpose of this project was to introduce 3-D graphics using VPython.  The classic
Lorenz attractor is the solution of a trivariate set of differential equations and as such was
a natural for 3-D visualization.  We used VPython to produce 3-D images that could be
viewed in stereo using either red-blue glasses or polarizer glasses.  The red-blue images
could be viewed on any color screen.  The polarized images could be viewed using one of
our in-house dual projection systems (Zelle & Figura).  Since this project did not benefit
from parallelization and introduced a new visualization technique, it fit well here early in
the course at the same time students were working out the previous network topology
project.

The next project used actual data gathered by the forty-foot educational-use telescope at
the National Radio Astronomy Observatory – Green Bank (Heatherly).  We used radio
signal strength data acquired as the telescope swept up and down along the azimuth while
the sky rotated by.  The Cygnus A radio source was the target.  The students were given
the signal strength at a collection of points in a saw-tooth pattern covering a small section
of sky.  The project was intentionally left very open ended.  Instructions were along the
lines of “Create a visualization that illustrates the features present in this data.”  Some
possibilities were discussed and a few simple examples were shown to illustrate a few
starting points.  Student interest lead to a discussion of Delaunay triangulations and other
useful  tools  for  this  type of  project.    After  that  discussion we discovered  Delaunay
triangulation  was  a  built-in  feature  of  VPython,  something  we  were  unaware  of
previously.  The students came up with some very clever and unexpected techniques.
With this project we introduced PPM (portable pixel map) files as an easy-to-generate,
cross-platform image format.

By  mid-term  we  were  ready  for  an  application  that  would  benefit  from  parallel
programming methods.  We had done a few simple things with parallel programming and
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moving on to a visualization of Newton’s Basins of Attraction allowed us to introduce a
simple  master-slave  model  of  parallel  computation.   In constructing an image of  the
basins, we created slave processes that could create one horizontal line of the image and a
master process to apportion the tasks dynamically and reassemble the final image.  The
advanced version of the project allowed the user to draw a rectangle across a portion of
the image and dynamically zoom-in on the selected region.  With approximately sixteen
slave processors, the response time was quite usable at just about 7 seconds to generate an
800x800 pixel image.  The technique could be extended quite easily to a wide variety of
Mandelbrot, Julia and fractal type images.

Our second major project involved solutions to boundary-value problems for the two-
dimensional Laplace equation.  While many applications are possible, we chose to think
of our problem as one of calculating steady state temperatures.  We envisioned a room
with a fireplace, a few windows and insulated walls.  We set the boundary values and
solved the implied system of equations using a standard iterative method.   The basic
version of the project used a mesh (4 nearest neighbors) model of parallelization with
each of N = n2  processes computing 1/N th of the image and sharing boundary values
after each computation pass. The final result was visualized in a variety of ways by the
different student teams.  The simplest technique was using ppm files.  One of the teams
extended the project to a three dimensional room, using the 3-D Laplace equation over a
3-D grid and visualized the result by showing slices of the room under mouse control. 

Our  third  and  final  major  project,  a  personal  favorite  of  the  instructor’s,  was  the
simulation of colliding (more accurately, the close approach of) galaxies.  Using simple
three-dimensional Newtonian physics, the students created galaxies of stars orbiting a
galactic center.  To reduce computational complexity, we placed a high mass black hole
at the center of each galaxy and considered only interactions between stars and the black
hole and not betwixt the stars themselves.  When the students were able to create single
galaxies that appeared to behave normally, they then created two or more and put them
into relative motion and watched the interactions between these galaxies.  Unfortunately,
the  best-known  parallelization  techniques  for  this  problem  are  for  shared-memory
multiprocessing and are not useful for the message-passing model we were using.  With
little time left in the semester it was not possible to explore parallelization of this model.
Nor was there time to consider pair-wise stellar interactions.  We believe that we would
have had the computational power necessary to consider the all the pair-wise interactions
for simple instances of galaxies but time ran out in the semester.  VPython provided the
3-D visualizations for this project.  Students could again produce stereo images in either
red-blue or polarized modes.  In fact, with the stars in motion, the 3-D effect was quite
striking.  With even a few thousand stars the motion was fairly smooth and quick.
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The Six-Stage Approach

Each project  was  developed using a  six-stage approach.   The  stages  of  development
included, 

(1) understanding the physical model, 
(2) developing the mathematical model,
(3) adapting appropriate numerical techniques to solve the mathematical model, 
(4) considering possible visualization tools available, 
(5) implementation and testing, and 
(6) exploring possible parallelization techniques to allow larger problem instances

to be solved (serial versions of small instances were usually developed first).
  

Since the projects were quite diverse, not every stage was equally developed for every
project. The projects were based on well-known computationally intensive problems from
a variety of mathematical and scientific areas.  As such, the first three stages were not
usually developed anew but adapted to the students’ various backgrounds.

As seen above, the physical models were taken from astronomy, biology, meteorology,
physics,  chaos,  and  mathematics.   The  plan  to  include  a  chemistry  application  was
dropped since the class make-up did not include any chemistry students, and time was at
a premium.

Most of the mathematical models involved partial differential equations.   None of the
students had taken a differential equations course and in fact only a minority had taken
multivariate  calculus.   The  project-orientation  allowed  us  to  discuss  the  particular
equations in context and very concretely.  Because of this the students seemed able to
understand the significance of the various component parts of the equations even though
everything was new to them.  They were subsequently able to discuss the meanings of the
systems of equations in class and on tests.  We believe that one of the principal strengths
of the project-oriented approach is that students that would have been unable to cope with
a course that started with a more abstract approach to differential equations were however
quite comfortable dealing with them in context  and could appreciate their ubiquity in
scientific computation.  For our projects involving systems of differential equations, the
Lotka-Volterra simulation, the Lorenz attractor, and galaxies simulation, the Runge-Kutta
quadrature method was sufficient for our purposes.  For the Laplace boundary problem
we used a Gauss-Seidel Iteration Method.  For the enhanced versions of that project we
discussed the possibility of using an over-relaxation technique.

Computational Tools Used

The  introductory programming sequence  at  Wartburg  is  taught  in  Python  (“Python”;
Zelle).   To minimize the learning curve for the students,  and because we believe that
Python  is  a  powerful  and  easy to  use  platform,  we  looked  for  tools  that  would  be
available as Python libraries.  Having had success using MPI, Message Passing Interface,
in prior parallel processing classes, we compared a couple of Python interfaces for MPI,
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pypar  and  pyMPI  (Neilson;  Miller).   We  settled  on  pypar.   While  not  a  full  MPI
implementation, it was easy to use and contained the portions of MPI that we expected to
use in the course.   It worked out well for the course but for more serious applications
would  have  been  inadequate.   This  is  mainly  because  it  lacks  the  ability  to  create
processes dynamically.  

This MPI implementation  runs on top of  lam,  Local  Area Multicomputer,  a  network
framework originally developed at the Ohio Supercomputer Center (“LAM/MPI”).  The
most intricate part of the lab setup for the course was installing and configuring the lam
component of the system.  Once configured for the system and after each student was
configured,  it  ran  seamlessly  throughout  the  semester  requiring  no  additional
maintenance.  

The  computer  lab  that  was  used  as  the  resource  for  the  course  contained  nineteen
relatively standard  Pentium-4 machines  running Debian  Linux.   With  lam and pypar
students were able to start up multiple processes that were allocated evenly to all  the
available machines.  Since the lab machines are connected through a high-speed switch,
performance within the lab was good.  The communication delays were all  local and
timing experiments showed that they behaved as expected.

The Numeric  package for  Python provided array data  type and matrix  operations  for
projects.  Numeric was also built into the VPython package (see next section), so it was
convenient to use it in parallelization component of the projects as well (“Numerical”;
“VPython”).

For the most part, our small cluster of standard machines was quite adequate to the task.
Only the galaxy collision  project  would  have used more horsepower  if  the  enhanced
versions were to be attempted.  Some students attempted to create animations of a few of
the simulations.   They also found that more horsepower would have allowed them to
generate more frames using a smaller time step and thus would have yielded better frame
rates.

Visualization Tools Used

For the basic level projects, we limited ourselves to the resources available in VPython,
ppm  files,  and  an  elementary  graphics  package  that  comes  with  the  text  for  our
introduction to programming course.  We made use of many features found in VPython.
The first was the module to create graphs of functions. We were able to plot data on an x-
y coordinate system with all of the labeling, scaling and other features needed for our
projects. 

For  most  of  the projects  we used  VPython’s  3-D modeling features.   VPython plots
various  mathematical  objects  in  three-space  with  options  for  coloring,  labeling  etc.
Students were able to display these objects statically or set them in motion using simple
programming techniques.  Its stereo modes also allowed us to view stereo images with
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either red-blue or polarized glasses.  The students found that the stereo images provided a
greater understanding of the nature of the output.

We used .ppm files for saving flat images (Poskanzer).  The transportability and ease of
generation of these files was ideal for the course.  It allowed results to be transferred from
the lab to other platforms, to the students’ own machines and to the instructor’s machine.
They could easily be written by one part of the program and read back in and displayed by
another part.  They were also compatible with the elementary graphics package from CS1
that was mentioned earlier.

A few student teams experimented with creating movies of the simulations.  In particular,
one  team  attempted  to  make  a  movie  file  using  output  from  the  galaxy  collision
simulation.   Another  created  a  time  lapse  of  the  Laplace  iteration  to  show (as  they
thought) heat “flowing” from the fireplace and warming up the room. 

Results

In the first offering in Fall 2005, nine students of very diverse backgrounds enrolled in the
course.  It included students with only one programming course and senior CS majors
with many such courses. It included math majors and a student with no college calculus
courses.   They  were  majoring  in  computer  science,  computer  information  systems,
biology, biochemistry, physics and engineering.

Despite the diversity, all were able to get involved with the material.  All were able to
complete the basic projects.  Most were able complete enhanced version of at least two
projects.  One exceptional student completed enhanced versions of all the projects.  We
believe that if we had used a traditional textbook-based approach, most of the students
would not have connected with the material so nicely and would not have achieved as
much as they did.

In  addition  to  the  projects,  students  also  wrote  two  short  papers;  one  on  a  current
scientific computing project they found on the internet or the news, and a second on the
computing  resources  at  one  of  the  supercomputing  centers  working  on  scientific
computation.  These short papers along with a short presentation of each added a non-
programming component to the course and exposed the students to the  real  world of
scientific computing.

We were very pleased by student reaction to the course.  One student on their anonymous
course evaluation wrote, “I loved the approach. In all  honesty this  has been the most
interesting/fun class I have taken at Warburg.  I learned more than in any prior course!”
Another stated, “I like the project oriented concept. (Even though it was) more work than
I had planned … I really enjoyed it. My favorite class this semester.” A third said, “I liked
the approach.  The idea of learning about something, how it works, then applying it is
something I enjoy.”  And finally one recorded, “I liked the concept of a project oriented
approach with background on each topic.”  There were no negative comments on the
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evaluations.

Conclusion

The project-oriented approach ameliorated some of the problems of a diverse student
audience.  The mathematical and programming techniques and models are given context
and largely demystified for the students.  A deep understanding of the derivations and
theoretical aspects of the mathematical techniques used for particular projects were not
necessary for the student to understand how to model a problem, and to implement and
interpret a solution.  The students appreciated the immediacy of learning a technique and
immediately applying it to an interesting problem.

References

Bouke, Paul. The Lorenz Attractor in 3-D.  Swinburne University of Technology. 22 Mar.
2006.  <http://astronomy.swin.edu.au/~pbourke/fractals/lorenz>

Heath, Michael. Scientific Computing: An Introductory Survey. 2nd ed.  Boston: McGraw-
Hill, 2002.

Heatherly, Sue Ann. The Forty Foot Telescope. National Radio Astronomy Observatory –
Green Bank. 22 Mar. 2006. <http://www.gb.nrao.edu/epo/forty.shtml>

LAM/MPI Parallel Computing.  Indiana University.  22 Mar. 2006.  <http://www.lam-
mpi.org>.

Lorenz, Edward. “Deterministic Nonperiodic Flow.” Journal of Atmospheric Sciences 20
(1963): 130-141.

Lucquin, Brigitte, and Oliver Pironneau.  Introduction to Scientific Computing.
Chichester UK: John Wiley & Sons, 1998. 

Mathews, John.  Internet Resources for the Lotka-Volterra Model. CSU-Fullerton. 22
Mar. 2006.  <http://math.fullerton.edu/mathews/n2003/lotkavoltera/Lotka-
VolterraBib/Links/Lotka-VolterraBib_lnk_1.html>

Miller, Patrick. “pyMPI – An Introduction to Parallel Python Using MPI.” Livermore
National Laboratories.  11 Sep. 2002.  22 Mar. 2006
<http://www.llnl.gov/computing/develop/python/pyMPI.pdf>

Nielson, Ole. Pypar. 29 Dec. 2004. 22 Mar. 2006.
<http://datamining.anu.edu.au/~ole/pypar>.

Numerical Python Homepage. Source Forge. 22 Apr, 2006. <http://numeric.scipy.org>.

10



Pachero, Peter S. Parallel Programming with MPI. San Francisco: Morgan Kaufmann,
1997. 

Poskanzer, Jef. PPM File Format.  Source Forge. 3 Oct. 2003. 22 Mar. 2006.
<http://netpbm.sourceforge.net/doc/ppm.html>.

pyMPI: putting the py in MPI. Source Forge. 22 Mar. 2006.
<http://pympi.sourceforge.net>.

Python Programming Language – Official Website.  22 Mar. 2006.  <http://python.org>.

Sharov, Alexei. Lotka-Volterra Model. 12 Jan. 1996. 22 Mar. 2006.
<http://www.gypsymoth.ento.vt.edu/~sharov/PopEcol/lec10/lotka.html>

VPython.  22 Mar. 2006. <http://VPython.org>

Wilkinson, Barry and Michael Allen. Parallel Programming: Techniques and
Applications Using Networked Workstations and Parallel Computers. 2nd ed.
Upper Saddle River, NJ: Pearson-Prentice Hall, 2005.

Zelle, John. Python Programming: An Introduction to Computer Science.  Wilsonville
OR: Franklin Beedle A& Assoc., 2004.

Zelle, John and Charles Figura. “Simple, Low-Cost Stereographics: VR for Everyone.”
SIGCSE ’04 Proceedings. SIGCSE Bulletin 36.1 (Mar. 2004): 348-352.

11


