
IMPROVING OPTIMISTIC CONCURRENCY
CONTROL USING

HYBRID TECHNIQUES OF SNAPSHOT
ISOLATION AND ROCC

Samidip Basu and Syed M. Rahman
Department of Computer Science

North Dakota State University
 258 IACC, Fargo, ND 58105

Email: {Samidip.Basu, Syed.Rahman}@ndsu.edu

Abstract

Concurrent access to shared entities is common for popular database applications and a
hotspot for arising problems in the database management system. By far, there are many
techniques to overcome the problems; unfortunately, none of them can handle all possible
situations. In this paper, we propose a hybrid approach combining two concurrency
control mechanisms - Snapshot Isolation (SI) and Read-commit Order Concurrency
Control (ROCC). We try to take the best of each method and implement concurrency
control with the addition of a simple data structure. Our approach should reduce the stress
on developers and on the client-side application.

[Key words: Visual Studio.NET, ADO.NET, Snapshot Isolation, Read-commit Order
Concurrency Control]

1. Introduction

Concurrency control deals with the issues involved in allowing multiple
simultaneous accesses to shared entities. Atomicity, consistency, and isolation of
transactions are achieved in the database through concurrency control mechanisms.
However, concurrency will probably emerge as a bigger problem as we move towards
using more and more database applications. Although much of this paper talks about
concurrency control in the .NET perspective, the concepts discussed should be applicable
to other environments as well.

Visual Studio.NET is an Integrated Development Environment (IDE) [3], which
makes application development very easy. The underlying .NET framework provides the
common environment for the execution of applications. Visual Studio.NET allows
development of Windows or Web-based or other applications, all of which can
communicate with a database; local or remote. The component of the .NET framework
that allows applications to connect to a database is called ADO.NET (ActiveX Data
Objects) [3]. This technique uses classes that are pre-defined in the .NET framework
class library. The basic data structures/objects used in connecting to a database are
described through the following diagram (Fig 1):

Data table Data Adapter

Command

Connections Database

.NET Data Provider

Database server

Dataset

Figure 1: ADO.NET Architecture

The .NET trademark in Database connectivity is the Dataset [3]. The key feature of
the ADO.NET Dataset is that it can be used as a self-contained disconnected data store.
The users of the applications only deal with the dataset, while it in turn, interacts with the
underlying database, when required. This reduces frequent visits to the database and
speeds up applications. When the user makes any changes to the data he/she has read
from the database, the changes are stored in the dataset until the user commits, at which
point, the changes are written back to the database.

Datasets are the biggest strength of ADO.NET [3], as they implement the
disconnected data architecture, so typical to .NET. The connection object only maintains
connection to the database for as long it takes to populate the dataset with data or to write

2

back changes to the database. After that, the connection is severed and the dataset is on its
own, acting as a disconnected data store.
2. Concurrency Problems

The vast popularity of windows/web-based database applications demands that they
should be scalable and should support multiple users simultaneously. More than one user
could access the same data item simultaneously, if no locking is used. This is particularly
true for any popular web-application where users access hotspot [3] data items most
frequently. If multiple users want to make changes to the same data item simultaneously,
whom do we allow first? Do we allow over-writes? Hence, concurrency control becomes
an issue of paramount importance.

Concurrency control (CC) is a vital issue for either windows or web-based database
applications. The problem is even more severe when the Internet has been growing so fast
that the number of users accessing online databases doubles every year. This calls for
higher system throughput [2]. There are many (such as [1, 2, 6]) concurrency control
techniques out there, which handle concurrent access and solve deadlock problems. The .
NET framework, for example, supports optimistic concurrency control at the database
side.

2.1 Concurrency Control Techniques

There are three common ways to handle concurrency control in a database [2, 6]:

 Pessimistic – This approach says: “Nobody can cause a concurrency violation
with my data if I do not let them get at the data while I have it” [4]. This tactic
prevents concurrency in the first place but it limits scalability because it prevents
all concurrent access. Pessimistic concurrency generally locks a row from the time
it is retrieved until the time updates are flushed to the database. Since this requires
a connection to remain open during the entire process, pessimistic concurrency
cannot be successfully implemented in a disconnected model like the ADO.NET
dataset, which opens a connection only long enough to populate the dataset [3]; so
a database lock cannot be held.

 Last-in-wins – This method is pretty straight-forward and easy to implement –
whatever data modification was made last, is what gets written to the database [5].
No matter what is changed, the Update statement will overwrite the changes with
its own changes. Unlike the pessimistic model, last-in-wins approach allows users
to read the data while it is being edited on screen. However, problems can occur
when users try to modify the same data at the same time, because users can
overwrite each other’s changes without being notified of the collision.

 Optimistic – In optimistic concurrency models, a row is only locked during the
update to the database. [4]. Therefore, the data can be retrieved and updated by
other users at any time other than during the actual row update operation.
Optimistic concurrency allows the data to be read simultaneously by multiple

3

users and blocks other users less often than its pessimistic counterpart, making it a
good choice for ADO.NET. This type of concurrency is also more suitable for the
disconnected data architecture of ADO.NET.

In fact, ADO.NET uses optimistic concurrency mechanism to detect concurrency
violations; however, it does not do much with the detection and leaves much of the job to
the programmer. In this paper, we presented an approach to share the responsibilities of
the programmers.

In .NET, once the dataset has been filled with data, users only interact with the
dataset. Users are free to read data, add new data or modify existing data. In ADO.NET,
the dataset maintains two copies of data – original, the one that was derived from the
database and the current, which contains the changes/additions made by the user [3].
Whenever the user wants to commit his/her changes, the contents of the dataset are
written back to the database. While doing this update, the dataset checks the data in the
database with its original version. If there is no difference, the underlying data has not
been changed from the time it was last retrieved and updates are written to the database.
However, if the underlying data does not match with the original version in the dataset,
then ADO.NET detects a concurrency violation. Writing changes to the database will
over-write the changes made by the previous user. We thus have a concurrency problem
at hand.

2.2 Concurrency Problems in .NET

ADO.NET is equipped with classes and methods (DbConcurrencyException) to
detect concurrency violations when the current database records do not match with the
original version of the data in the dataset. However, not much is achieved by the
detection. If the programmer does not handle concurrency violation exceptions explicitly,
the application simply blows up by throwing an error message. This could be disastrous
for popular web applications that are being used by hundreds or thousands of concurrent
users.

We developed a simple web application prototype that accessed a database. We
created two users with two separate sessions and opened two instances of a browser. Both
instances read the same data (row); the first one made few changes and committed to the
database successfully. Now, the other instance changed the same values (record) in the
dataset from the second user’s session and tried to commit them back to the database,
ADO.NET did not allow the changes and threw up the following (Fig 2) concurrency
violation error message.

Figure 2: Concurrency error detection

Now, the programmer has two possible options in the specified situation:
4

 The programmer could simply over-write whatever changes have been made
to the database. This could work, if one is ready to accept lost updates.

 Otherwise, the programmer could handle the situation by showing a message-
box to the user. This way, someone could take permission of the user before
over-writing changes to the database, or have the user refresh his/her out-of-
sync data (by re-loading his dataset with new data) and asking him/her to start
editing again.

We believe none of these two are satisfactory. Also, different database management
systems handle concurrency control in different ways. This means that applications could
behave differently for different back-end systems, making it difficult for the programmer
to code for exception handling. A standardized approach is thus needed, that would be
consistent at both the application and the database side. This mechanism must also be
consistent with the .NET framework architecture.

3. Improvements in Optimistic Concurrency Control

We propose a combination of two concurrency control mechanisms – Snapshot
Isolation (SI) and Read-commit Order Concurrency Control (ROCC), in order to handle
concurrency issues in ADO.NET. In our approach, the chances of a concurrency violation
will be reduced, as best as feasible, reducing the programmer’s responsibility to code for
exception handling.

Snapshot Isolation (SI) is a multi-version concurrency control algorithm that has
widespread industrial use [2]. SI avoids many concurrency errors and it never delays read-
only transactions [1]. A transaction Ti executing under SI conceptually reads data from
the committed state of the database as of time start (Ti), the time when Ti started. Hence,
Ti basically reads a snapshot of the data as of that time. This snapshot contains all writes
of committed transaction and no writes of uncommitted transactions. Ti then holds the
results its own writes in local memory store until it commits at time commit (Ti). Snapshot
Isolation (also called Row Versioning) is optimistic locking, but it is completely
transparent to the users and is handled by the database. The database keeps a copy of the
original data while one user is changing it, and serves up the original data to anybody who
wants to read it in the interim [9].

We consider SI because of its great similarity to the data architecture used by the
datasets in ADO.NET. The datasets read the present content of the database, as of the
time when the request comes in. Then, it holds all user modifications until the user wants
to commit, at which point, changes are flushed to the database. However, there are some
inherent weaknesses in SI [1]. It uses a “First Committer Wins” policy that could lead to
frequent aborts among transactions, it does not guarantee serializability, it could lead to
lost updates and SI also suffers from “Write skew” errors.

Read-commit Order Concurrency Control (ROCC) is a deadlock-free concurrency
control method based on optimistic mechanisms [2]. It maintains a single data structure

5

called the Read-Commit queue (RC-queue) that records the access order of transactions.
This single structure is all it needs to record all transactions in order of their arrival. It
then uses an intervening validation algorithm to ensure execution validations. This
algorithm uses a new concept of element conflict instead of operation conflict to reduce
validation failures. ROCC only aborts transactions when two or more intervening
conflicts occur. This double-checking on conflicts significantly reduces restarts among
transactions. Transactions can be controlled to complete successfully at any execution
phase by using over-declaration technique or access invariance property [2]. It can also be
proved that ROCC produces serializable execution of transactions.

3.1 Explanations of Our Approach

We propose a combination of SI and ROCC in handling much of concurrency control
for applications that are developed to run over the .NET framework. To accommodate
this change, the back-end database needs to run ROCC-C to maintain transaction
serializability. The front-end application will read and write data using rules of SI. The .
NET framework will need to maintain an extra data structure (RC-queue) at the
application side in the form of a linked list, that will be passed on to the underlying
database, one element at a time. However, the load on the dataset will be reduced to a
great extent as the versioning (holding on to old value of records) will be done at the
database side.

We assume that multiple users are using the application simultaneously. Each user
has a dedicated dataset and a data adapter [3]. Whenever a user wants to read/write data
from/to a database, it comes in the form of a request to the data adapter. Such requests
could be treated as transactions. If the request is for one read/write, then it is the only
data access request in the transaction. Transactions could also contain multiple data
access requests from the user. This gives ADO.NET the flexibility of bundling user
actions into a single transaction if the actions constitute an atomic set. Now, when the
system (data adapter) receives a request message from the client (user), it will generate
the corresponding element and post it to the RC-queue. Hence, every transaction (and its
sub-actions) is posted as an element(s) on the RC-queue. The format of an RC-queue
element is as given below:

 Figure 3: Structure of RC Queue element

An element in the RC-queue contains the identifiers of the transaction, the data items
to be accessed and other information. The Tid uniquely detects the transaction ID. V, C
and R are three Boolean values that indicate whether a transaction has been validated,
whether it is a commit transaction or if the transaction is being restarted. At the
application side, all of these three will be set to zeroes and appropriately reset at the
database side. The element also contains a set of read/write data entities as requested by
the transaction and also, a pointer to the next element in the RC-queue. All these are part
of a standard RC-queue element as described in [2]. We add one other component – the

6

Reads Writes NextTid V C R

Transaction ID

Validated

Commit

Restart
The read/write elements
requested by the transaction

Connection

Pointer to Next
element

connection. It is a pointer to the connection object of the .NET data provider. This way,
each element of the RC-queue will have information as to which connection it is
supposed to use, when they are being copied out to the RC-queue of the database. It is
particularly important in the case of a popular web application, where the server often
uses connection pooling to support multiple users [3].

We propose a change in the content of the read/write elements for the RC-queue at
the application side. The read/write components here store information on individual
attributes of a row. This is, by far, the most important change in the RC-queue structure.
Thus, everything comes down to the level of individual data items. This is possible solely
because of the fact that the whole underlying structure of ADO.NET is based on XML.
Based on the Select command statement, the data adapter knows the structure of the
tables that are involved in the SQL query it supports. This is stored in an XML file that
the data adapter uses to generate Update, Insert and Delete statements on the fly. We
propose that instead of generating these statements on the fly, the data adapter generate
elements of the RC-queue, one for each data item involved in a read/write. The load on
the dataset is reduced to a great extent as it does not have to hold on to the original
versions of the records that it read. Such versioning is done at the database side by the
application of SI. Temporary versions of original records are kept and served up for reads,
until the transaction commits when the changes are flushed to the database.

At the application side, corresponding to each read/write operation, a number of RC
queue elements will be generated, one for each data item. The generated RC-queue at the
application side will then be transported to the RC-queue at the database side, one
element at a time using XML. At the database side, the order of elements in the RC-queue
represents the real order in which transactions are executed. This is because the database
scheduler reads elements directly out of one end of the RC-queue. Because the
intervening algorithm is applied for incoming elements at the RC-queue, the real order of
elements may be different from their arrival order.

Now, let us consider an example to see how the application of these techniques makes a
difference to the way the application behaves. Say, at a given instance, a data row has the
following values (say):

ID Name Phone Address Zip
20 Sam 231-4341 ABC 58102

Transaction T1 changes the address of this record to XYZ. So, now the data row is

ID Name Phone Address Zip
20 Sam 231-4341 XYZ 58102

Now, T2 is another transaction that began before T1. So, T2 read the original data
row. However, T1 commits first. Now, T2 changes the phone number of the record to
231-6729 and commits. The existing ADO.NET will detect a concurrency violation as the
underlying database has changed. So, it throws up an exception. If the application is to
continue, the programmer will have to either ask T2 to refresh his dataset and start editing

7

again, or overwrite the database. This problem arises because T2 is unaware of the
changes T1 is making. Asking T2 to restart editing could be frustrating for the user. Also,
there is no guarantee that next time T2 commits; someone else has not already made
some other changes. If the programmer chooses to dump the changes to the database, the
data row will now be

ID Name Phone Address Zip
20 Sam 231-6729 ABC 58102

Hence, T1’s changes are lost. It is thus evident that the programmer does not have many
options.

In our approach, all the data items that the transaction requests to write are actually
contained in the Commit element of the RC-queue at the database side, since we are
going to use deferred writes to avoid cascading abort [2]. The data manager of the
database is only left to perform data accesses in the same order as they appear in the RC-
queue. Hence, the element order of in the RC-queue represents the real execution order of
data access. Of course, the element order in the RC-queue could be different from the
arrival order after we apply the intervening validation algorithm on the elements of the
queue.

After all elements have been posted on the RC-queue at the database side, we apply
the “intervening” algorithm to ensure execution correctness. The algorithm, when applied
on the elements of the RC-queue will ensure serializable execution of transactions [2].
The way the application-side RC-queue fits into the overall .NET architecture is shown
below:

Dataset

Application

Data Adapter

Command

Connections

Element 1

Element 2

Element 3

.

.

.

Element n

Database

SI

RC Queue.NET Data Provider

Figure 4: RC Queue in the .NET architecture

At the database side, all transactions from all users broken down into reads/writes of
one data item at a time and are posted as elements in the RC-queue. No read elements are
ever blocked. Only when a transaction commits, do we apply the intervening validation
algorithm [2]. Whenever, a transaction element wants to read data, we do what SI would

8

do – read a snapshot of the system as of that time. This snapshot then retraces its path
through the objects of the .NET data provider before getting dumped into the dataset.
This dataset is what users connect to and read their data from. All changes made by the
user are stored in the dataset, until the user commits. At that point, all the writes are
bundled into a single transaction element – the commit element and posted on the RC-
queue. Note that this commit element could be a combination of number of elements
based on how many data items are being changed. But, the net effect is that of one
commit element, which contains all the writes. Whenever we reach the commit element
of a transaction, we apply the “intervening” validation algorithm [2] to check for
execution validation.

The algorithm uses a new concept [2] – element conflict, to determine whether or not
a transaction passes validation. An element conflicts with another element if any of the
operations they represent are in conflict (read-write, write-read or write-write). The
algorithm essentially checks for element conflicts among existing elements of the RC-
queue. This algorithm is the backbone of ROCC and works as follows:

Given the commit element of a transaction, the algorithm starts from the last commit
element and moves up through the elements of the queue until it finds the first read
element of the same transaction. Let us call it “first”. Now, from “first”, we move down
until we reach the next element of the same transaction. The elements in between are the
“first” element’s intervening elements. If “first” does not conflict with the intervening
elements, then we combine “first” with the first down-reached-element and call this
combined element as “first”. Now, we continue to check if the new “first” conflicts with
its intervening elements. Such a check process proceeds until it finds that “first” conflicts
with its intervening elements or reaches the last commit element of the same transaction
and still finds no conflicts. In the latter case, the transaction passes the validation. If a
conflict was found, let “second” be the last commit element. We now check if “second”
conflicts with its intervening elements in the same way as before, this time though
moving up. If both “first” and “second” conflict with their intervening elements, the
validation fails.

Such two-prong search for element conflicts should drastically reduce restarts [2].
We only abort a transaction, if it has both upper-sided and lower-sided conflicts. Also,
after the application of the algorithm on the existing elements in the queue, it can be
proved that the transactions are serializable. When a transaction fails and the client still
wants to access the same data (access invariance property), the system will generate a
restart element [2]. This restart element will contain all the identifiers of data items and
the operations that the failed transaction intended to perform. However, this time, the
entire restart transaction is posted as a single unit on the RC-queue. Because a single
element does not have any intervening elements, this time the transaction is sure to
succeed. Hence, even if a transaction fails the first time, it is bound to pass the second
time. This way, we never have perennially failed transactions. If the user intends to access
a completely new set of data after a validation failure, then the system will abort the
failed transaction and treat access requests from the user as if they were a part of a newly
arriving transaction.

9

Essentially, if a user has been making changes to a specific data item in a row of a
table, the underlying data could have changed meanwhile. In that case, ADO.NET would
generally detect a concurrency violation and throw an exception. With this approach,
even if the underlying data has changed, we check if the particular data item the user is
concerned with has been changed or not. If it does, the user has to refresh his out-of-sync
data and start editing again. However, if it has not been changed, then we might be able to
save the user’s changes along with the changes that have already been made. In that case,
we may inform the user that the underlying data has been changed, but for his field of
interest. We may show the user the changes that have taken place in the other fields and
then ask if he/she still wants to proceed with his changes or not. If yes, we save his
changes to the DB.

Let us consider the previous example again. After T1 commits, the data row looks
like the following, with the address field changed:

ID Name Phone Address Zip
20 Sam 231-4341 XYZ 58102

Now, T2 wants to change the phone number item of this data row. Ideally, there

should not be any conflict and both the changes can co-exist. This is only possible if we
go down to the individual data item level. When T2 commits, his/her writes will be
posted as RC queue elements. There will be one write element involving the data item
phone number. Under normal situation, ADO.NET would detect a concurrency violation
because the underlying row has changed from the time it was last read and throw up an
exception. This should not happen with the use of the RC queue. Because the RC queue
elements now deal with individual data items, the intervening validation algorithm also
works at the data item level. Hence, the commit element involving the write to the data
item phone number does not conflict with any writes of T1, because T1 never changed
the phone number. Thus, T2 can commit safely and its writes are flushed to the database.
This means that both T1 and T2’s changes coexist and the data row now looks like:

ID Name Phone Address Zip
20 Sam 231-6729 XYZ 58102

Of course, if the item phone number had changed prior to T2’s commit, then T2 has
no option other than to refresh his dataset and start editing again. This however has much
less probability than checking to see if anything in the underlying row has changed or not.
This will also reduce the frequency of aborted transactions.

Although we show that our approach is feasible, however, we realize that there may
be legitimate concerns about allowing updates to data items in a row when the other data
items have been changed, as in the case of banking transactions. In such a case, the
programmer may catch the concurrency exception and throw up a dialog to the user
telling him exactly what has changed in the data row and whether he/she still wants to
proceed with his transaction. This could be done using a simple data row object and
reading the latest snapshot values into it from the database. If the user says that he/she
wants to proceed, his/her transaction is posted as RC queue elements and things proceed
as usual. If the user decides not to go with it, the transaction is rolled back and the RC

10

queue elements are deleted. Now, whether the programmer wants to implement this
second layer of checking is entirely dependent on him/her and the type of application
he/she is building.

We ran a number of simulations to test if our approach can handle on different cases
or not. All of our test cases have given satisfactory results; however, the RC queue
structure has not been implemented within the .NET architecture. This is because we
need to be maintaining a data structure (RC-queue) at the application side itself;
something that is beyond our scope. We do hope to see this implemented, while we keep
working further on our idea.

4. Conclusion

Concurrency is bound to emerge as a major challenge as build more and more
popular scalable database applications. Within the .NET framework, there are methods
which can detect concurrency violations, but on detection, it leaves much of the job to the
user/developer. At present, ADO.NET uses optimistic concurrency to handle concurrent
access. We propose a hybrid concurrency control mechanisms that combines both the SI
and the ROCC methods. Using our approach, we believe that we can relieve the
programmer stress or user of much work. Concurrency violations will be less probable
and database efficiency should increase with the use of latest SI techniques. Oracle has
been using SI for a long time; now, SQL Server 2005 also uses SI. We see the trend
continuing.

Using the RC-queue data structure, we can have all transactions posted as elements
on the queue and then we can apply the “intervening” validation algorithm on the
elements. This algorithm is going to ensure serializable execution of transactions. The
algorithm checks for both upper and lower-sided conflicts and thus, drastically reduces
transaction restarts. Further, the read/write components in the elements are actually the
attributes in a row that the transaction is interested in. This should greatly reduce the
chance of conflicts among elements. The intervening validation algorithm is easy to
implement and has been tested to show good performance [2]. Moreover, the datasets in
ADO.NET do not need to maintain multiple copies of same data, which should
significantly increase their performance.

 References

1. Alan Fekete, Elizabeth O’Neil and Patrick O’Neil: “A read-only transaction
anomaly under Snapshot Isolation”, ACM SIGMOD Record, Volume 33, Issue 3
(September 2004), Pages: 12 - 14, 2004.

2. Shi, Victor and Perrizo, William: “A new method for Concurrency Control in
centralized High Performance Database Systems” ISCA Computers and Their
Applications Conference - April, 2002.

11

3. Anne Prince, Doug Lowe: “VB.NET Database Programming with ADO.NET”,
Mike Murach & Associates Inc, 2003.

4. Wayne Plourde: “Handling Concurrency Issues in .NET”,
http://www.15seconds.com/issue/030604.htm , Web retrieve on February 19,
2005.

5. Rick Dobson: “Coding for Concurrency in ADO.NET”,
http://www.serverintellect.com/pdf/ServerIntellect.pdf , Web retrieve on July 17,
2005.

6. “Introduction to Data Concurrency in ADO.NET”, MSDN Library,
http://msdn.microsoft.com/library/default.asp?url=/library/enus/vbcon/html/vbtsk
performingoptimisticconcurrencychecking.asp , Web retrieve on February 3,
2005.

7. Nair, Shrijeet ”Transactions and Concurrency Control using ADO.NET”,
 http://www.c-sharpcorner.com/Code/2002/Aug/TransactionsNConcurr.asp .
8. Benton, Nick; Cardelli, Luca and Fournet, Cédric; “Modern concurrency

abstractions for C#”, ACM Transactions on Programming Languages and
Systems, Volume 26 , Issue 5, Pages: 769 – 804, NY, USA, September 2004.

9. Ravindra Okade: “SQL Server 2005’s Snapshot Isolation”,
http://www.informit.com/articles/article.asp?p=357098&rl=1, Web retrieve on
March 5, 2006.

12

