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Abstract 
 
The nearest neighbor search problem is an important problem in computer science that 
has a wide range of applications including medical image processing, pattern recognition, 
mobile computing, and retrieval of multimedia objects such as images, text, and videos 
over the Internet.    
 
The problem deserves more attention than it receives in undergraduate computer science 
education for the following reasons.  First, it has a wide range of applications in areas that 
are relevant to our daily lives.  Second, it has interdisciplinary applications such as 
medical image processing, so it will provide a good opportunity for students to appreciate 
the contributions that theoretical computer science can make in practical areas.  Third, the 
exact and approximate algorithms for the problem and its variants will provide students 
with interesting materials for comparison and analysis. 
 
In this paper, I propose a way to incorporate the nearest neighbor search problem in an 
“analysis of algorithms” course.   
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1 Introduction 
 
In computer science, there is an important problem called nearest neighbor search.  The 
problem can be described informally with the following example:  Place a pin on the map 
of the U.S.  What is the nearest city to the pin?  The problem deals with a 2-dimensional 
space, and it is easy to find a solution for such a low dimension.  However, in high 
dimensional spaces, typically greater than 25 dimensions, the problem becomes very 
difficult. 
 
The nearest neighbor search problem has a wide range of applications including medical 
image processing, pattern recognition, mobile computing, and retrieval of multimedia 
objects such as images, text, and videos [5, 18, 20, 23, 24]. 
 
The problem was first posed in the 1960s [17]. Since then, researchers have been working 
to come up with better solutions for exact search in high dimensions, but there has been 
little success [13]. That is why the nearest neighbor search problem is said to have the 
“curse of dimensionality” [6, 10, 13, 26].  As is typical in computer science when finding 
an exact solution is difficult, researchers turned to approximate search [1, 2, 3, 8, 10, 13, 
15].  In the meantime, different data structures have been proposed for managing data 
points efficiently [4, 7, 19, 21, 25]. 
 
Recently, I helped a Ph.D. candidate at the University of Michigan improve his computer 
program analyzing 64-dimensional data points of medical images.  In one of the 
subroutines of the program, I introduced an algorithm for the “k-nearest neighbors” 
problem, a variant of the nearest neighbor search problem.  It enabled the program to run 
drastically more efficiently for up to 16 dimensions [18].  It was a precious opportunity 
for me to learn about the fascinating properties of the problem and to think about 
teaching it in an undergraduate computer science course. 
 
In this paper, I propose a way to incorporate the nearest neighbor search problem in an 
“analysis of algorithms” course.  The problem deserves more attention than it receives in 
undergraduate computer science education for the following reasons.  First, it has a wide 
range of applications in areas that are relevant to our daily lives, such as mobile 
computing and retrieval of multimedia objects over the Internet.  Second, it has 
interdisciplinary applications such as medical image processing, so it will provide a good 
opportunity for students to appreciate the contributions that theoretical computer science 
can make in practical areas.  Third, the problem has a number of variants, such as the 
above-mentioned k-nearest neighbors problem.  The exact and approximate algorithms 
for the problem and its variants will provide interesting material for comparison and 
analysis. 
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2 Theoretical Analysis and Hands-on Activities 
 
This section describes a number of activities students can do after they are briefly 
introduced to the nearest neighbor search problem.  Some of the activities are suitable for 
engaging students in active learning in a process of inquiry.  Some are also suitable for 
group activities. 
 
 
2.1 Areas of Application 
 
Look for information about the following (possibly on the Internet). 
 

(a) application areas for the nearest neighbor search problem 
 
(b) variants of the problem found in application areas such as the following: k-nearest 

neighbors problem which is to find k nearest neighbors of a given point for a 
small integer k [11]. 

 
(c) the number of dimensions involved in each application area, such as 64 

dimensions for medical image processing 
 
 
2.2 Understanding the Curse of Dimensionality 
 
The following activities provide opportunities to understand why the problem is easy in 
low dimensions and difficult in high dimensions. 
 

(a) Draw 16 points on a line that is 10 cm long, such that the distances between the 
points are roughly equal.  Below the line, draw a square, 10 cm wide and 10 cm 
high, that represents a 2-dimensional space.  In the square, distribute 16 points 
such that the distances between the points are roughly equal.  Compare the 
distances between the points on the line and the distances between the points in 
the square.  

 
(b)  To do the above activity in a systematic manner, write a simple program to find 

out the average distance to the nearest neighbor in d dimensions, where d = 1, 2, 3, 
… , k for a reasonably large k.   

 
(i) The number line representing [0.0 .. 1.0) can be used for the line.  Similarly, 

the 2-dimensional space can be represented by two such lines for the width 
and height of a square.  In general, in a k-dimensional space, the co-ordinates 
of a point can be represented by a k-tuple of random numbers in [0.0 .. 1.0).   

 
(ii) The distance between two points X = (x1, x2, …, xk) and Y = (y1, y2, …, yk) is 

determined by the square root of (x1 – y1)2 + (x2 – y2) 2 + … + (xk – yk) 2. 
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(iii) To find the distance to the nearest neighbor for each and every point, use a 

brute force algorithm (exhaustive search).  That is, compute the distance of 
each possible pair of points. 

 
(c) Observe the performance of the program in the following respects. 

 
(i) For fixed d, try different numbers for the number of points n ranging from a 

few thousand to a million.  For different numbers, compare the execution time 
of the program.  Is the growth rate linear, quadratic, or exponential in n? 

 
(ii) For fixed n and different d, compare the execution time of the program. Is the 

growth rate linear, quadratic, or exponential in d? 
 

(iii) In addition to analyzing the execution time, analyze the growth rate of space 
requirement. 

 
(d) Write up a report on what is observed as the programs are executed. 
 
(e) Nene and Nayar [19] provides a good probabilistic analysis of the expected 

number of neighbors within a given distance in a d-dimensional space. Students 
who have enough statistics background may be referred to it. 

 
 
2.3 Comparison of Different Algorithms 
 
 
2.3.1 Simple Algorithms 
 
Compare some of the simple algorithms that exist. 
 

(a) Write a program for the following. 
 

(i) Implement a brute force algorithm that finds the nearest neighbor for a given 
point.  Alternatively, find all the neighbors of a given point within distance �.  
A third alternative is to find all the neighbors of all points within distance �. 
 

(ii) Implement the algorithm by Friedman et al. [12] and find out how much more 
efficient their algorithm is than the brute-force algorithm. 

 
(iii) Implement the algorithm by Nene and Nayar [19] which claims that their 

algorithm is more efficient than that of Friedman et al. 
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(b) Compare the performance of the algorithms as follows. 
 

(i) For fixed d, try different numbers for the number of points n ranging from a 
few thousand to a million.  For different numbers, compare the execution time 
of the algorithms. 
 

(ii) For fixed n and different d, compare the execution time of the algorithms. Is 
the growth rate linear, quadratic, or exponential in d?  Are the other two 
algorithms more efficient than the brute force algorithm?  Up to how many 
dimensions is the efficiency of the algorithms noticeable? 

 
(iii) In addition to analyzing the execution time, analyze the growth rate of space 

requirement of each algorithm. 
 
(c) Write up a report comparing the performance of the algorithms. 

 
 
2.3.2 Reproduce Experiments 
 
McNames [16] compares the performance of seventeen different algorithms on three 
types of common benchmark data sets.  Reproduce the experiments and verify the 
performance of the algorithms. 
 
 
2.4  Visualization 
 
 
2.4.1  Visualization of the Performance of the Simple Algorithms 
 
To illustrate the performance of the algorithms described in section 2.3.1, write a 
program that uses a Graphical User Interface (GUI) object.  Compare the performance of 
the three different algorithms with different number of points in different dimensions. 
 
 
2.4.2  Visualization of the Density of Points 
 
Write a program that illustrates the different densities of points in different dimensions. 
 

(a) It is easy to write a program that uses a GUI object to illustrate the different 
densities of points in one and two-dimensional spaces.  Students who know how 
to use a 3D object can do the same for the 3-dimensional space. 

 
(b) The program can be written such that it gives an animated illustration as follows.  

Begin with the 3-dimensional space.  First, show points that have been uniformly 
distributed. Next, collapse the 3-dimensional space onto a 2-dimensional space 
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slowly (by removing the z-coordinate).  Finally, collapse the 2-dimensional space 
onto a line (by removing the y-coordinate). 

 
(c) Even when students don’t know 3D graphics, it is possible to simulate in the 1-

dimensional space the density of points that becomes sparser as the number of 
dimensions increases.   

 
(i) On a line that indicates the maximum possible distance between two points, 

illustrate the expected distance between two points (among n points that are 
uniformly distributed). 

 
(ii) For the 1-dimensional space, the maximum possible distance between two 

points is 1. For the 2-dimensional space, the maximum possible distance 
between two points is square root of 2, and so on.  In general, the maximum 
possible distance in a k-dimensional space is square root of k. 

 
(iii) Compare the growth rate of the maximum distance and that of the expected 

distance between the two points. 
 
(iv) Instead of the expected distance between two points, use the results of the 

program of section 2.2 and illustrate the average distance to the nearest 
neighbor. 

 
 
2.5  Writing Expository Papers 
 
Here are suggested topics for writing short expository papers.   
 

(a) Chen et al. claim that their algorithm that constructs a lower bound tree at the 
preprocessing stage runs about one thousand times faster than the exhaustive 
search [9].  What is a lower bound tree?  What makes it run so fast?  Is the 
algorithm powerful enough to defeat the curse of dimensionality? 

 
(b) It is said that, in certain applications, the dimension may be “in the order of a few 

hundreds, or thousands” [22]. What kinds of applications require so high a 
dimension? 

 
(c) When an exact solution that is efficient is difficult to find, it is quite common to 

try to find an approximate solution that is efficient.  Write about an algorithm that 
solves approximate nearest neighbor search.  Is the algorithm efficient?  For what 
kinds of applications is the approximate solution useful? 

 
(d) Are there trade-offs between space requirement and time complexity?  That is, is 

it possible for an algorithm to run faster if it uses more space? 
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(e) Write about different data structures used by different algorithms, such as the k-d 
tree, R-tree, and vp-tree. 

 
(f) Kleinberg presents two algorithms for nearest neighbor search in high dimensions 

[14].  Describe and compare the algorithms. 
 

(g) Write about two algorithms one of which improves the performance of the other. 
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