

Teaching the Nearest Neighbor Search Problem in an
Undergraduate Algorithm Analysis Course

Sun B. Chung
Department of Quantitative Methods and

Computer Science
University of St. Thomas

St. Paul, MN 55124
sbchung@stthomas.edu

Abstract

The nearest neighbor search problem is an important problem in computer science that
has a wide range of applications including medical image processing, pattern recognition,
mobile computing, and retrieval of multimedia objects such as images, text, and videos
over the Internet.

The problem deserves more attention than it receives in undergraduate computer science
education for the following reasons. First, it has a wide range of applications in areas that
are relevant to our daily lives. Second, it has interdisciplinary applications such as
medical image processing, so it will provide a good opportunity for students to appreciate
the contributions that theoretical computer science can make in practical areas. Third, the
exact and approximate algorithms for the problem and its variants will provide students
with interesting materials for comparison and analysis.

In this paper, I propose a way to incorporate the nearest neighbor search problem in an
“analysis of algorithms” course.

 2

1 Introduction

In computer science, there is an important problem called nearest neighbor search. The
problem can be described informally with the following example: Place a pin on the map
of the U.S. What is the nearest city to the pin? The problem deals with a 2-dimensional
space, and it is easy to find a solution for such a low dimension. However, in high
dimensional spaces, typically greater than 25 dimensions, the problem becomes very
difficult.

The nearest neighbor search problem has a wide range of applications including medical
image processing, pattern recognition, mobile computing, and retrieval of multimedia
objects such as images, text, and videos [5, 18, 20, 23, 24].

The problem was first posed in the 1960s [17]. Since then, researchers have been working
to come up with better solutions for exact search in high dimensions, but there has been
little success [13]. That is why the nearest neighbor search problem is said to have the
“curse of dimensionality” [6, 10, 13, 26]. As is typical in computer science when finding
an exact solution is difficult, researchers turned to approximate search [1, 2, 3, 8, 10, 13,
15]. In the meantime, different data structures have been proposed for managing data
points efficiently [4, 7, 19, 21, 25].

Recently, I helped a Ph.D. candidate at the University of Michigan improve his computer
program analyzing 64-dimensional data points of medical images. In one of the
subroutines of the program, I introduced an algorithm for the “k-nearest neighbors”
problem, a variant of the nearest neighbor search problem. It enabled the program to run
drastically more efficiently for up to 16 dimensions [18]. It was a precious opportunity
for me to learn about the fascinating properties of the problem and to think about
teaching it in an undergraduate computer science course.

In this paper, I propose a way to incorporate the nearest neighbor search problem in an
“analysis of algorithms” course. The problem deserves more attention than it receives in
undergraduate computer science education for the following reasons. First, it has a wide
range of applications in areas that are relevant to our daily lives, such as mobile
computing and retrieval of multimedia objects over the Internet. Second, it has
interdisciplinary applications such as medical image processing, so it will provide a good
opportunity for students to appreciate the contributions that theoretical computer science
can make in practical areas. Third, the problem has a number of variants, such as the
above-mentioned k-nearest neighbors problem. The exact and approximate algorithms
for the problem and its variants will provide interesting material for comparison and
analysis.

 3

2 Theoretical Analysis and Hands-on Activities

This section describes a number of activities students can do after they are briefly
introduced to the nearest neighbor search problem. Some of the activities are suitable for
engaging students in active learning in a process of inquiry. Some are also suitable for
group activities.

2.1 Areas of Application

Look for information about the following (possibly on the Internet).

(a) application areas for the nearest neighbor search problem

(b) variants of the problem found in application areas such as the following: k-nearest

neighbors problem which is to find k nearest neighbors of a given point for a
small integer k [11].

(c) the number of dimensions involved in each application area, such as 64

dimensions for medical image processing

2.2 Understanding the Curse of Dimensionality

The following activities provide opportunities to understand why the problem is easy in
low dimensions and difficult in high dimensions.

(a) Draw 16 points on a line that is 10 cm long, such that the distances between the
points are roughly equal. Below the line, draw a square, 10 cm wide and 10 cm
high, that represents a 2-dimensional space. In the square, distribute 16 points
such that the distances between the points are roughly equal. Compare the
distances between the points on the line and the distances between the points in
the square.

(b) To do the above activity in a systematic manner, write a simple program to find

out the average distance to the nearest neighbor in d dimensions, where d = 1, 2, 3,
… , k for a reasonably large k.

(i) The number line representing [0.0 .. 1.0) can be used for the line. Similarly,

the 2-dimensional space can be represented by two such lines for the width
and height of a square. In general, in a k-dimensional space, the co-ordinates
of a point can be represented by a k-tuple of random numbers in [0.0 .. 1.0).

(ii) The distance between two points X = (x1, x2, …, xk) and Y = (y1, y2, …, yk) is

determined by the square root of (x1 – y1)2 + (x2 – y2) 2 + … + (xk – yk) 2.

 4

(iii) To find the distance to the nearest neighbor for each and every point, use a

brute force algorithm (exhaustive search). That is, compute the distance of
each possible pair of points.

(c) Observe the performance of the program in the following respects.

(i) For fixed d, try different numbers for the number of points n ranging from a

few thousand to a million. For different numbers, compare the execution time
of the program. Is the growth rate linear, quadratic, or exponential in n?

(ii) For fixed n and different d, compare the execution time of the program. Is the

growth rate linear, quadratic, or exponential in d?

(iii) In addition to analyzing the execution time, analyze the growth rate of space
requirement.

(d) Write up a report on what is observed as the programs are executed.

(e) Nene and Nayar [19] provides a good probabilistic analysis of the expected

number of neighbors within a given distance in a d-dimensional space. Students
who have enough statistics background may be referred to it.

2.3 Comparison of Different Algorithms

2.3.1 Simple Algorithms

Compare some of the simple algorithms that exist.

(a) Write a program for the following.

(i) Implement a brute force algorithm that finds the nearest neighbor for a given
point. Alternatively, find all the neighbors of a given point within distance �.
A third alternative is to find all the neighbors of all points within distance �.

(ii) Implement the algorithm by Friedman et al. [12] and find out how much more
efficient their algorithm is than the brute-force algorithm.

(iii) Implement the algorithm by Nene and Nayar [19] which claims that their

algorithm is more efficient than that of Friedman et al.

 5

(b) Compare the performance of the algorithms as follows.

(i) For fixed d, try different numbers for the number of points n ranging from a
few thousand to a million. For different numbers, compare the execution time
of the algorithms.

(ii) For fixed n and different d, compare the execution time of the algorithms. Is
the growth rate linear, quadratic, or exponential in d? Are the other two
algorithms more efficient than the brute force algorithm? Up to how many
dimensions is the efficiency of the algorithms noticeable?

(iii) In addition to analyzing the execution time, analyze the growth rate of space

requirement of each algorithm.

(c) Write up a report comparing the performance of the algorithms.

2.3.2 Reproduce Experiments

McNames [16] compares the performance of seventeen different algorithms on three
types of common benchmark data sets. Reproduce the experiments and verify the
performance of the algorithms.

2.4 Visualization

2.4.1 Visualization of the Performance of the Simple Algorithms

To illustrate the performance of the algorithms described in section 2.3.1, write a
program that uses a Graphical User Interface (GUI) object. Compare the performance of
the three different algorithms with different number of points in different dimensions.

2.4.2 Visualization of the Density of Points

Write a program that illustrates the different densities of points in different dimensions.

(a) It is easy to write a program that uses a GUI object to illustrate the different
densities of points in one and two-dimensional spaces. Students who know how
to use a 3D object can do the same for the 3-dimensional space.

(b) The program can be written such that it gives an animated illustration as follows.

Begin with the 3-dimensional space. First, show points that have been uniformly
distributed. Next, collapse the 3-dimensional space onto a 2-dimensional space

 6

slowly (by removing the z-coordinate). Finally, collapse the 2-dimensional space
onto a line (by removing the y-coordinate).

(c) Even when students don’t know 3D graphics, it is possible to simulate in the 1-

dimensional space the density of points that becomes sparser as the number of
dimensions increases.

(i) On a line that indicates the maximum possible distance between two points,

illustrate the expected distance between two points (among n points that are
uniformly distributed).

(ii) For the 1-dimensional space, the maximum possible distance between two

points is 1. For the 2-dimensional space, the maximum possible distance
between two points is square root of 2, and so on. In general, the maximum
possible distance in a k-dimensional space is square root of k.

(iii) Compare the growth rate of the maximum distance and that of the expected

distance between the two points.

(iv) Instead of the expected distance between two points, use the results of the

program of section 2.2 and illustrate the average distance to the nearest
neighbor.

2.5 Writing Expository Papers

Here are suggested topics for writing short expository papers.

(a) Chen et al. claim that their algorithm that constructs a lower bound tree at the
preprocessing stage runs about one thousand times faster than the exhaustive
search [9]. What is a lower bound tree? What makes it run so fast? Is the
algorithm powerful enough to defeat the curse of dimensionality?

(b) It is said that, in certain applications, the dimension may be “in the order of a few

hundreds, or thousands” [22]. What kinds of applications require so high a
dimension?

(c) When an exact solution that is efficient is difficult to find, it is quite common to

try to find an approximate solution that is efficient. Write about an algorithm that
solves approximate nearest neighbor search. Is the algorithm efficient? For what
kinds of applications is the approximate solution useful?

(d) Are there trade-offs between space requirement and time complexity? That is, is

it possible for an algorithm to run faster if it uses more space?

 7

(e) Write about different data structures used by different algorithms, such as the k-d
tree, R-tree, and vp-tree.

(f) Kleinberg presents two algorithms for nearest neighbor search in high dimensions

[14]. Describe and compare the algorithms.

(g) Write about two algorithms one of which improves the performance of the other.

 8

References

[1] Sunil Arya, David M. Mount. Approximate nearest neighbor queries in fixed

dimensions. Proceedings of the fourth annual ACM-SIAM symposium on discrete
algorithms, pp. 271 – 280, 1993.

[2] Sunil Arya, David M. Mount, Nathan S. Netanyahu, Ruth Silverman, Angela Y.

Wu. An optimal algorithm for approximate nearest neighbor searching fixed
dimensions. Journal of the ACM, Volume 45, Issue 6, pp. 891 – 923, 1998.

[3] Sunil Arya, Ho-Yam Addy Fu. Expected-case complexity of approximate nearest

neighbor searching. Proceedings of the eleventh annual ACM-SIAM symposium
on discrete algorithms, pp. 379 – 388, 2000.

[4] Kristin P. Bennett, Usama Fayyad, Dan Geiger. Density-based indexing for

approximate nearest-neighbor queries. Proceedings of the fifth ACM SIGKDD
international conference on knowledge discovery and data mining, pp. 233 – 243,
1999.

[5] Stefan Berchtold, Christian Böhm, Bernhard Braunmüller, Daniel A. Keim, Hans-

Peter Kriegel. Fast parallel similarity search in multimedia databases.
Proceedings of the 1997 ACM SIGMOD international conference on management
of data, pp. 1 – 12, 1997.

[6] Allan Borodin, Rafail Ostrovsky, Yuval Rabani. Lower bounds for high

dimensional nearest neighbor search and related problems. Proceedings of the
thirty-first annual ACM symposium on theory of computing, pp. 312 – 321, 1999.

[7] Christian Böhm, Stefan Berchtold, Daniel A. Keim. Searching in high-

dimensional spaces: index structures for improving the performance of
multimedia databases. ACM computing surveys, volume 33, issue 3, pp. 322 – 373,
2001.

[8] Timothy M. Chan. Approximate nearest neighbor queries revisited. Proceedings

of the thirteenth annual symposium on computational geometry, pp. 352 – 358,
1997.

[9] Yong-Sheng Chen, Yi-Ping Hung, Chiou-Shann Fuh. Fast algorithm for nearest

neighbor search based on a lower bound tree. Proceedings of the eighth
international conference on computer vision, 2001.

[10] K. Clarkson. An algorithm for approximate closest-point queries. SIAM journal

on computing, volume 17, pp. 830 – 847, 1988.

 9

[11] Bin Cui, Beng Chin Ooi, Jianwen Su, Kian-Lee Tan. Contorting high dimensional
data for efficient main memory KNN processing. Proceedings of the 2003 ACM
SIGMOD international conference on management of data and symposium on
principles of database systems, pp. 479 – 490, 2003.

[12] Jerome H. Friedman, Forest Baskett, Leonard. J. Shustek. An algorithm for

finding nearest neighbors. IEEE Transactions on computers, pp. 1000 – 1006,
1975.

[13] Piotr Indyk, Rajeev Motwani. Approximate nearest neighbors: towards removing

the curse of dimensionality. Proceedings of the thirtieth annual ACM symposium
on theory of computing, pp. 604 – 713, 1998.

[14] Jon M. Kleinberg. Two algorithms for nearest-neighbor search in high dimensions.

Proceedings of the twenty-ninth annual ACM symposium on theory of computing,
pp. 599 – 608, 1997.

[15] Eyal Kushilevitz, Rafail Ostrovsky, Yuval Rabani. Efficient search for

approximate nearest neighbor in high dimensional spaces. Proceedings of the
thirtieth annual ACM symposium on theory of computing, pp. 614 – 623, 1998.

[16] James McNames. A fast nearest neighbor algorithm based on a principal axis

search tree. IEEE Transactions on pattern analysis and machine intelligence, pp.
964 – 976, 2001.

[17] M. Minsky, S. Papert. Perceptrons, MIT Press, Cambridge, MA, 1969.

[18] Huzefa Neemuchwala, Alfred O. Hero, Paul L. Carson. Image registration using

entropic graph-matching criteria. Thirty-sixth Asilomar conference on signals,
systems, and computers, 2002.

[19] Sameer A. Nene, Shree K. Nayar. A simple algorithm for nearest neighbor search

in high dimensions. IEEE Transactions on pattern analysis and machine
intelligence, volume 17, pp. 989 – 1003, 1997.

[20] Cyrus Shahabi, Mohammad R. Kolahdouzan, Mehdi Sharifzadeh. A road network

embedding technique for k-nearest neighbor search in moving object databases.
Proceedings of the tenth ACM international symposium on advances in
geographic information systems, pp. 94 – 100, 2002.

[21] Douglas A. Talbert, Doug Fisher. An empirical analysis of techniques for

constructing and searching k-dimensional trees. Proceedings of the sixth ACM
SIGKDD international conference on knowledge discovery and data mining, pp.
26 – 33, 2000.

 10

[22] Panayiotis Tsaparas. Nearest neighbor search in multidimensional spaces. Depth
oral report. Department of Computer Science, University of Toronto, 1999.

[23] Ertem Tuncel, Hakan Ferhatosmanoglu, Kenneth Rose. VQ-index: an index

structure for similarity searching in multimedia databases. Proceedings of the
tenth ACM international conference on multimedia, pp. 543 – 552, 2002.

[24] Arjen P. de Vries, Nikos Mamoulis, Niels Nes, Martin Kersten. Efficient k-NN

search on vertically decomposed data. Proceedings of the 2002 ACM SIGMOD
international conference on management of data, pp. 322 – 333, 2002.

[25] Young C. Wee, Seth Chaiken, Dan E. Willard. Computing geographic nearest

neighbors using monotone matrix searching. Proceedings of the 1990 ACM
annual conference on cooperation, pp. 49 – 55, 1990.

[26] Peter N. Yianilos. Locally lifting the curse of dimensionality for nearest neighbor

search. Proceedings of the eleventh annual ACM-SIAM symposium on discrete
algorithms, pp. 361 – 370, 2000.

