
An Enhancement of k-Nearest Neighbor 
Classification Using Genetic Algorithm 

 
 

Anupam Kumar Nath Syed M. Rahman 
 

Akram Salah 

Department of Computer Science, North Dakota State University 
258 IACC Building, Fargo, North Dakota 58105, USA 
{Anupam.Nath, Syed.Rahman, Akram.Salah}@ndsu.edu 

 
 
 

Abstract 
 
 
K-Nearest Neighbor Classification (kNNC) makes the classification by getting votes 
of the k-Nearest Neighbors. Performance of kNNC is depended largely upon the 
efficient selection of k-Nearest Neighbors. All the attributes describing an instance 
does not have same importance in selecting the nearest neighbors. In real world, 
influence of the different attributes on the classification keeps on changing with time. 
To solve this problem, we have proposed an enhancement of kNNC where Genetic 
Algorithm (GA) has been applied for effective selection and upgrade of attribute set 
to find out k-Nearest Neighbors. Our experimental results demonstrate a significant 
improvement in classification accuracy in comparison with the conventional kNNC. 
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1 Introduction 

Efficiency of kNNC depends largely upon the effective selection of k-Nearest 
Neighbors [3]. The limitation of conventional kNNC is that once we choose the 
criteria for k-Nearest Neighbors selection, the criteria remain unchanged. But this 
characteristic of kNNC is not suitable for many cases if we want to make a correct 
prediction or classification in real life.  

An instance is described in the database by using a number of attributes and the 
corresponding values of those attributes. So similarity between any two instances is 
identified by the similarity of attribute values. But in real life data when we are 
describing two instances and are trying to find out the similarity between those two, 
similarities in different attributes do not weigh same with respect to a particular 
classification. Moreover, as with time more training data keeps on coming it may 
happen that similarity in a particular attribute value carries more or less importance 
than before. For example, say we are trying to predict the outcome of a soccer game 
based on the previous results. Now in that prediction, the place and the weather plays 
a very important role in the outcome of the game. But in future if all the soccer 
games are played in indoor stadiums then the field weather is no longer going to 
have same effect on the outcome of the game.       

In Genetic Algorithm(GA) during each generation the current population are rated 
for their effectiveness as solutions, and on the basis of these evaluations, a new 
population of candidate structures is formed using specific `genetic operators' such as 
selection crossover, and mutation to find out even more optimized solution. In short 
GA keeps on upgrading the solution process with time to reach the best result [2]. 
 
GA has been applied in kNNC method previously. GA has been used in all most all 
the previous implementations to set up the voting weight of k Nearest Neighbors.  
According to our proposed method GA will be used in kNNC with a different 
approach. In the proposed enhancement, GA has been used to select the attribute set 
which are going to vote to find out the k_nearest Neighbors and to change the voting 
weight of the attribute set with time so that kNNC method can make the 
classification more efficiently.  
 
Our approach provides kNNC more interactivity for changing its nearest neighbor 
selection criteria to make an efficient classification. We have implemented and 
compared our proposed method of kNNC with the conventional kNNC on loan 
approval dataset. We found that our method has significant improvements in the 
classification accuracy.  
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2 Proposed Method 

In k-Nearest-Neighbor Classification (kNNC), the training dataset is used to classify 
each member of a "target" dataset. The structure of the data is that there is a 
classification (categorical) variable of interest ("buyer," or "non-buyer," for 
example), and a number of additional predictor variables (age, income, location...).   
Generally speaking, the algorithm is as follows: 

1. For each row (case) in the target dataset (the set to be classified), locate the k 
closest members (the k nearest neighbors) of the training dataset. A Distance 
measure is used to calculate how close each member of the training set is to 
the target row that is being examined.       

2. Examine the k nearest neighbors - which classification (category) do most of 
them belong to?  Assign this category to the row being examined.  

3. Repeat this procedure for the remaining rows (cases) in the target set.  

In practical applications, typically, k is in units or tens rather than in hundreds or 
thousands [1]. 

In our new approach  
 

• Instead of using all the attributes to find out the k Nearest neighbors we are 
going to use only  q most important attributes and similarity in only in those 
attributes’ value to find out the nearest neighbors.   

 
(here q = ½ (number of total attributes)�q< number of total attributes)    

 
• Together with the weighting vote of the k neighbors we are proposing the 

weighting vote of the attributes to find out the k Nearest Neighbors. 
 
•  GA operator selection will be used for two different purposes. 

    
i) As the time progresses and more data keep on coming voting weight of the 
attributes are going to keep on changing as well as the voting weight of the 
neighbors. 
 
ii) If necessary, any of the attribute(s) of the attribute set, selected primarily 
for selection of the k Nearest Neighbors, is going to be replaced by an 
attribute(s) which was not a set of the initially selected set.        

 
 
 
The outline of our proposed method has been described in figure 1. :   
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m, n: Integer 
 
1. Divide all the attributes into category X & Y. 
 
2. 
      (a) Select m attributes from category X; 
   
      (b) Select n attributes from category Y; 
  
      (c) Use the crossover GA operator to build the new    attribute set 
Z where total number of attributes will be  m+ n;    
  
3. Attributes of only Z set will vote (based on similarity) according to 
the weight to find out the k nearest neighbors. 
 
4. These k neighbors will vote to predict the outcome.    
     
5. Repetitive Selection algorithm will be applied to change the 
attribute set Z (if necessary) and reassign the weight of the attributes 
after p more data come in. 
 

 
 

Figure 1.Algorithm of the proposed method 
 
 
2.1 Overview of the Proposed Method 
 
Step1: 
 
For most of the cases the attributes which describe an instance in dataset can be 
broadly categorized into two different classes- 
 

• Class X Attributes: Value of those attributes are not expected to change 
frequently i.e. relatively static attributes will be categorized as class X 
attributes. For example: an attribute namely SEX. A person may be Male or 
female and it is not going to change.  So this is an attribute whose values are 
relatively constant and according to our definition will be categorized as class 
X. 

 
• Class Y Attributes: Value of those attributes are expected to change 

frequently i.e. relatively dynamic attributes. For example: an attribute namely 
JOB SATUS. There is a chance of person getting or lose a job within a very 
short time period. So this is relatively dynamic attribute and according to our 
definition will be categorized as class Y. 
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Step 2: 
 
Now for the attributes belonging to class X we have to select the m attributes which 
have the most influence on the classification. 
 
We also have to find out the most influential n attributes for the class Y attributes 
 
We have proposed an algorithm for selection. But before applying the algorithm we 
have to assign weight to each of the attributes. Broadly there are two sorts of 
attributes. One are Boolean attributes i.e. those can have only two different values 
e.g. martial status (married/single), sex (male/female) etc. This sort of attributes we 
define as group A attributes.  The other type of attributes we define as group B 
attributes can have numeric values of different ranges for example salary, deposit in 
account, age etc.   
 
This grouping is completely different from previously mentioned basic classes- X 
and Y. This grouping will be done only for convenience in assigning weights to all 
the attributes describing an instance.   
 
In order to assign weight to both groups of attributes our proposed algorithms are 
described in Appendix. 
 
Once we have completed assigning weights to the attributes our proposed algorithms 
is going to select the most influential attributes with respect to our purpose. Figure 2 
and Figure 3 are the algorithms for finding out the most important m and n attributes 
form class X and class Y respectively.  
 
   

K=Total number of attributes in category X  
L=Total number of attributes category X weighing greater then .5   

 
1. Sort the attributes of category X according to the weight. 

 
2. IF L>K/2 THEN 
        Select the first K/2+1 attributes of the sorted list of category X 

 
    ELSE IF L<K/2 THEN 

  Select the first K/2-1 attributes of the sorted list of category X 
   

     ELSE 
         Select the first K/2 attributes of the sorted list of category X 
  
 
               Figure2: Selection algorithm for X category 
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V=Total number of attributes in category Y  
U=Total number of attributes category Y weighing greater then .5   

 
 

 1. Sort the attributes of category X according to the weight. 
 

 2. IF U>V/2 THEN 
          Select the first U/2+1 attributes of the sorted list of category Y  
                       
 
           ELSE IF U<V/2 THEN 
              Select the first V/2-1 attributes of the sorted list of category Y 
    
             ELSE 

Select the first V/2 attributes of the sorted list of category Y 
 
 
                                  Figure3: Selection algorithm for Y category 
 
Step 3: 
 
After applying these algorithms we create the attribute set consists of total m+n 
number of attributes. Now we will apply the conventional kNNC method with this 
chosen attribute set.  
 
 
2.2 Repetitive Selection process to make the prediction criteria 
change with time 
 
As mentioned earlier, in the proposed algorithm Repetitive Selection plays a very 
important part. This operator of GA which has been used to adjust the importance 
(i.e. weighting) of attributes with time and if necessary to change the primarily 
selected attribute set for voting. In Figure 6 our proposed algorithm of Repetitive 
Selection is described. 
 
 
2.3 Modification of the proposed method 
 
In the first proposed method weighting vote of the attributes has been used rather 
than weighting vote of the neighbors. Now to make the proposed method more 
effective we have also included the weighting vote of the neighbors. So our modified 
proposed algorithm is given in the Figure 7.    
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          While (p<h) DO //   p number of new instances after the last selection & h is a  
                                        // constant number    
                       Begin       
 

 FOR each of the attribute DO 
                         SET Weight_new[i]=Weighting // This will be using our proposed  
                                                                                      // Weighting algorithm 
                        End 
      

 FOR each of the attribute DO  
                          Begin 

   
          SET W[i]:=W[i]*Weight_new[i] 

 
           End 
                                              

 FOR each attribute k that is not an attribute of voting attribute set DO 
                    FOR each attribute g that is an attribute of voting attribute set DO 
        

          Begin 
IF Weight_new[k]>.7 and W[g]<.4 THEN 

 
                        Replace the attribute g   from voting attribute set with the attribute k  

         
End 
 

                             
 

Figure 4: Repetitive Selection algorithm 
    
 
The main difference between this algorithm and our proposed algorithm of figure1 is 
in the step 4. In the modified proposed algorithm once selected k nearest neighbors 
are not only going to vote but also they are going to vote according to the weight to 
predict the outcome. 
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m, n:Integer 
 
1. Divide all the attributes into category X & Y. 
 
2. 
      (a) Select m attributes from category X; 
 
      (b) Select n attributes from category Y; 
  
      (c) Use the crossover GA operator to build the new attribute set 
Z where total number of attributes will be m+ n;    
  
3. Attributes of only Z set will vote (based on similarity) according 
to the weight to find out the k nearest neighbors. 
 
4. These k neighbors will vote to predict the outcome.    
     
5. Repetitive Selection algorithm will be applied to change the 
attribute set Z (if necessary) and reassign the weight of the 
attributes after p more data come in. 

 
 

Figure 4.Algorithm of the modified proposed method 
 
Now as the weight of the attributes keep on changing the neighbors vote weight are 
going to change accordingly. We are assigning weight to the neighbors based on the 
similarity of different instances on the same attribute set and importance of those 
each individual attribute with respect to the purpose.       
 
 
 
3  Implementation of the proposed method 
 
To prove the effectiveness of our proposed method we have implemented the 
proposed method in the data set which is available in the University of California, 
Irvine (UCI) Machine learning repository. The Loan Approval Database has the 
following description: 
 
Good mix of attributes -- continuous, nominal with small numbers of values, and 
nominal with larger numbers of values 8900 instances, 15 attributes (like age, job 
status, sex, marital status, deposit amount in account, job experience etc.) some of  
them are with missing values . 
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To implement it we have used 500 instances as training data and then have tried to 
predict the class (i.e. weather a person would be a defaulter or not) for rest of the 
data. Then we have tried to compare it with the actual outcome.  
 
All these data were collected over  three different time periods i.e. a set of all the 
data were collected at a time then there was a time interval after that the  second data 
set was collected and in the same way the third data set. This characteristic of the 
collected data set was suitable to test the effectiveness of our proposed modified 
kNNC methods. 
 
 
3.1  Processing Before Implementation 
 
For faster computation we have converted the attribute values into the binary form of 
1s and 0s. We have used two different algorithms [Appendix] for doing so. One for 
previously defined group A attributes and other for the group B attributes. 
 
 
3.2  Results of the implementation 
 
As mentioned earlier the data we have worked on are collected over three time 
intervals. So we have compared the prediction quality for all three time intervals. 
 
By using conventional kNNC, our proposed kNNC and the modified proposed 
kNNC method. The outcomes of the implementation are shown in the figure10, 11 
and 12.  
 
 
 
 
 
 
 
 
 
 

        Figure10. Performance of different kNNC for time phase one. 
 
We can notice from the graph of figure10 that in the first time phase the performance 
of all three methods is quite similar regarding the percentage of correct prediction. 
Our modified proposed method’s performance is just a little bit better but not real 
significant.   
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Figure 11.Performance of different kNNC for time phase two. 
 

In the performance of time phase two it is noticeable that the performance of 
conventional kNNC is not as good as the other two and its percentage of correct 
prediction has been declined significantly.      

 
 
 
 
 
 
 
 
 
 
 
 
            

Figure12: Performance of different kNNC for time phase three 
 
 

A significant improvement of performance can be found in the results of time phase 
three. Here performance of conventional kNNC method has degraded by almost 5 
percentage. But our modified proposed method is still performing quite consistently 
regarding the percentage of correct prediction.  
 
 
 3.3  Overall performance analysis 
 
 
The performance of three methods over all the three time phases is summarized in 
the figure 13. Here it can be noticed that as the time progresses performance of the 
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conventional kNNC is degrading significantly. On the other hand, both our proposed 
method outperforms the conventional method. 
 
 
 

 
 
 
 
 
 
 

 
 
Figures 13: Overall Performance analysis. 
 

Among our two proposed methods the later one’s performance is even better than 
our first proposed one. The possible reason behind the better performance of our 
proposed methods is the up gradation of prediction/classification criteria by using the 
mutation algorithm. 
 
So these results show the better performance of our proposed version of kNNC 
regarding the effective correct classification. It can be inferred that the proposed 
version of kNNC is especially suitable for the application domains where the 
scenario changes frequently with time.     
 
 
 
4 Conclusions 
 
 
In this paper we have proposed an enhancement k Nearest Neighbor classification 
method by using Genetic Algorithm. Our new approach is to provide kNNC more 
interactivity so that it can keep on changing its nearest neighbor selection criteria to 
make better prediction.  We have implemented our newly proposed methods of 
kNNC together with the conventional one on real life data set. Considering the 
percentage of correct prediction our proposed methods have outperformed the 
conventional one.  
 
But both of our proposed methods have some overheads like preprocessing of data 
before implementation and running the selection algorithm repetitively to change the 
selection as well as prediction criteria with time.  
 
In future we would like provide more interactivity to the selection algorithm. In this 
paper the algorithm we have proposed to change the voting attribute set is a rigid one 
as the value used in the algorithm to repeat the repetitive selection algorithm is a 
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preset one. But to handle all sorts of real life data this value should be an adaptive 
one based on the dataset.   
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Appendix 
 
      Preprocessing algorithm for group A Attributes: 

   
For each attribute of Group A DO 
       Begin   
            
         IF A[i] [ j]= T && ACTUAL _OUTCOME=Positive THEN     
                          SET C:=C+1   
         

ELSE IF A[i] [ j]= F && ACTUAL _OUTCOME=Negative THEN     
 
                          SET C:=C+1   

 ELSE   
                            SET C:=C-1                       
                    
      

IF A[i] [ j]= F && ACTUAL _OUTCOME=Positive THEN     
                                   SET D:=D+1   
          

ELSE IF A[i] [ j]= T && ACTUAL _OUTCOME=Negative THEN     
                   SET D:=D+1   

  ELSE   
                        
                                SET D:=D-1                       
          
 
       IF C>D THEN DO 
                           
                                              For i=1 TO n DO 
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        Begin          
 
               IF A[i] [j]=T  THEN 

                                    
  Set A[i] [j]:=1 

                                         ELSE  
                                       Set A[i] [j]:= 0 
                                End 
                                            

              ELSE DO 
                        

      For i=1 TO n DO 
 

 
          Begin          
 
                IF A[i] [j]=F  THEN                          
                     Set A[i] [j]:=1 

                        
                 ELSE  

                               Set A[i] [j]:= 0 
                              End                                   
                                                         End 

       
Preprocessing algorithm for group B Attributes: 
 

             For each of the group B attributes Do 
        
    Begin   
                        Set C: =0; 
                     Set SUM: =0; 
            
                For i=1 TO n (total number of training data) DO 
                
                         Begin   
                   
      ACTUAL OUTPUT=POSITIVE 
                       SUM: =SUM+T[i][j] // j th attribute      
                       C: =C+1 
            
                            T_AVG[j]:=SUM / C 
                                
                             End  
             

            For i=1 TO n DO 
           
         Begin          
     
                                  IF A[i] [j]>T_AVG[j] THEN 
                                        Set A[i] [j]:=1 
                                     ELSE  
                                       Set A[i] [j]:= 0 

                End 
 
End  


