
An Enhancement of k-Nearest Neighbor
Classification Using Genetic Algorithm

Anupam Kumar Nath Syed M. Rahman

Akram Salah

Department of Computer Science, North Dakota State University
258 IACC Building, Fargo, North Dakota 58105, USA
{Anupam.Nath, Syed.Rahman, Akram.Salah}@ndsu.edu

Abstract

K-Nearest Neighbor Classification (kNNC) makes the classification by getting votes
of the k-Nearest Neighbors. Performance of kNNC is depended largely upon the
efficient selection of k-Nearest Neighbors. All the attributes describing an instance
does not have same importance in selecting the nearest neighbors. In real world,
influence of the different attributes on the classification keeps on changing with time.
To solve this problem, we have proposed an enhancement of kNNC where Genetic
Algorithm (GA) has been applied for effective selection and upgrade of attribute set
to find out k-Nearest Neighbors. Our experimental results demonstrate a significant
improvement in classification accuracy in comparison with the conventional kNNC.

 1

1 Introduction

Efficiency of kNNC depends largely upon the effective selection of k-Nearest
Neighbors [3]. The limitation of conventional kNNC is that once we choose the
criteria for k-Nearest Neighbors selection, the criteria remain unchanged. But this
characteristic of kNNC is not suitable for many cases if we want to make a correct
prediction or classification in real life.

An instance is described in the database by using a number of attributes and the
corresponding values of those attributes. So similarity between any two instances is
identified by the similarity of attribute values. But in real life data when we are
describing two instances and are trying to find out the similarity between those two,
similarities in different attributes do not weigh same with respect to a particular
classification. Moreover, as with time more training data keeps on coming it may
happen that similarity in a particular attribute value carries more or less importance
than before. For example, say we are trying to predict the outcome of a soccer game
based on the previous results. Now in that prediction, the place and the weather plays
a very important role in the outcome of the game. But in future if all the soccer
games are played in indoor stadiums then the field weather is no longer going to
have same effect on the outcome of the game.

In Genetic Algorithm(GA) during each generation the current population are rated
for their effectiveness as solutions, and on the basis of these evaluations, a new
population of candidate structures is formed using specific `genetic operators' such as
selection crossover, and mutation to find out even more optimized solution. In short
GA keeps on upgrading the solution process with time to reach the best result [2].

GA has been applied in kNNC method previously. GA has been used in all most all
the previous implementations to set up the voting weight of k Nearest Neighbors.
According to our proposed method GA will be used in kNNC with a different
approach. In the proposed enhancement, GA has been used to select the attribute set
which are going to vote to find out the k_nearest Neighbors and to change the voting
weight of the attribute set with time so that kNNC method can make the
classification more efficiently.

Our approach provides kNNC more interactivity for changing its nearest neighbor
selection criteria to make an efficient classification. We have implemented and
compared our proposed method of kNNC with the conventional kNNC on loan
approval dataset. We found that our method has significant improvements in the
classification accuracy.

 2

2 Proposed Method

In k-Nearest-Neighbor Classification (kNNC), the training dataset is used to classify
each member of a "target" dataset. The structure of the data is that there is a
classification (categorical) variable of interest ("buyer," or "non-buyer," for
example), and a number of additional predictor variables (age, income, location...).
Generally speaking, the algorithm is as follows:

1. For each row (case) in the target dataset (the set to be classified), locate the k
closest members (the k nearest neighbors) of the training dataset. A Distance
measure is used to calculate how close each member of the training set is to
the target row that is being examined.

2. Examine the k nearest neighbors - which classification (category) do most of
them belong to? Assign this category to the row being examined.

3. Repeat this procedure for the remaining rows (cases) in the target set.

In practical applications, typically, k is in units or tens rather than in hundreds or
thousands [1].

In our new approach

• Instead of using all the attributes to find out the k Nearest neighbors we are
going to use only q most important attributes and similarity in only in those
attributes’ value to find out the nearest neighbors.

(here q = ½ (number of total attributes)�q< number of total attributes)

• Together with the weighting vote of the k neighbors we are proposing the

weighting vote of the attributes to find out the k Nearest Neighbors.

• GA operator selection will be used for two different purposes.

i) As the time progresses and more data keep on coming voting weight of the
attributes are going to keep on changing as well as the voting weight of the
neighbors.

ii) If necessary, any of the attribute(s) of the attribute set, selected primarily
for selection of the k Nearest Neighbors, is going to be replaced by an
attribute(s) which was not a set of the initially selected set.

The outline of our proposed method has been described in figure 1. :

 3

m, n: Integer

1. Divide all the attributes into category X & Y.

2.
 (a) Select m attributes from category X;

 (b) Select n attributes from category Y;

 (c) Use the crossover GA operator to build the new attribute set
Z where total number of attributes will be m+ n;

3. Attributes of only Z set will vote (based on similarity) according to
the weight to find out the k nearest neighbors.

4. These k neighbors will vote to predict the outcome.

5. Repetitive Selection algorithm will be applied to change the
attribute set Z (if necessary) and reassign the weight of the attributes
after p more data come in.

Figure 1.Algorithm of the proposed method

2.1 Overview of the Proposed Method

Step1:

For most of the cases the attributes which describe an instance in dataset can be
broadly categorized into two different classes-

• Class X Attributes: Value of those attributes are not expected to change
frequently i.e. relatively static attributes will be categorized as class X
attributes. For example: an attribute namely SEX. A person may be Male or
female and it is not going to change. So this is an attribute whose values are
relatively constant and according to our definition will be categorized as class
X.

• Class Y Attributes: Value of those attributes are expected to change

frequently i.e. relatively dynamic attributes. For example: an attribute namely
JOB SATUS. There is a chance of person getting or lose a job within a very
short time period. So this is relatively dynamic attribute and according to our
definition will be categorized as class Y.

 4

Step 2:

Now for the attributes belonging to class X we have to select the m attributes which
have the most influence on the classification.

We also have to find out the most influential n attributes for the class Y attributes

We have proposed an algorithm for selection. But before applying the algorithm we
have to assign weight to each of the attributes. Broadly there are two sorts of
attributes. One are Boolean attributes i.e. those can have only two different values
e.g. martial status (married/single), sex (male/female) etc. This sort of attributes we
define as group A attributes. The other type of attributes we define as group B
attributes can have numeric values of different ranges for example salary, deposit in
account, age etc.

This grouping is completely different from previously mentioned basic classes- X
and Y. This grouping will be done only for convenience in assigning weights to all
the attributes describing an instance.

In order to assign weight to both groups of attributes our proposed algorithms are
described in Appendix.

Once we have completed assigning weights to the attributes our proposed algorithms
is going to select the most influential attributes with respect to our purpose. Figure 2
and Figure 3 are the algorithms for finding out the most important m and n attributes
form class X and class Y respectively.

K=Total number of attributes in category X
L=Total number of attributes category X weighing greater then .5

1. Sort the attributes of category X according to the weight.

2. IF L>K/2 THEN
 Select the first K/2+1 attributes of the sorted list of category X

 ELSE IF L<K/2 THEN

 Select the first K/2-1 attributes of the sorted list of category X

 ELSE
 Select the first K/2 attributes of the sorted list of category X

 Figure2: Selection algorithm for X category

 5

V=Total number of attributes in category Y
U=Total number of attributes category Y weighing greater then .5

 1. Sort the attributes of category X according to the weight.

 2. IF U>V/2 THEN
 Select the first U/2+1 attributes of the sorted list of category Y

 ELSE IF U<V/2 THEN
 Select the first V/2-1 attributes of the sorted list of category Y

 ELSE

Select the first V/2 attributes of the sorted list of category Y

 Figure3: Selection algorithm for Y category

Step 3:

After applying these algorithms we create the attribute set consists of total m+n
number of attributes. Now we will apply the conventional kNNC method with this
chosen attribute set.

2.2 Repetitive Selection process to make the prediction criteria
change with time

As mentioned earlier, in the proposed algorithm Repetitive Selection plays a very
important part. This operator of GA which has been used to adjust the importance
(i.e. weighting) of attributes with time and if necessary to change the primarily
selected attribute set for voting. In Figure 6 our proposed algorithm of Repetitive
Selection is described.

2.3 Modification of the proposed method

In the first proposed method weighting vote of the attributes has been used rather
than weighting vote of the neighbors. Now to make the proposed method more
effective we have also included the weighting vote of the neighbors. So our modified
proposed algorithm is given in the Figure 7.

 6

 While (p<h) DO // p number of new instances after the last selection & h is a
 // constant number
 Begin

 FOR each of the attribute DO
 SET Weight_new[i]=Weighting // This will be using our proposed
 // Weighting algorithm
 End

 FOR each of the attribute DO
 Begin

 SET W[i]:=W[i]*Weight_new[i]

 End

 FOR each attribute k that is not an attribute of voting attribute set DO
 FOR each attribute g that is an attribute of voting attribute set DO

 Begin
IF Weight_new[k]>.7 and W[g]<.4 THEN

 Replace the attribute g from voting attribute set with the attribute k

End

Figure 4: Repetitive Selection algorithm

The main difference between this algorithm and our proposed algorithm of figure1 is
in the step 4. In the modified proposed algorithm once selected k nearest neighbors
are not only going to vote but also they are going to vote according to the weight to
predict the outcome.

 7

m, n:Integer

1. Divide all the attributes into category X & Y.

2.
 (a) Select m attributes from category X;

 (b) Select n attributes from category Y;

 (c) Use the crossover GA operator to build the new attribute set
Z where total number of attributes will be m+ n;

3. Attributes of only Z set will vote (based on similarity) according
to the weight to find out the k nearest neighbors.

4. These k neighbors will vote to predict the outcome.

5. Repetitive Selection algorithm will be applied to change the
attribute set Z (if necessary) and reassign the weight of the
attributes after p more data come in.

Figure 4.Algorithm of the modified proposed method

Now as the weight of the attributes keep on changing the neighbors vote weight are
going to change accordingly. We are assigning weight to the neighbors based on the
similarity of different instances on the same attribute set and importance of those
each individual attribute with respect to the purpose.

3 Implementation of the proposed method

To prove the effectiveness of our proposed method we have implemented the
proposed method in the data set which is available in the University of California,
Irvine (UCI) Machine learning repository. The Loan Approval Database has the
following description:

Good mix of attributes -- continuous, nominal with small numbers of values, and
nominal with larger numbers of values 8900 instances, 15 attributes (like age, job
status, sex, marital status, deposit amount in account, job experience etc.) some of
them are with missing values .

 8

To implement it we have used 500 instances as training data and then have tried to
predict the class (i.e. weather a person would be a defaulter or not) for rest of the
data. Then we have tried to compare it with the actual outcome.

All these data were collected over three different time periods i.e. a set of all the
data were collected at a time then there was a time interval after that the second data
set was collected and in the same way the third data set. This characteristic of the
collected data set was suitable to test the effectiveness of our proposed modified
kNNC methods.

3.1 Processing Before Implementation

For faster computation we have converted the attribute values into the binary form of
1s and 0s. We have used two different algorithms [Appendix] for doing so. One for
previously defined group A attributes and other for the group B attributes.

3.2 Results of the implementation

As mentioned earlier the data we have worked on are collected over three time
intervals. So we have compared the prediction quality for all three time intervals.

By using conventional kNNC, our proposed kNNC and the modified proposed
kNNC method. The outcomes of the implementation are shown in the figure10, 11
and 12.

 Figure10. Performance of different kNNC for time phase one.

We can notice from the graph of figure10 that in the first time phase the performance
of all three methods is quite similar regarding the percentage of correct prediction.
Our modified proposed method’s performance is just a little bit better but not real
significant.

Performance analysis for phase
one

convention
al

propose
d

modifie
d propose
d

7
7

7
8

7
9

8
0

conventional propose modified
proposed applied methods

%correct
prediction

 9

Figure 11.Performance of different kNNC for time phase two.

In the performance of time phase two it is noticeable that the performance of
conventional kNNC is not as good as the other two and its percentage of correct
prediction has been declined significantly.

Figure12: Performance of different kNNC for time phase three

A significant improvement of performance can be found in the results of time phase
three. Here performance of conventional kNNC method has degraded by almost 5
percentage. But our modified proposed method is still performing quite consistently
regarding the percentage of correct prediction.

 3.3 Overall performance analysis

The performance of three methods over all the three time phases is summarized in
the figure 13. Here it can be noticed that as the time progresses performance of the

Performence analysis phase three

conventional

proposed

modified
proposed

70

72

74

76

78

80

conventional proposed modified proposed

applied method

%
co

rr
ec

t p
re

di
ct

io
n

Performance analysis Phase two

conventional

proposed

modified
proposed

76

77

78

79

conventional proposed modified proposed
apllied method

%correct prediction

 10

conventional kNNC is degrading significantly. On the other hand, both our proposed
method outperforms the conventional method.

Figures 13: Overall Performance analysis.

Among our two proposed methods the later one’s performance is even better than
our first proposed one. The possible reason behind the better performance of our
proposed methods is the up gradation of prediction/classification criteria by using the
mutation algorithm.

So these results show the better performance of our proposed version of kNNC
regarding the effective correct classification. It can be inferred that the proposed
version of kNNC is especially suitable for the application domains where the
scenario changes frequently with time.

4 Conclusions

In this paper we have proposed an enhancement k Nearest Neighbor classification
method by using Genetic Algorithm. Our new approach is to provide kNNC more
interactivity so that it can keep on changing its nearest neighbor selection criteria to
make better prediction. We have implemented our newly proposed methods of
kNNC together with the conventional one on real life data set. Considering the
percentage of correct prediction our proposed methods have outperformed the
conventional one.

But both of our proposed methods have some overheads like preprocessing of data
before implementation and running the selection algorithm repetitively to change the
selection as well as prediction criteria with time.

In future we would like provide more interactivity to the selection algorithm. In this
paper the algorithm we have proposed to change the voting attribute set is a rigid one
as the value used in the algorithm to repeat the repetitive selection algorithm is a

Overall performence analysis

70

72

74

76

78

80

phase one phase tw o phase three

year

%
 c

o
rr

ec
t

p
re

d
ic

ti
o

n

conventional

proposed method

modif ied proposed
method

 11

preset one. But to handle all sorts of real life data this value should be an adaptive
one based on the dataset.

References

[1]http://www.resample.com/xlminer/help/k-NN/knn_intro.htm, web retrieve on
January 10, 2005

[2]Patterson, Dan, W. “Artificial Intelligence and Expert systems”, Prentice Hall,
1990

[3] Maleq Khan, Qin Dong,William Perrizo . "K-Nearest Neighbor Classification on
Spatial Data Streams Using P-Trees",, Pacific-Asian Knowledge and Data Mining
Conf., May, 2002

Appendix

 Preprocessing algorithm for group A Attributes:

For each attribute of Group A DO
 Begin

 IF A[i] [j]= T && ACTUAL _OUTCOME=Positive THEN
 SET C:=C+1

ELSE IF A[i] [j]= F && ACTUAL _OUTCOME=Negative THEN

 SET C:=C+1

 ELSE
 SET C:=C-1

IF A[i] [j]= F && ACTUAL _OUTCOME=Positive THEN
 SET D:=D+1

ELSE IF A[i] [j]= T && ACTUAL _OUTCOME=Negative THEN
 SET D:=D+1

 ELSE

 SET D:=D-1

 IF C>D THEN DO

 For i=1 TO n DO

 12

 Begin

 IF A[i] [j]=T THEN

 Set A[i] [j]:=1

 ELSE
 Set A[i] [j]:= 0
 End

 ELSE DO

 For i=1 TO n DO

 Begin

 IF A[i] [j]=F THEN
 Set A[i] [j]:=1

 ELSE

 Set A[i] [j]:= 0
 End
 End

Preprocessing algorithm for group B Attributes:

 For each of the group B attributes Do

 Begin
 Set C: =0;
 Set SUM: =0;

 For i=1 TO n (total number of training data) DO

 Begin

 ACTUAL OUTPUT=POSITIVE
 SUM: =SUM+T[i][j] // j th attribute
 C: =C+1

 T_AVG[j]:=SUM / C

 End

 For i=1 TO n DO

 Begin

 IF A[i] [j]>T_AVG[j] THEN
 Set A[i] [j]:=1
 ELSE
 Set A[i] [j]:= 0

 End

End

