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Abstract 
 

A DNA sequence is a representation of the genetic code contained within an organism. 
Molecular biology researchers have great need to compare portions of DNA sequences.  
This paper discusses the computational problems inherent to this application, and shows 
how some solutions may be implemented. 

 
Global and local alignment implementations are presented. Known methods of 
quantifying global and local alignments are discussed and demonstrated. Dynamic 
programming techniques (using memoization through tabular computation) are discussed 
and applied to the implementations. 

 
As a background primer to these techniques, the concepts of ‘string edit distance’ and 
‘string edit transcripts’ are discussed, and implementations to demonstrate them are 
presented. 

 
Background information is provided on the basics of DNA, the composition of DNA 
sequences, the motivations for DNA sequence alignment, and computational problems 
related to DNA sequence alignment. 

 
The relationship between edit distance and string alignment (with provisions for DNA 
sequence alignment) is demonstrated. 
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DNA Sequence Alignment 

DNA sequence alignment is a representation of the similarity between two or more 
sections of genetic code. It is used to compare these sections in a quantitative way. 
Biologists use the comparisons to discover evolutionary divergence, the origins of 
disease, and ways to apply genetic codes from one organism into another. 

DNA Basics 

DNA is an acronym for the molecule deoxyribonucleic acid. DNA is contained in each 
living cell of an organism, and it is the carrier of that organism’s genetic code. 

The genetic code 

The genetic code is a set of sequences which define what proteins to build within the 
organism. Since organisms must replicate and/or reproduce tissue for continued life, there 
must be some means of encoding the unique genetic code for the proteins used in making 
that tissue. The genetic code is information which will be needed for biological growth 
and reproductive inheritance. 

The double helix 

DNA is a double-stranded, helical molecule often called a “double helix”. Each strand is 
composed of a sequence of nucleotides. The nucleotide sequence is what encodes genetic 
information. 

Nucleotides 

There are four nucleotide molecules, which are identical in all respects excepting a 
nitrogen base. The four nucleotides are thus named after these different bases: adenine, 
guanine, cytosine, and thymine. The nucleotides are often denoted by the letters A, G, C, 
and T. 
 
A nucleotide will bond between the double-strand of DNA to another nucleotide, but the 
bond may only follow the pairing A-T or G-C. This pairing is called a base pair (bp). 
 
Thus, the two strands composing the DNA molecule are exactly complementary. 
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Replication 

To replicate a DNA molecule, the cell will first split it into two strands. Then, using a 
pool of free nucleotides within the cell, each strand will have a complementary strand 
built to fit it, yielding 2 new DNA molecules. 
 
This is basically how cells divide to produce new cells. 

DNA sequences 

A DNA sequence is our representation of a string of nucleotides contained in a strand of 
DNA. For example: 
 
 ATGCGATACAAGTTGTGA 
 
represents a string of the nucleotides A, G, C, and T. 

Codons 

Although the genetic code is composed of  DNA sequences, proteins are not built directly 
from them. There are intermediary chemicals called amino acids which, when combined 
in a certain order, lead to proteins. The DNA sequence is split into triplets of nucleotides 
which code for these amino acids. The triplet is called a ‘codon’. 
  
There are approximately 20 amino acids used in proteins. 
 
An amino acid is encoded by a sequence of three (3) nucleotides, called a codon. 
 
For example, the amino acid methionine is represented by the codon ATG. 
 
If we had other amino acids represented by the codons CGA, TAC, AAG, TTG, and 
TGA, then we could string them together to produce a sequence: 
 

ATGCGATACAAGTTGTGA 
 
which may represent the encoding for a particular protein comprised of 6 amino acids. 
(We have 18 nucleotides here, and each amino acid is encoded by 3 nucleotides.) 
 
Since we have 4 possible nucleotides and a codon is composed of 3 nucleotides, there are 
4^3 = 64 possible codon triplets. But since in the whole of life on Earth there are only 20 
amino acids used to compose proteins, most amino acids are specified by more than one 
codon. See Shamir [1]. 
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This means that redundancy is built into the coding scheme. In part, this is nature’s way 
of ensuring that coding errors do not produce lethal mutations. It has been shown, for 
example, that only 30% coding identity is required to produce the same protein. See 
Shamir [2]. 

DNA sequence alignment 

Motivations 

Some of the most common uses for DNA sequence alignment are in determining the 
function of new sequences, and medical applications. Tompa [3] 

Determine function of new sequences 

As new sequences are discovered and catalogued, it becomes necessary to hypothesize 
their function. How can we do this? 
 
One way is to look for matches in a database of sequences for which we already know the 
protein encoding. If we can find a match (or close match) in this database, we then have a 
clue as to the new sequence’s function. 

Medical applications 

Multiple sclerosis is a disease in which the immune system T-cells attack the body’s 
myelin sheath around nerves. 
 
It was hypothesized that myelin sheath proteins are similar to viral or bacterial sheath 
proteins from an earlier infection. So, researchers: 
 

1. sequenced myelin sheath proteins 
2. searched a protein database for similar bacterial and viral sequences 
3. performed lab tests to determine if T-cells attacked these same proteins 

 
They discovered that the immune system was indeed confusing bacterial and viral 
proteins with the body’s own myelin sheath proteins. This was a vital step in the progress 
toward treating multiple sclerosis. See Tompa[4] 
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Computational problems 

Dot Plot 

Regions of similarity between two DNA sequences can be plotted by hand. The technique 
is to create a table, putting one sequence on a vertical axis and the other sequence on a 
horizontal axis. The table is populated with dots which mark a match between nucleotides 
in the sequences. 
 

 C C C A G T A T A G A T T A 
A    •   •  •  •   • 
T      •  •    • •  
G     •     •     
C • • •            
G     •     •     
A    •   •  •  •   • 
T      •  •    • •  
A    •   •  •  •   • 
G     •     •     
A    •   •  •  •   • 
G     •     •     
T      •  •    • •  

Figure 1: Dot Plot 

In the dot plot of Figure 1, the sequence ATGCGATAGAGT is matched against the 
sequence CCCAGTATAGATTA. Regions of similarity occur where it is apparent that 
there is a string of diagonal dots in the dot plot. 
 
The dot plot is fine for small sequences, but is not adequate for very long ones. 

Complexity and scale 

The human genome has approximately 3 billion base pairs (bp), and some simple 
amoebas have 200 times the DNA as humans. See Shamir [5] 
 
An average protein has 200 amino acids, while a large one has 1000. Since an amino acid 
is coded by 3 nucleotides, this means that the sequence size for a protein can be from 600 
to 3000 nucleotides. 
 
If we are to search the human genome for a small protein, then the table to match the 
bases will occupy 1,800 billion cells of memory. 
 
Needless to say, techniques must be developed to address this huge space, and also to 
perform calculations within this space more optimally than brute-force. 
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These are the basic problems of DNA sequence alignment. 

Concepts from computer science 

In order to understand the possible computable solutions to the problem of DNA 
sequence alignment, it will be helpful to review the concepts of string edit distance and 
dynamic programming. 

Edit distance 

Edit distance can be thought of as the “difference” between two strings. The difference 
between two strings is measured by counting the number of edit operations which must 
be performed, character by character, to transform one string into another. These edit 
operations are: 
 

- R = replace 
- I = insert 
- D = delete 
- M = match 

 
For example, to transform the string “cat” to the string “chat” we can insert (I) the 
character ‘h’ between the ‘c’ and ‘a’ of “cat”, yielding the string “chat”. 
 
There are many possible edit distances between “cat” and “chat”, but the minimal edit 
distance is one (1) -- just one insertion. 
 
Our objective is to discover a minimal edit distance which will tell us the minimum 
number of edit operations which may be used to transform one string into another. This 
number is the most interesting because we are usually searching for strings or portions of 
strings with the most similarity. 
 

Edit Distance Definition 

How can we derive or calculate a value for the edit distance between two strings? We 
must use a general description of the problem. To illustrate: 
 
Say that we have two strings S and T, of length n and m, respectively. 

 
|S| = n, |T| = m 

 
We can define 
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D(i, j) 
 
as the value of the minimal edit distance between strings 
 
 S[1]…S[i] and T[1]…T[j] 
 
so that the minimal edit distance between S and T is 
 
 D(n,m) 
 
In order to calculate D(i,j), we must: 
 

establish a base condition, based on two cases: 

 
  D(i,0) = i 
 
  D(0,j) = j 

 
(note: D(0,0) = 0) 

 
and establish a recurrence relation, used in all other cases: 
 

D(i,j) = minimum 
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  where 
 
   t(i,j) = 1 if S[i] ≠ T[i], and 
 
   t(i,j) = 0 if S[i] = T[i] 
 
See Gusfield [6]. 

Edit Distance in Plain English 

When we refer to D(3,4) on the alignment between “cat” and “chat”, this means that we 
are trying to find the minimal number of edit operations required to transform the first 
three (3) characters of “cat” into the first four (4) characters of “chat”. In this case, this 
applies to the whole strings. 
 
The base condition cases are easily derived from this way of thinking: in order to 
transform the first i characters of a string to 0 characters (the null string), it will require i 



 7 

deletions. In our notation, D(i,0) = i. The same logic applies to transorming a null string 
into some string with j characters (using j insertions), yielding D(0,j) = j. 
 
The recurrence relation operates upon the principle that the edit distance value of any 
D(i,j) is dependent upon the edit distances of alignments that come “before” it. Going 
from D(i-1,j) to D(i,j) represents an insertion. Going from D(i,j-1) to D(i,j) represents a 
deletion. Going from D(i-1,j-1) to D(i,j) represents a replacement if S[i] ≠ T[j], and it 
represents a match if S[i] = T[j]. 

Edit Distance Example 

 
For example, consider the edit distance between the strings “cat” and “chat”: 
 
 S = “cat”, T = “chat” 
 
 n = |S| = 3, m = |T| = 4 
 
Thus, the minimal edit distance between “cat” and “chat” is defined as: 
 
 D(n,m) = D(3,4) 
 
Since there is only one edit operation required to transform “cat” to “chat” (inserting the 
‘h’ character), the value of D(3,4) is 1. 
 
Cognitively, we can think of this function as stating that the minimal effort required to 
transform the first three (3) characters of “cat” into the first four (4) characters of “chat” 
is one (1) edit operation. 
 
Applying this generalization to other transformations, we can see, for example, that 
D(3,0) represents the minimal effort required to transform the string “cat” into the null 
string. (The edit operations are: delete ‘c’, delete ‘a’, and delete ‘t’). Thus, D(3,0) has 
value of 3. 

Edit transcript 

The series of edit operations is called an ‘edit transcript’, and is represented in the 
following way: 
 
  I    (the edit transcript) 
c   a t   (original string) 
c h a t   (transformed string) 
 
(edit distance = 1) 
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The position of the edit operation ‘I’ shows where that operation is performed upon the 
original string. 
 
Another example (from Gusfield): 
 
R I M D M D M M I (the edit transcript) 
v   i n t n e r (original string ‘vintner’) 
w r i   t   e r s (transformed string ‘writers’) 
 
(edit distance = 5) 
 
Note that there may be more than one edit transcript to achieve the same alignment: 
 
  R I   (the edit transcript) 
c a   t   (original string ‘cat’) 
c h a t   (transformed string ‘chat’) 
 
(edit distance = 2) 
 
We can see that the edit distance is the sum of insertions, deletions, and replacements in 
an alignment of strings. The minimal edit distance is the distance found in an optimal 
alignment of strings. 

Calculating Edit Distance 

It is evident that in order to calculate D(n,m) we must be able to calculate D(i,j) for any i 
and j. This calculation can be done recursively, or through dynamic programming. 
 
It will become clear that dynamic programming is the preferred method, but in order to 
use it (and understand why it is better) we must first understand the recursive method. 
 
Our definition of edit distance is a recursive one. That is, our desired final value is 
defined by simpler (but unknown) values. 
 
In implementation, a computer program would use a call stack which repeats from 
D(n,m) down to the known values of D(i,0) or D(0,j). Then, the values are passed back 
up the call stack to compute our desired final value. 
 
The recursive method is fine for a definition, but poor in implementation because it is so 
inefficient. The complexity lies at about O(2n). 
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Dynamic Programming 

Dynamic programming uses the concept of ‘memoization’ to eliminate calculating values 
more than once. Memoization is simply the process of storing a calculated value which 
we know will be used to calculate other values later in computation. 
 
In the case of sequence alignment, we take a cue from the use of dot plots (See Figure 1). 
Similar to a dot plot, we create a table arranging one string on a vertical axis and another 
string on a horizontal axis. Unlike a dot plot, however, we populate the cells not with dots 
but rather with numerical values. The numerical values represent an edit distance (or 
some other score, as will be shown later in the case of DNA sequences.) 
 
The cells in a dynamic programming table are filled from left to right, top to bottom. We 
do this because we can start with our base condition, which is the set of known values 
D(i,0) and D(0,j). The bottom-most, right-most value will be the minimal edit distance, 
D(n,m). 
 

  c h a t 
 0 1 2 3 4 
c 1 0 1 2 3 
a 2 1 1 1 2 
t 3 2 2 2 1 

Figure 2: Dynamic programming table for cat:chat 

In Figure 2, the bottom-most, right-most value represents D(3,4), which is the minimal 
edit distance between the strings “cat” and “chat”. This value is 1. 
 

  w r I t e r s 
 0 1 2 3 4 5 6 7 
v 1 1 2 3 4 5 6 7 
I 2 2 2 2 3 4 5 6 
n 3 3 3 3 3 4 5 6 
t 4 4 4 4 3 4 5 6 
n 5 5 5 5 4 4 5 6 
e 6 6 6 6 5 4 5 6 
r 7 7 6 7 6 5 4 5 

Figure 3: Dynamic programming table for vintner:writers 

In Figure 3, the bottom-most, right-most value represents D(7,7), which is the minimal 
edit distance between the strings “vintner” and “writers”. This value is 5. 
 
Using a dynamic programming algorithm, our time complexity is reduced to O(nm). See 
Gusfield [7] 
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Applications for DNA sequences 

It may be evident now that the concepts of edit distance and edit transcript may apply to 
DNA sequences. There is nothing stopping us from viewing a DNA sequence as just a 
string, albeit with a limited alphabet comprised of the characters ‘A’, ‘T’, ‘G’, and ‘C’. 

Alignment 

Alignment is a representation of the similarity between strings. It does not show us the 
operations performed (as an edit transcript does) but rather shows us the how those 
strings would line up next to one another in the most favorable comparison. The most 
favorable comparison is the transformation with minimum edit distance. 
 
Regarding biological applications to DNA sequences, Gusfield states that “Different 
evolutionary models are formalized via different permitted string operations, and yet 
these can result in the same alignment.” 
 
Here is an optimal alignment for the strings “vintner” and “writers” (again from 
Gusfield): 
 

v - i n t n e r - 
    |   |   | | 
w r i - t - e r s 

 
The pipe character (‘|’) represents matching characters, and a dash character (‘-‘) 
represents a gap in the alignment caused by a substitution, deletion, or insertion. 
 
Here is an alignment of DNA sequences: 
 

Edit transcript:  R R R R M I M M M M M R M I 
 
      String #1:  A T G C G - A T A G A G T - 
                          |   | | | | |   | 
      String #2:  C C C A G T A T A G A T T A 

Comparing alignments 

This visual alignment is all fine and well, and the minimal edit distance may be a good 
way to quantitatively compare strings, but what about DNA sequences? It turns out that 
gaps are important in DNA sequences because they represent significant biological 
events. A run of gaps must be accounted for, and it would be better to score insertions, 
deletions, and replacements differently. We must have some way of scoring our 
alignments. 
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Gaps are an important concept in biological applications, because a stream of gaps in a 
DNA sequence may represent a significant biological characteristic. Gaps usually incur a 
‘penalty’ to the potential alignment score between two sequences, depending on the 
length of the gap. 
 
The way to achieve a more useful score is to turn around our definition a bit. Instead of 
computing the minimal edit distance between strings or sequences, it will help to 
compute the maximum similarity between them. To do this, we need a scoring function. 
 
Say that we have two strings S and T of differing lengths. 
 
Alignment A maps S and T into strings S’ and T’, such that |S’| = |T’|. 
 
If we remove the gaps from S’ and T’, we will have restored S and T. 
 
The value of alignment A is defined as: 
 

 �
=

l

i

iTiS
1

])['],['(σ , where l = |S’| = |T’| 

 
and σ(x,y) is a scoring function. 
 
An optimal alignment is an alignment that has maximum possible value for these two 
strings. 
 
The scoring function produces a value dependent upon the matching qualities of two 
characters in our strings. For example, with two distinct characters ‘A’ and ‘G’, we can 
employ a scoring function defined as such: 
  

σ(A,A) = +2,  // this is a match 
 σ(G,A) = -1,  // this is a substitution of ‘A’ for ‘G’ 
 σ(G,-) = -1, and // this is a deletion of character ‘G’ 
 σ(-,G) = -1  // this is an insertion of character ‘G’ 
 
 (from Tompa) 
 
Using a scoring function, we can apply different scoring tables to our algorithm to 
achieve results which are biologically interesting. 
 
In moving from the idea of edit distance to the idea of alignment, we have become more 
interested in the quantity of maximum similarity, as opposed to the quantity of minimum 
distance. See Tompa [8] 
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Scoring a Global Alignment 

Say that we have two strings S and T, of length n and m, respectively. 
 
|S| = n, |T| = m 

 
We can define 

 
V(i, j) 

 
as the value of the maximum score of the string alignments 
 
 S[1]…S[i] and T[1]…T[j] 
 
so that the maximum score of an alignment between S and T is 
 
 V(n,m) 
 
In order to calculate V(i,j), we must: 
 

establish a base condition: 
 
 V(0,0) = 0 

 
  V(i,0) = V(i-1,0) + σ(S[i],-)  for i > 0 
 
  V(0,j) = V(0,j-1) + σ(-,T[j])  for j > 0 
 

and establish a recurrence relation: 
 

V(i,j) = maximum 
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for ni ≥<0 and mj ≥<0  

 
See Tompa [9] 

Algorithms Implemented 

To enhance my understanding of the principles of DNA sequence alignment, I have 
written four programs in C++, two of which use the dynamic programming techniques I 
have detailed above. 
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DotPlot 

The first program, called “dotplot”, will take as input two strings or sequences and 
produce a table populated with the matching dots between the strings. Output is 
configurable and the user can choose HTML or plain text output. This program is useful 
as a teaching tool to generate and demonstrate the early beginnings of sequence 
alignment. 

Minimal Edit Distance 

The second program, called “ed”, calculates the minimum edit distance between two 
strings. The strings are supplied by the user, either on the command line or through a 
plain text file. The program uses an in-memory dynamic programming table to arrive at 
the minimum edit distance score. It will also calculate the total number of alignments 
which produce this edit distance. The program displays an alignment of the two strings, 
along with an edit transcript which shows the operations used to achieve that alignment. 

Global Alignment 

The third program, called “global”, calculates the score of an optimal global alignment 
between strings or sequences. The scoring function is configurable by the user. This 
program can use either an in-memory dynamic programming table (if an alignment is 
desired) or be configured to discard tabular values along the way (thus saving memory). 

Local Alignment 

The fourth program, called “local”, calculates the score of optimal local alignments 
between two strings or sequences. These alignments show regions of similarity between 
strings or sequences. This program only calculates the score and does not present an 
alignment or transcript. The local alignment is a special case of global alignment which is 
useful to researchers. Although local alignment was not discussed in this paper, it is an 
often used concept in biological research which I understand but have not written about. 
The implementation is based upon “global” and otherwise has the characteristics of that 
program. 
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