
Algorithm Animation Revisited

Mark Fienup and Daniel Tesfa
Computer Science Department
University of Northern Iowa

219 Wright Hall
Cedar Falls, Iowa 50614-0507

fienup@cs.uni.edu and dant@distek.com

Abstract

Algorithms are inherently difficult for students to learn due to the abstractness of (1) the
basic building blocks such as arrays or other data structures, and (2) the algorithmic
technique underlying the algorithm such as divide-and-conquer, dynamic programming,
etc.

Algorithm animation seems like an intuitively useful pedagogical tool for explaining how
algorithms work, since a graphical visualization of these abstractions should make them
more concrete. Not surprisingly, several algorithm animations systems have been
developed during the last several decades to help teach computer science concepts.

Unfortunately, experimental studies designed to evaluate the effectiveness of algorithm
animation have shown that visualization itself is ineffective at improving learning. This
paper summarizes this body of work for suggestioned best practices to improve the
effectiveness of algorithm animation as a learning tool. Additionally, we survey existing
Algorithm animation tools using these best practices as a guideline for evaluation.

1 Introduction

Algorithms (and programming in general) are inherently abstract due to the abstractness
of:
1. the basic building blocks such as arrays or other data structures, and
2. the algorithmic technique underlying the algorithm such as divide-and-conquer,

dynamic programming, etc.

Intuitively, algorithm animation seems like a useful pedagogic tool for explaining how
algorithms work, since a graphical visualization of these abstractions should make them
more concrete. Not surprisingly, several algorithm animations systems have been
developed during the last several decades to help teach computer science concepts. In
fact, animations produced by more recent systems are available for most common
algorithms via the web as applets (e.g., http://www.cs.hope.edu/~alganim/ccaa/).

Unfortunately, the algorithm animation tools used to produce these algorithms are
nontrivial to learning. Instructors wanting to animate a specify algorithm in their
textbook may face too much overhead in time and effort to make visualization
worthwhile. Ideally, these tools would be simple enough to use, so that a student with an
incorrect sorting algorithm could animate it easily and gain some insight into where their
code is wrong.

Experimental studies designed to evaluate the effectiveness of algorithm animation have
shown that visualization itself is ineffective at improving learning (Hundhausen, Sarah
Douglas, and John Stasko, 2002). However, the ITiCSE working group on “Improving
the Educational Impact of Algorithm Visualization” believes that algorithm animation
can improve learning if it engages learners in an active learning activity, and they
summarizes eleven best practices for doing this (Naps et al., 2003). The first part of this
paper offers suggestions for instructors currently using algorithm animation even if they
are just tracing a sorting algorithm at the blackboard.

In the second half of this paper, we survey existing algorithm animation tools using these
best practices as a guideline for evaluation.

2 Best Practices of Algorithm Animation

Hundhausen, Douglas, and Stasko (2002) reviewed and analyzed the findings of
twenty-four experimental studies on the effectiveness of algorithm visualization in
learning. They concluded that when students only view an algorithm’s visualization,
then they did not learn significantly more than students who used conventional learning
materials. However, if algorithm visualization technology is used to actively engage
students when viewing the animation, then learning can be enhanced. Activities used to
actively engage students were:
� what-if analyses of algorithmic behavior

1

� prediction exercises
� programming exercises
They hypothesized via constructivist learning theory that these actives helped enable
students to construct their own understanding of the algorithms.

Later work by the ITiCSE 2003 Working Group on Improving the Educational Impact of
Algorithm Visualization (Naps et al., 2003) concluded that the two key obstacles to
visualization technology’s widespread usage were:
1. learners may not find the visualization technology educationally beneficial, and
2. instructors may incur too much overhead developing the visualization to make it

worthwhile.
They agreed that visualization technology is of little educational value unless it engages
learners in some type of active learning activity. As part of their paper, they summarizes
eleven best practices for algorithm animation. Table 1 contains these best practices.

Allow the learner to view previous
algorithmic steps to refresh their
memory and clear up misconceptions
about previous steps.

Include execution history.5

Include to aid understanding of an
algorithms efficiency which is an
important part of understanding an
algorithm,

Include performance information.4

It is good to couple a view of the code
and view the state of the data structure
with a more abstract view of the
animation.

Provide multiple views of the
animation.

3

Advanced learners benefit by being
able to input animation data.

Novices benefit by a simple interface,
preselected animation data, and
possibly animations based on
well-know metaphors such as comic
strips, slide shows, etc.

Adapt to the knowledge level of the
user.

2

Reinforce the relationship by allocating
instruction time to the topic during the
course.

Explain the relationship by embedding
the representations in the system using
text or narration.

Provide resources that help learners
interpret the graphical representations
and their relation to program elements.

1

Suggested TechniquesBest Practice

Table 1: Best Practices for Algorithm Animation

2

Provide coordinated explanation of the
animation either textually, or via audio
information.

Complement visualization with
explanations.

11

If a learner is able to make predictions
about the future steps of the animation,
then provide feedback on their
performance.

Support dynamic feedback.10

Periodically ask short answer questions
to focus a learners attention and
promote self-examination to improve
comprehension.

Support dynamic questions.9

Gets the learner more actively involved
in the animation and allows them to
more fully exercise algorithm features.

Support custom input data sets.8

If the learner develops the
visualization, they gain insight into the
algorithm and have a greater sense of
responsibility for the visualization.

Support learner-built visualizations.7

Allow the learn to view the algorithm
animation both forwards and
backwards with simple video player
like controls.

Support flexible execution control.6

Suggested TechniquesBest Practice

Table 1 (continued): Best Practices for Algorithm Animation

As firm believers of active learning in the classroom, these best practices for algorithm
animation have strong implications about effective classroom instruction as well. For
example, a CS 1 instructor could show the code for a sorting algorithm on one
PowerPoint slide, and follow it on the next slide with a complete trace of its execution by
showing static snapshots of changes made to an array. While this might provide multiple
views of the animation. It does not couple a view of the code simultaneously with a view
of the state of the data structure. Additionally, by showing the complete trace of the sort,
the instructor lost the opportunity to dynamically question the students about the future
state of the array during the next iteration of the outer-loop.

Tudoreanu (2003) studied the effect of “cognitive economy,” i. e., the economy of
information and tasks related to the visualization. He concluded that for an animation
and its animation environment to positively impact learning, it is important to reduce the
amount of data and tasks required in the visualization session. Thus, allowing the user to
focus on the algorithm.

In a broader context, animation as a tool for instruction has been studied by psychologists.
Tversky, Morrison, and Betrancourt (2002) tried to answer the question whether

3

animation is more effective than static graphics for learning. This was a meta-study of
previous experimental studies. They suggest two necessary, but not sufficient conditions
for a successful animation: the congruence principle and the apprehension principle.
The congruence principle states that the structure and content of the external
representation should correspond to the desired structure and content of the internal
representation. Since animation represents change over time, there should be a natural
correspondence between change over time and the essential conceptual information being
conveyed. The apprehension principle states that the structure and content of the external
representation should be readily and accurately perceived and comprehended.
Animations are often too complex or too fast to be accurately perceived. Clearly, the
apprehension principle corresponds well with Tudoreanu’s (2003) cognitive economy
concept.

For algorithm animations, we conjecture that the temporal sequence of instruction
execution and its corresponding effect on the algorithms data structure(s) satisfy the
congruence principle. Taking the apprehension principle into account, algorithm
animations must be slow and clear enough for students to perceive the correlation
between the execution of programming statements and changes to the data structure(s).
Highlighting to focus attention on this correlation should improve the effectiveness of the
algorithm animation.

When trying to answer the question whether animation is more effective than static
graphics for learning Tversky, Morrison, and Betrancourt (2002) where careful to throw
out studies that not only added animation, but inadvertently included other factors that are
know to facilitate learning such as interactivity or prediction. Since our goal is to
facilitate learning, inclusion of interactivity and prediction in an algorithm animation
would be a good thing.

3 Algorithm Animation Tools

In the second half of this paper, we survey existing algorithm animation tools by
categorizing them by functionality. For each category, we evaluate their ability to
overcome the two key obstacles to visualization technology identified by the ITiCSE
2003 Working Group on Improving the Educational Impact of Algorithm Visualization
(Naps et al., 2003), i. e.,
1. their ability to be educationally beneficial for learners, and
2. their ability to allow instructors (or students) to developing worthwhile visualizations

without incurring too much overhead.
For the assessment of this first criteria we will use the best practices outlined earlier as
our guide.
3.1 Scripting Languages for Algorithm Animation Engines

Several algorithm-animation scripting languages such as XTANGO, SAMBA, JAWAA,
etc. have been developed that allow users to develop algorithm animations. These types

4

of animation consists of creating a script file that contains low-level commands for the
construction of graphical objects and their motion within a window or applet. Figure 1
shows a sample JAWAA script that animates a breadth-first search (BFS) of a graph.
#begin
 node 1 150 30 20 20 1 1 black lightGray black CIRCLE
 node 2 100 120 20 20 1 2 black lightGray black CIRCLE
 node 3 200 120 20 20 1 3 black lightGray black CIRCLE
 node 4 150 200 20 20 1 4 black lightGray black CIRCLE
 node 5 250 200 20 20 1 5 black lightGray black CIRCLE
 node 6 200 250 20 20 1 6 black lightGray black CIRCLE
 node 7 50 200 20 20 1 7 black lightGray black CIRCLE
 node 8 100 250 20 20 1 8 black lightGray black CIRCLE
#end
#begin
 connectNodes 9 1 3 black 1
 connectNodes 10 1 2 black 1
 connectNodes 11 3 4 black 1
 connectNodes 12 3 5 black 1
 connectNodes 13 4 5 black 1
 connectNodes 14 4 2 black 1
 connectNodes 15 4 8 black 1
 connectNodes 16 7 2 black 1
 connectNodes 17 4 6 black 1
 connectNodes 18 6 5 black 1
 connectNodes 19 8 7 black 1
#end
text t1 250 30 "L0: " blue
text t2 250 50 "L1: " red
text t3 250 70 "L2: " orange
text t4 250 90 "L3: " magenta
text t5 250 110 "L4: " cyan
changeParam 1 bkgrd green
delay 600
marker 20 1 10 black green
moveMarker 20 2
changeParam 2 bkgrd green
marker 21 1 10 black green
moveMarker 21 3
changeParam 3 bkgrd green
changeParam 1 bkgrd blue
delete 20
text t6 280 30 "1 " blue
moveMarker 21 4
changeParam 4 bkgrd green
marker 22 3 10 black green
moveMarker 22 5
changeParam 5 bkgrd green
delete 22
changeParam 2 bkgrd red
changeParam 3 bkgrd red
text t7 280 50 "2 3 " red
moveMarker 21 8
changeParam 8 bkgrd green
marker 22 4 10 black green
moveMarker 22 6
changeParam 6 bkgrd green
delete 22
changeParam 4 bkgrd orange
delay 500
changeParam 5 bkgrd orange
text t8 280 70 "4 5 " orange
moveMarker 21 7
changeParam 7 bkgrd green
changeParam 8 bkgrd magenta
changeParam 6 bkgrd magenta
text t9 280 90 "8 6 " magenta
delete 21
changeParam 7 bkgrd cyan
text t10 280 110 "7 " cyan

Figure 1. JAWAA script for breadth-first search of a graph

5

Figure 2. JAWAA applet showing breadth-first search.

Figure 2 shows the “execution” of the applet generated by the JAWAA script in Figure 1
to the point of excuting the command “moveMarker 22 6”. Excerpts from the JAWAA
website (URL: http://www.cs.duke.edu/csed/jawaa2/commands.html) that describe
several of the JAWAA commands used in the script are listed below in Figure 3.

node [name] [x] [y] [width] [height] [n] [data..] [color] [bkgrd] [textcolor] [type]
Creates a stand alone node with the specified attributes and data items. Type refers to
the graphic representation of the node, either CIRCLE or RECT.

connectNodes [name] [node1] [node2] [color] [num]
This command creates an arrow connection from one node to another. The arrow that
is drawn can be referenced by the specified name. The arrow has the specified color
and 0, 1 or 2 arrowheads as specified by the num parameter.

marker [name] [node] [diameter] [color] [bkgrd]
Creates a marker that is located at the specified node with the defined attributes.

moveMarker [target] [node]
This command can only be used when the target object is a marker. The marker is
moved to the new node.

Figure 3. Description of some JAWAA commands

6

The advantages of these algorithm-animation scripting languages are:
� the scripting commands are relatively straightforward and easy to learn and use
� a program written in any language can be animated by inserting print statements that

generate the scripting commands
� the scripts are extremely flexible since the script writer has complete control over the

creation and movement of the graphical objects
� a simple ASCII editor is needed to write scripts
� the scripting objects can be tailored for algorithm animation, e.g., JAWAA graphical

objects include arrays, linked lists, queues, and stacks
Overall, these scripting languages come close to allowing instructors (or students) to
develop worthwhile visualizations without incurring too much overhead. Their biggest
drawback is the low-level nature of the scripting commands, e.g., you need to specify the
x, y coordinates of objects. However, they are relatively simple to understand and would
support the practice of learner-built visualizations.

Unfortunately, these algorithm-animation scripting languages also have the following
serious drawbacks with respect to their ability to be educationally beneficial for learners:
� they do not provide resources that help learners interpret the graphical representations

and their relation to program elements
� they do not adapt to the knowledge level of the user
� they do not provide multiple views of the animation
� they do not support flexible execution control
� they do not support dynamic questions
� they do not support dynamic feedback
� they do not complement visualization with explanations
The lack of interactive support and the decoupling of algorithm animation from program
code are serious problems. With careful design, it might be possible to build into the
animation script performance information, a static trace of the execution history, and
support for custom input data sets.

3.2 Interactive Debuggers with Data Structure Visualization

The Lens system (Mukherjea and Stasko, 1994) was an early attempt at combining
algorithm animation support with an interactive debugger. It incorporated a graphical
tool kit within a debugger to aid in the development of animation views by allowing the
user to associate animation actions (e.g., create graphical object, move object, color
object, flash object, etc.) with specific lines of source code. Additionally, Lens provided
“templates” for visualizing common data structures such as arrays, link lists, and binary
trees. When the user runs the program inside Lens, it pops up an animation window. If
the animation does not sufficiently show what the programmer intended, the animation
commands can be modified accordingly.

While the Lens system is interactive and couples the algorithm’s source code and its
execution with animation views, it makes a better algorithm animation prototyping tool

7

for instructors than an educationally beneficial tool for student learners. A student
attempting to understand or develop an algorithm using Lens will not know if sources of
confusion are from an erroneous program or erroneous animation actions.

The jGRASP IDE (version 1.8.0 Beta) by Hendrix, Cross II, and Barowski (2004)
provides automatic visualization of Java arrays and Java collections classes inside the
debugger. It does not provide true algorithm animation, but allows self-paced
visualization of these data structures as you step through the debugger without the need to
generate the animation.

Along these same lines, JIVE (Java Interactive Visualization Environment) by Gestwicki
and Jayaraman (2004) is a powerful tool for visualizing object structure and execution
histories. Not only should it be able to visualize commonly used data structures, but it
allows for both forward and backward execution stepping. It provides for multiple views
of object states in different granularities, so novices can see less details and experts can
dive to a deeper level.

3.3 Questioning-Based Algorithm Animation Tools

The JHAVE (Java-hosted Algorithm Visualization Environment) tool by Naps, Eagan,
and Norton (2000) is a client-server architecture that allows instructors to provide
students algorithm animations in both a smooth and discrete visualization of the
animation. The animation is coordinated with textual information to provide further
explanation. To force students to actively participate in the visualization, the animation is
periodically stopped and students are asked “stop-and-think” questions to predict the next
step, etc. The level of involvement by the student while viewing the animation helps
make for an educationally beneficial, interactive experience for the student.

4. Conclusions

No single algorithm animation tool is currently sufficient to overcome both of the key
obstacles of algorithm visualization:
1. their ability to be educationally beneficial for learners, and
2. their ability to allow instructors (or students) to develop worthwhile visualizations

without incurring too much overhead.
However, several tools do a reasonably good job at overcoming a single obstacle.
Algorithm-animation scripting systems, while tedious, are relatively simple to use, but if
the resulting animation is passively watched by students, then they appear to have little
educational benefit. Animation systems, such as JHAVE, that actively engage the user
are a step in the right direction. JIVE is probably the best overall algorithm animation
tool currently available since it provides “automatic” visualization of commonly used
data structures, and forward and backward execution stepping. Hopefully, future

8

algorithm animation systems can combine the best traits of these systems and overcome
both of the key obstacles to algorithm animation.

References:

Peter Brummund, current update by Ngozi V. Uti, “Complete Collection of Algorithm
Animations (CCAA)” website at http://www.cs.hope.edu/~alganim/ccaa/

T. Dean Hendrix, James H. Cross II, and Larry A. Barowski, “An Extensible Framework
for Providing Dynamic Data Structure Visualizations in a Lightweight IDE”, 35th ACM
SIGCSE Technical Symposium on Computer Science Education (SIGCSE 2004),
Norfork, Virginia, March 2004, Austin, Texas, pp. 387-391.

Christopher Hundhausen, Sarah Douglas, and John Stasko, "A Meta-Study of Algorithm
Visualization Effectiveness", Journal of Visual Languages and Computing, Vol. 13, No.
3, June 2002, pp. 259-290.

Sougata Mukherjea and John T. Stasko, “Toward visual debugging: integrating algorithm
animation capabilities within a source-level debugger”, ACM Transactions on
Computer-Human Interaction, Vol. 1, Issue 3, September 1994, pp. 215-244.

Thomas Naps, James Eagan, and Laura Norton, “JHAVE -- An Environment to Actively
Engage Students in Web-based Algorithm Visualizations”, 31st ACM SIGCSE Technical
Symposium on Computer Science Education (SIGCSE 2000), March 2000, Austin,
Texas, pp. 109-113.

Thomas L. Naps, Guido Robling, Vicki Almstrum, Wanda Dann, Rudolf Fleischer, Chris
Hundhausen, Ari Korhonen, Lauri Malmi, Myles McNally, Susan Rodger, and J. Angel
Velazquez-Iturbide, “Exploring the role of visualization and engagement in computer
science education”, ACM SIGCSE Bulletin, Vol. 35, Issue 2, June 2003, pp. 131-152.

M. Eduard Tudoreanu, “Designing effective program visualization tools for reducing
user’s cognitive effort”, Proceedings of the 2003 ACM Symposium on Software
Visualization, June 11-13, 2003, San Diego, California, pp. 105-114.

9

